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On Unsteady MHD Flow Through Porous Medium Between Two
Parallel Flat Plates
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Abstract

This paper deals with the unsteady Magnetohydrodynamics (MHD)
flow of an electrically conducting, incompressible viscous fluid past through
porous medium between two parallel plates in the presence of a transverse
magnetic field and Hall effect. An exact solution based on Laplace trans-
form has been presented. For the numerical simulation of the problem we
have employed the finite difference scheme. The effects of M (Hartman
number), m (Hall parameter) and K (Darcy parameter) on the primary ve-
locity have been investigated and their profiles are shown graphically by
using the Matlab software.

Keywords: Unsteady MHD Flow , Porous Medium , Hall current ,
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1 Introduction

The study of flow through porous media has been the object of sci-
entific and engineering research in recent years. A porous medium is a
material containing voids such as beach sand, sandstone, wood and the
human lung. The concept of porous media which depends on Darcy’s ex-
perimental law is used in many areas of applied science and engineering
for example: filtration, soil mechanics and petroleum engineering.

Ram and Mishra (G. Ram & Mishra, 1977) investigated the unsteady
flow through Magnetohydrodynamic porous media. Ram and Jain (P. C.
Ram & Jain, 1990) have discussed MHD free convective flow through a
porous medium in a rotating fluid. Reddy and Bathaiah (Reddy & Batha-
iah, 1982) have analyzed the Hall effects on MHD flow through a porous
straight channel. Islam and Biswas (Islam, Biswas, Islam, & Mohiuddin,
2011) have studied the MHD micropolar fluid flow through vertical porous
medium. Qatanani, Barham and Musmar (Qatanani, Barham, & Musmar,
2012) have studied the analysis of aligned MHD plane flow in porous
media in presence of magnetic field. Chauhan and Rastogi (Chauhan &
Rastogi, 2012) have analyzed the Hall effects on MHD slip flow and heat
transfer through a porous medium over an accelerated plate in a rotating
system. Saha and Chakrabarti (Saha & Chakrabarti, 2013) have investi-
gated the impact of magnetic field strength on magnetic fluid flow through
a channel. Moniem and Hassanin (Moniem & Hassanin, 2013) have devel-
oped a solution of MHD flow past a vertical porous plate through a porous
medium under oscillatory suction. Ahmed, Khan, Zaidi, Jan, Waheed and
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Mohyud-Din (Ahmed et al., 2014) have discussed the MHD flow of an in-
compressible fluid through porous medium between dilating and squeez-
ing permeable walls. Sa’adAldin and Qatanani (Sa’adAldin & Qatanani,
2015) have studied the unsteady MHD flow through two parallel porous
flat plates. The effects of Hartman number and Hall parameter on the pri-
mary velocity have been investigated.

In this paper the effect of Hall current on the flow of an electrically
conducting, incompressible viscous fluid past through porous medium be-
tween two parallel plates under a uniform transverse magnetic field is con-
sidered. An exact solution based on Laplace transform method has been
presented. For the numerical simulation of the problem we have employed
the finite difference scheme. Numerical results have shown to be in a good
agreement with the exact ones.The effects of M (Hartman number), m (Hall
parameter) and K (Darcy parameter) on the primary velocity have been in-
vestigated and their profiles are shown graphically.

2 Formulation of The Problem

We consider an unsteady flow of an electrically conducting, incom-
pressible viscous fluid past through porous medium between two parallel
plates with Hall effect. Let the x-axis be taken along the plates and y-axis
normal to the plates. The fluid is subjected to a constant transverse mag-
netic field of strength B0 in the y direction, where the flow is considered
in the x direction, as illustrated in Figure 2.1 . The governing equations
for the unsteady, viscous incompressible flow of an electrically conducting
fluid for the Brinkman-extended Darcy model are:

Equation of continuity :

∇.q = 0 (2.1)

Equation of motion :

∂q
∂ t

+(q.∇)q =− 1
ρ

∇p+
µ

ρ
∇

2q− µ

ρ

q
k
+

1
ρ

J×B (2.2)
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Figure (2.1): Schematic diagram of the system.

General Ohm’s law :

J+
ωτ

B0
J×B = σ [E +q×B+

1
ρene

∇Pe] (2.3)

Gauss’s law of magnetism :

∇.B = 0 (2.4)

where q is the velocity vector, ρ is the fluid density, p is the pressure,
J is the current density, B is the magnetic vector, µ is the co-efficient of
viscosity, σ the electrical conductivity, k is the permeability of the medium,
ω is the electron frequency, τ is the electron collision time, ρe the electric
charge, ne is the number density of electron, Pe is the electron pressure and
E is the electric field.

We assume E to be negligible and the magnetic Reynold’s number is
small so that magnetic induction effect is ignored. Moreover, in the ab-
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sence of pressure gradient, the ion-slip effects and electron pressure gradi-
ent we have

J = ( jx, jy, jz) q = (u,0,0) B = (0,B0,0)

J = σq×B− m
B0

J×B (2.5)

jx = m jz (2.6)

jy = 0 (2.7)

jz = σB0u−m jx (2.8)

Solving (2.6) and (2.8) we have

jx =
σB0mu
(1+m2)

(2.9)

jz =
σB0u

(1+m2)
(2.10)

1
ρ

J×B =− 1
ρ

jzB0.

As the plates are infinite, there is no x dependance. Consequently equa-
tions (2.2) and (2.3) yield the following equations:

∂u
∂ t

=− 1
ρ

∂ p
∂x

+ν
∂ 2u
∂y2 −

σB2
0u

ρ(1+m2)
−ν

u
k

(2.11)
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0 =− 1
ρ

∂ p
∂y

(2.12)

where u is the axial velocity , ν is the kinematic viscosity and m = ωτ

is the Hall parameter. The initial and boundary conditions are given by :{
u = 0, t ≤ 0
u = 0,y =±h, t > 0 . (2.13)

Introducing the non-dimensional quantities :

Y =
y
h
, T =

νt
h2 , U =

u
V
, M2 =

σB2
0h2

µ
, K =

k
h2 , P =

ph
µV

, X =
x
h

where M is the Hartman number, K is the Darcy parameter and V is the
mean velocity of the fluid.

Hence the partial differential equations (2.11) and (2.12) with the initial
and boundary (2.13) conditions become :

∂U
∂T

=−∂P
∂X

+
∂ 2U
∂Y 2 − (

M2

(1+m2)
+

1
K
)U (2.14)

0 =
∂P
∂Y

(2.15)

subject to the initial and boundary conditions :{
U = 0, T ≤ 0
U = 0,Y =±1, T > 0 . (2.16)

3 Analytical Solution

Here we find an exact solution based on Laplace transform to the MHD
flow problem presented in section two.
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From equation (2.15) we see that the pressure is independent of Y .
Then it is a function of T only. In this case we can take the pressure
gradient as a constant quantity that is

∂P
∂X

=−P0

where P0 > 0 , thus equation (2.14) becomes

∂U
∂T

= P0 +
∂ 2U
∂Y 2 − (

M2

(1+m2)
+

1
K
)U (3.1)

Taking the Laplace transform of equation (3.1) with respect to the vari-
able T we obtain :

d2

dY 2Û(s,Y )− (
M2

(1+m2)
+

1
K
+ s)Û(s,Y ) =−P0

s
(3.2)

where

Û(s,Y ) = L[U(T,Y )]

and

Û(s,−1) = 0,Û(s,1) = 0 (3.3)

Solving equation (3.2) subject to (3.3) we get

Û(s,Y )=−
P0 cosh

√
( M2

(1+m2)
+ 1

K + s)Y

s( M2

(1+m2)
+ 1

K + s)cosh
√

( M2

(1+m2)
+ 1

K + s)
+

P0

s( M2

(1+m2)
+ 1

K + s)

(3.4)

Finding the Laplace inverse transform of equation (3.4) using the com-
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plex inversion formula we obtain

U(T,Y ) =
P0

( M2

(1+m2)
+ 1

K )

(
1−

cosh
√

( M2

(1+m2)
+ 1

K )Y

cosh
√
( M2

(1+m2)
+ 1

K )

)

− 16P0

π

∞

∑
n=0

(−1)nesnT cos((2n+1
2 )πY )

( M2

(1+m2)
+ 1

K + (2n+1)2π2

4 )(2n+1)
(3.5)

where

sn =−

(
M2

(1+m2)
+

1
K
+

(2n+1)2π2

4

)
,n = 0,1,2, ....

4 Numerical Simulation and Discussion

The numerical handling of equation (3.1) subject to (2.16) can be car-
ried out by using the finite difference scheme. The computational domain
is divided into a mesh of lines parallel to Y and T axes. The implicit finite
difference approximations for derivatives is given by:

∂U
∂T

(Yi,Tj) =
U(Yi,Tj)−U(Yi,Tj−1)

k
− k

2
∂ 2U
∂T 2 (Yi,T ∗j ) (4.1)

where T ∗j ∈ (Tj−1,Tj).

∂ 2U
∂Y 2 U(Yi,Tj)=

U(Yi+1,Tj)−2U(Yi,Tj)+U(Yi−1,Tj)

h2 − h2

12
∂ 4U
∂Y 4 U(Y ∗i ,Tj)

(4.2)

where Y ∗i ∈ (Yi−1,Yi+1).

Substituting (4.1) and (4.2) into the corresponding partial differential
equation (3.1) we obtain an appropriate set of finite difference equations
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wi, j−wi, j−1

k
= P0+

wi+1, j−2wi, j +wi−1, j

h2 −
( M2

(1+m2)
+

1
K

)
wi, j (4.3)

where wi, j approximates U(Ti,Y j). Solving equation (4.3) for wi, j−1
we obtain

wi, j−1 =−λwi+1, j +(1+2λ +
( M2

(1+m2)
+

1
K

)
k)wi, j−λwi−1, j− kP0

(4.4)

where λ = k
h2 , k and h are mesh sizes along time T and Y directions

respectively. Putting this into matrix form yields



1+ak+2λ −λ 0 . . . 0

−λ
. . . . . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . −λ

0
. . . 0 −λ 1+ak+2λ




wi, j

...

...

...
wm−1, j

=


w1, j−1 + kP0

...

...

...
wm−1, j−1 + kP0


where

a =
( M2

(1+m2)
+

1
K

)
To draw a comparison between the analytical and the numerical solu-

tions presented in sections 2 and 3 respectively, we consider the following
test case with M = 1, m = 1, K = 0.1, P0 = 1, T = 0.25 fixd and Y ∈ [0,1].

Table 4.1 compares both the exact and the numerical values for the
primary velocity U(Y,T ). A further comparison between the exact and
numerical values for the primary velocity can be observed in Figure 4.1. A
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Table (4.1): The exact and numerical solutions of the primary velocity U.

Y
Exact solution

UE

Approxmiate
solution Un

Error =|UE −Un|

-0.8 0.0439256214739 0.0439284690437 0.2847569757748 ×10−5

-0.6 0.0662966816784 0.0662354201183 0.6126156005674 ×10−4

-0.4 0.0773731593814 0.0772434172904 0.1297420909940 ×10−3

-0.2 0.0824053505275 0.0822283020686 0.1770484588176 ×10−3

0 0.0838631333124 0.0836692897549 0.1938435575730 ×10−3

0.2 0.0824792484052 0.0823013886500 0.1778597551711 ×10−3

0.4 0.0775578709141 0.0774266269162 0.1312439979023 ×10−3

0.6 0.0666815959272 0.0666185173810 0.6307854626647 ×10−4

0.8 0.0446904326399 0.0446921159260 0.1683286084617 ×10−5

plot of the absolute error resulted from the approximation can be seen in
Figure 4.2.

Further investigation for the numerical calculation of the primary ve-
locity U for different values of Hartman number M, Hall parameter m,
Darcy parameter K and normal coordinate Y keeping the value of time T
fixed at T = 0.5 have been carried out.

The effect of Hartman number M on the variation of the primary ve-
locity U can be seen in Figuer 4.3, while Figure 4.4 illustrates the effect
of the Hall parameter m on the fluid velocity with the assigned values of
M = 1 and K = 0.1.

Finally, Figure 4.5 shows the effect of Darcy parameter K on the ve-
locity of the flow with M = 1 and m = 1.
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Figure (4.1): The exact and numerical
values for the primary velocity.

Figure (4.2): The absolute error re-
sulted from the approximation.

Figure (4.3): Primary velocity profiles
with several values of M using m = 1
and K = 0.1.

Figure (4.4): Primary velocity profiles
with several values of m using M = 1
andK = 0.1.
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Figure (4.5): Primary velocity profiles with several values of K using M = 1 and
m = 1.

5 Conclusions

In this work, the problem of unsteady MHD flow through porous medium
between two parallel flat plates has been investigated and solved using the
Laplace transform method and the finite difference technique. The exact
and numerical results have shown to be in a closed agreement. This can
clearly be seen in Figures 4.1 and 4.2. The magnetic field parameter M
slows down the velocity of the flow field at all points due to the magnetic
pull of the Lorentz force acting on the flow field. This can be noticed in
Figure 4.3. Moreover, in Figure 4.4, we see that the primary velocity is en-
hanced by increasing the permeability K of the porous medium because the
Darcian resistance to fluid flow through a porous medium is inversely pro-
portional to K. In fact these observations agree with (G. Ram & Mishra,
1977). Figure 4.5 represents the effect of Hall parameter m on the flow
through porous medium. It is clear that due to the increase in the Hall
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parameter m value there is a rise in the primary velocity.
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