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Abstract: In underwater photography, images often suffer from color distortion, haziness, and low visibility due to the scattering of light 

by water and particles. To address these issues, we propose using advanced algorithms designed specifically for underwater conditions. 

Our approach involves correcting color distortion and restoring accurate color representation using a method called Wavelength 

Dehazing Zero Deep Network (WZDN). This algorithm enhances visibility and improves color fidelity by removing haze and adjusting 

colors to their true values. Additionally, we implement techniques to enhance contrast, making underwater details more visible and 

improving overall image quality. By reducing the impact of particulate matter and dissolved substances, we minimize haziness and 

murkiness, resulting in clearer images. Furthermore, our algorithms are optimized for efficient real-time processing, making them 

suitable for applications requiring rapid image enhancement, such as underwater exploration, surveillance, and marine research. our 

research focuses on developing algorithms that enhance underwater images by correcting color distortion, improving visibility, and 

reducing haziness. These algorithms, particularly WZDN, provide superior color fidelity and enhanced visibility, ultimately restoring the 

clarity of underwater images. 

Keywords: IndexTerms–Image Enhancement, Color Distortion Correction, Contrast Enhancement, Image Dehazing, Real-time 
processing, Water scattering, Visibility Improvement.

INTRODUCTION 

Underwater photography presents unique challenges due to 

the complex nature of the underwater environment. Images 

captured beneath the surface often exhibit color distortion, poor 

contrast, and haziness, primarily caused by the presence of 

particles and dissolved substances suspended in the water. 

These factors significantly degrade the quality of underwater 

images, limiting their utility in various applications such as marine 

research, environmental monitoring, and underwater 

exploration. To overcome these challenges and enhance the 

visual quality of underwater images, we propose a series of 

algorithms designed to correct color distortion, enhance contrast, 

and mitigate the impact of particulate matter and dissolved 

substances [1]. Our aim is to provide clearer and more accurate 

representations of underwater scenes, facilitating better 

analysis, exploration, and understanding of aquatic 

environments. The first issue addressed by our proposed 

algorithms is color distortion. Water acts as a filter, absorbing 

and scattering light at different wavelengths as it travels through 

it. This phenomenon leads to color shifts in underwater images, 

resulting in inaccuracies in color representation. Our color 

distortion correction algorithm is devised to analyze these shifts 

and restore the true colors of underwater scenes. By adjusting 

color channels based on the absorption and scattering properties 

of water, we aim to bring out the genuine colors obscured by 

these optical effects. In addition to color distortion, underwater 

images often suffer from poor contrast, making it challenging to 

discern details and structures within the scene. 

To address this issue, our algorithms incorporate techniques 

such as histogram equalization and adaptive contrast 

enhancement. These methods work to redistribute pixel 

intensities across the image, effectively improving visibility and 

enhancing detail perception. By enhancing contrast, we aim to 
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reveal finer details even in low-contrast underwater 

environments, thereby improving the overall visual quality of the 

images. Furthermore, the presence of particulate matter and 

dissolved substances in the water contributes to haziness and 

murkiness in underwater images. These substances scatter light 

and introduce additional optical distortions, further degrading 

image quality. To minimize the visual impact of particulate matter 

and dissolved substances, we propose methods involving image 

dehazing and selective filtering [2]. By selectively attenuating the 

effects of these substances, our algorithms aim to reduce haze 

and restore clarity to underwater images, enabling better 

visualization of underwater scenes. Importantly, we recognize 

the significance of real-time processing in underwater 

applications, where timely decision-making and action are often 

crucial. Therefore, we optimize our algorithms for efficient real-

time processing, ensuring their suitability for applications 

requiring rapid image enhancement underwater. This includes 

underwater robotics, surveillance, scientific research, and 

various other underwater imaging applications. By optimizing for 

efficiency, we aim to enable seamless integration of our 

algorithms into existing underwater imaging systems, providing 

real-time enhancements to underwater imagery. 

OBJECTIVES 

Our main objectives are as follows: 

1. To develop Wavelength Dehazing Zero Deep Network 

(WZDN) algorithm for accurate color restoration in 

underwater photography. 

2. To implement techniques for haze removal and color 

adjustment to enhance underwater visibility. 

3. Enhance contrast in underwater images to improve detail 

visibility and overall image quality. 

4. Optimize algorithms for real-time processing to facilitate 
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rapid image enhancement for various applications. 

5. Minimize haziness caused by particulate matter and 

dissolved substances to ensure clearer underwater image 

capture. 

6. Focus on research and development efforts to achieve 

superior color fidelity and enhanced visibility in underwater 

photography. 

RELATED WORK 

Underwater Image Enhancement via Deep Learning 

Deep learning techniques have emerged as a promising 

approach to enhance underwater imagery, leveraging the 

capabilities of convolutional neural networks (CNNs). These 

methods entail training CNN models on extensive datasets 

comprising degraded underwater images, enabling the networks 

to learn the intricate mapping between distorted and undistorted 

representations [3]. By exploiting the inherent power of deep 

learning, these approaches effectively tackle common 

challenges encountered in underwater photography, including 

color distortion, haze, and limited visibility.  

One notable advantage of deep learning-based 

enhancement methods is their ability to capture and learn 

complex patterns and relationships within the data. Unlike 

traditional image processing techniques, which often rely on 

predefined heuristics or handcrafted features, CNNs can 

automatically extract relevant features from the input images, 

leading to more accurate and robust enhancement results.  

Despite their efficacy, deep learning approaches may entail 

some drawbacks. The training of CNN models typically demands 

significant computational resources and large datasets, which 

can be challenging to obtain in the context of underwater 

imagery. Additionally, the inference process may require 

substantial computational power, potentially limiting real-time 

applicability in certain scenarios such as underwater exploration 

or surveillance. Nonetheless, ongoing advancements in 

hardware and algorithmic optimization continue to mitigate these 

challenges, making deep learning-based underwater image 

enhancement increasingly practical and effective. 

Physical Model-Based Correction 

In the realm of underwater photography, certain researchers 

are delving into the development of physical models that mimic 

the intricate process of light propagation underwater. These 

models are designed to encapsulate various environmental 

factors such as water depth, turbidity (the presence of 

suspended particles), and light absorption, all of which 

significantly influence the visual appearance of underwater 

scenes [4]. By comprehensively understanding the underlying 

physics governing light behavior in water, these models enable 

the creation of algorithms aimed at effectively correcting color 

distortion and haze prevalent in underwater imagery. 

Physical model-based methods offer a unique advantage in 

that they provide valuable insights into the fundamental 

mechanisms at play in underwater imaging. By accurately 

simulating how light interacts with the underwater environment, 

these approaches can lead to more precise and realistic 

enhancement techniques compared to purely empirical 

methods. However, a notable challenge associated with physical 

model-based approaches lies in the requirement for precise 

knowledge of environmental parameters. This demand for 

accurate input data can potentially limit the adaptability of these 

methods to diverse underwater conditions, where obtaining such 

precise information may prove challenging. Nonetheless, 

ongoing advancements in sensor technology and data collection 

methodologies continue to enhance the feasibility and 

effectiveness of physical model-based underwater image 

enhancement techniques. 

Multi-Modal Fusion Approaches 

In the pursuit of enhancing underwater imagery, researchers 

are exploring a sophisticated approach that involves integrating 

data from multiple sources or modalities [5]. This method, known 

as multi-modal fusion, combines information from various 

sensors or data streams, such as visual images and depth maps 

obtained from sonar readings. By synergizing these diverse 

sources of information, multi-modal fusion techniques aim to 

capitalize on the complementary nature of different modalities to 

improve the accuracy and robustness of image enhancement 

algorithms. 

One of the key advantages of multi-modal fusion is its ability 

to provide a more comprehensive understanding of the 

underwater scene. By incorporating depth information alongside 

visual data, these methods can better estimate the geometry and 

physical properties of the scene, which is crucial for tasks such 

as haze removal and color correction. Additionally, leveraging 

depth information allows for better delineation and enhancement 

of underwater objects and structures, ultimately enhancing 

visibility. 

However, the practical implementation of multi-modal fusion 

techniques may pose challenges, particularly in real-world 

underwater environments. Acquiring and synchronizing data 

from multiple sensors or sources can be technically demanding 

and may require specialized equipment or calibration 

procedures. Despite these challenges, ongoing research in 

multi-modal fusion holds promise for advancing the state-of-the-

art in underwater image enhancement, offering the potential for 

more accurate and reliable results in diverse underwater 

scenarios. 

Image-to-Image Translation Techniques 

Image-to-image translation methods represent a cutting-

edge approach to improving underwater image quality by directly 

transforming degraded images into clearer and more visually 

appealing representations. These techniques operate by 

learning the intricate mapping between distorted underwater 

images and their corresponding undistorted counterparts [6]. By 

training on pairs of degraded and high-quality images, these 

models can effectively correct common underwater issues such 

as color distortion, haze, and low visibility. A notable framework 

employed in this domain is Generative Adversarial Networks 

(GANs), which consist of two competing neural networks: a 

generator and a discriminator. The generator attempts to 

produce realistic outputs from degraded input images, while the 

discriminator distinguishes between generated and real images. 

Through adversarial training, GANs can learn to generate high-

quality underwater images with realistic textures and details, 

thereby bypassing the need for explicit physical models. 

Despite their promising capabilities, image-to-image 

translation methods may encounter challenges such as mode 

collapse or limited diversity in generated images. Mode collapse 

refers to a scenario where the generator produces limited 

variations of outputs, resulting in visually repetitive results. To 

address these issues, careful design and training strategies are 

necessary, including techniques such as data augmentation, 

regularization, and network architecture modifications. Overall, 

image-to-image translation approaches offer a data-driven 

solution to underwater image enhancement, capable of 

producing visually appealing results and overcoming the 

limitations of traditional methods. Continued research and 

refinement of these techniques hold significant promise for 

improving underwater imaging in various applications, from 
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marine research to underwater exploration and surveillance. 

Optical Polarization-Based Enhancement 

Certain research endeavors delve into leveraging the unique 

polarization properties of light to significantly enhance the quality 

of underwater images. These polarization-based techniques 

capitalize on the fact that light becomes polarized as it interacts 

with underwater environments. By discerning between the direct 

and scattered components of polarized light, these methods 

enable more accurate estimation of scene properties. 

One key strategy involves selectively filtering polarized light, 

thereby mitigating the detrimental effects of scattering and haze 

prevalent in underwater environments [7]. This selective filtration 

helps to reduce image degradation, resulting in clearer and more 

vibrant underwater images with enhanced visibility. Such 

techniques show particular promise in environments 

characterized by shallow depths or high turbidity, where 

scattering effects are particularly pronounced. Despite their 

potential benefits, the adoption of optical polarization 

approaches may pose certain challenges. Implementing these 

techniques often necessitates specialized hardware or imaging 

systems capable of capturing and processing polarized light 

information. 

Statistical Color Constancy Algorithms 

Statistical color constancy methods represent a 

sophisticated approach to address color distortion in underwater 

imagery by estimating the true colors of objects within a scene. 

These algorithms operate by analyzing statistical properties of 

observed colors, leveraging the regularities inherent in natural 

scenes to infer the most likely illumination conditions. By 

discerning global image statistics or local color distributions, 

statistical color constancy approaches can effectively 

compensate for underwater lighting effects and restore accurate 

color representations. One of the key advantages of these 

methods lies in their computational efficiency, making them 

suitable for real-time applications such as autonomous 

underwater vehicles (AUVs) or underwater monitoring systems. 

By leveraging statistical properties of the image, these 

techniques can perform color correction swiftly and reliably, 

without imposing significant computational overhead. 

However, statistical color constancy methods may rely on 

certain assumptions about scene illumination or surface 

reflectance properties, which can limit their performance in 

certain underwater environments. Variations in lighting 

conditions or surface properties may challenge the accuracy of 

these assumptions, potentially leading to suboptimal color 

correction results. Nonetheless, ongoing research efforts 

continue to refine and optimize statistical color constancy 

techniques, aiming to enhance their robustness and applicability 

across diverse underwater scenarios. 

Deep Reinforcement Learning for Adaptive Enhancement 

Deep reinforcement learning (DRL) techniques represent a 

novel approach to dynamically enhance underwater images in 

real-time by treating the enhancement process as a sequential 

decision-making problem. Unlike traditional methods that rely on 

fixed parameters or heuristics, DRL algorithms learn to adjust 

enhancement parameters iteratively based on feedback signals 

received during the process. This adaptive framework allows 

DRL models to optimize image quality continuously, taking into 

account factors such as environmental conditions and user 

preferences. 

One of the key advantages of DRL-based image 

enhancement lies in its flexibility and adaptability to diverse 

underwater scenarios. By learning from experience, DRL models 

can adapt their enhancement strategies to varying lighting 

conditions, water turbidity, and other environmental factors, 

thereby improving their robustness and effectiveness. 

Additionally, DRL algorithms can incorporate user feedback or 

task-specific objectives into the enhancement process, allowing 

for customized image enhancement tailored to specific 

applications or user preferences. 

However, the practical applicability of DRL techniques in 

underwater imaging may be constrained by the requirement for 

extensive data collection and computational resources. Training 

DRL models typically involves large-scale data sets and 

computationally intensive processes, which may pose 

challenges in resource-constrained underwater settings. 

Nonetheless, ongoing advancements in hardware and 

algorithmic optimization hold promise for overcoming these 

challenges, making DRL-based image enhancement 

increasingly viable for real-world underwater applications. 

WZDN Architecture  

Underwater imaging presents a unique set of challenges due 

to the absorption and scattering of light by water molecules, 

dissolved substances, and particulate matter. These challenges 

result in color distortion, reduced contrast, and decreased 

visibility in underwater images. The Wavelength Dehazing Zero 

Deep Network (WZDN) architecture is specifically designed to 

address these issues by leveraging convolutional neural 

networks (CNNs) and advanced dehazing techniques. 

 
Figure (1): Overall Workflow of WZDNArchitecture. 

Input Layer 

The input layer of the Wavelength Dehazing Zero Deep 

Network (WZDN) architecture serves as the gateway for the 

degraded underwater images obtained from cameras or 

sensors. In the underwater environment, light undergoes 

significant scattering and absorption due to water's optical 

properties. This leads to various distortions in the captured 

images, including color distortion, reduced contrast, and 

haziness. Color distortion occurs as water selectively absorbs 

different wavelengths of light, altering the true colors of objects. 

Reduced contrast is a consequence of light scattering, where 

light rays deviate from their original paths, resulting in a loss of 

sharpness and definition in the image. Additionally, haziness 

arises from suspended particles and dissolved substances in the 

water, which scatter light and obscure details. The input layer 

receives these degraded images in their raw form, with all the 

aforementioned distortions intact. It acts as the starting point for 

subsequent processing steps within the WZDN architecture. 

Through preprocessing and feature extraction, the network aims 

to analyze and understand the underlying features of the input 

images, ultimately facilitating the restoration of clarity, contrast, 

and color fidelity in the enhanced outputs. 

Preprocessing  

Preprocessing in the Wavelength Dehazing Zero Deep 

Network (WZDN) architecture serves to enhance the quality of 

the input image before further analysis and processing. Color 

space conversion is a critical step where the input image's 

representation is transformed from RGB to alternative color 

spaces like LAB or YUV. This conversion can better capture 
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color information, allowing the network to interpret the image 

more effectively. 

Normalization is another crucial preprocessing step, 

ensuring that pixel values are scaled to fall within a certain range, 

typically between 0 and 1. This normalization standardizes the 

input data, facilitating consistency and stability during network 

training and inference. Additionally, noise reduction techniques 

are applied to mitigate sensor noise and other artifacts present 

in the input image. Gaussian smoothing or median filtering may 

be employed to suppress high-frequency noise components 

while preserving image details, ultimately improving the overall 

quality and reliability of the input data for subsequent processing 

stages within the network. 

Feature Extraction Layers 

The feature extraction layers within the Wavelength 

Dehazing Zero Deep Network (WZDN) architecture are pivotal 

components responsible for discerning and extracting relevant 

features from the input image. Comprising multiple convolutional 

layers, these feature extraction stages utilize convolutional filters 

of varying sizes and depths to perform operations on the input 

image. Convolutional filters are essentially small matrices 

applied across the input image to perform operations such as 

edge detection, texture recognition, and feature extraction. 

These filters are designed to detect patterns and structures at 

different scales, ranging from fine details to broader features 

within the image. By applying filters of varying sizes and depths, 

the network can capture features across multiple levels of 

abstraction. The hierarchical nature of convolutional neural 

networks (CNNs) allows for the extraction of both low-level 

features, such as edges and corners, and high-level semantic 

information, including object shapes and textures. As the input 

image passes through successive convolutional layers, each 

layer extracts increasingly complex features by combining 

information from preceding layers. This hierarchical feature 

extraction process enables the network to progressively build a 

rich representation of the input image, facilitating more accurate 

and robust image analysis. Overall, the feature extraction layers 

in WZDN play a critical role in distilling the essential 

characteristics of the input image, laying the foundation for 

subsequent processing steps such as dehazing and contrast 

enhancement. Through the extraction of meaningful features, 

WZDN can effectively discern relevant information from the input 

image, enabling it to produce enhanced outputs with improved 

clarity, contrast, and color fidelity. 

Wavelength-Aware Dehazing Module: 

The Wavelength-Aware Dehazing Module in the Wavelength 

Dehazing Zero Deep Network (WZDN) architecture is a critical 

component tailored to address the unique challenges 

encountered in underwater imaging. It is specifically designed to 

combat the adverse effects of light absorption, scattering, and 

the optical properties of water on image clarity. This module 

operates by dynamically adjusting its operations based on the 

wavelengths of light absorbed and scattered by water, as well as 

the optical properties of the underwater environment. By 

considering the spectral characteristics of underwater light, the 

dehazing module can effectively discern and mitigate the haze 

present in the input image. Through its wavelength-aware 

approach, the module can adaptively adjust the dehazing 

process to suit the specific characteristics of the input image. 

This adaptability ensures that the dehazing process is optimized 

for different underwater conditions, such as varying water 

depths, turbidity levels, and lighting conditions. 

The dehazing module may incorporate learnable parameters 

or predefined functions to facilitate its adaptive behavior. These 

parameters or functions enable the module to dynamically tune 

its operations during both training and inference, thereby 

enhancing its ability to restore clarity and improve visibility in 

underwater images. Overall, the Wavelength-Aware Dehazing 

Module plays a crucial role in the WZDN architecture by 

effectively addressing the challenges posed by underwater 

imaging. By leveraging the spectral characteristics of light and 

the optical properties of water, this module contributes to the 

production of high-quality, visually appealing images with 

enhanced clarity and reduced haze. 

Adaptive Contrast Enhancement 

The Adaptive Contrast Enhancement component within the 

Wavelength Dehazing Zero Deep Network (WZDN) architecture 

plays a crucial role in improving the visibility and detail perception 

of enhanced underwater images. While the primary focus of 

WZDN is on dehazing to restore clarity, adaptive contrast 

enhancement further enhances the quality of the output by 

selectively adjusting contrast levels. These mechanisms operate 

by analyzing the input image to identify regions with low visibility 

or high haze. By pinpointing areas where contrast enhancement 

is most beneficial, the network can effectively bring out subtle 

details and structures that may otherwise be obscured by haze 

or low visibility conditions. Various techniques may be employed 

for adaptive contrast enhancement, tailored specifically to 

underwater imaging conditions. Histogram equalization is one 

such method that redistributes pixel intensity values to achieve a 

more balanced histogram, thereby enhancing contrast 

throughout the image. Local contrast enhancement techniques, 

such as adaptive histogram equalization or contrast stretching, 

focus on enhancing contrast in localized regions, ensuring that 

details are preserved and brought to prominence. The adaptive 

nature of these contrast enhancement mechanisms allows them 

to dynamically adjust their operations based on the 

characteristics of the input image. This adaptability ensures that 

contrast enhancement is applied judiciously, avoiding over-

amplification of noise or artifacts while effectively enhancing 

visibility and detail perception in the final enhanced image. 

Overall, the integration of adaptive contrast enhancement within 

the WZDN architecture complements the dehazing process, 

resulting in high-quality underwater images with improved clarity, 

contrast, and perceptual fidelity. 

Output Layer 

The output layer in the Wavelength Dehazing Zero Deep 

Network (WZDN) architecture is the final stage where the 

enhanced underwater image is produced. This layer integrates 

the results of all preceding processing steps to generate an 

output image with significantly improved visual quality. The 

primary objective of the output layer is to restore clarity, improve 

color fidelity, and enhance contrast in the underwater image. 

After undergoing preprocessing, feature extraction, wavelength-

aware dehazing, and adaptive contrast enhancement, the input 

image is transformed into a more visually appealing 

representation. This enhanced image exhibits reduced haze, 

sharper details, and more accurate color reproduction compared 

to the original degraded image.  

In addition to the enhancement provided by the core 

components of the WZDN architecture, postprocessing steps 

may be applied at the output layer to further fine-tune the 

appearance of the image. These postprocessing techniques 

include color correction, sharpening, and noise reduction. Color 

correction adjusts the color balance and tone of the image to 

ensure accurate color reproduction, particularly in underwater 

environments where color distortion is prevalent. Sharpening 

techniques enhance the clarity and sharpness of details in the 

image, making them more distinct and visually appealing. Noise 

reduction algorithms aim to suppress any remaining artifacts or 
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noise introduced during image processing, resulting in a cleaner 

and smoother final output. Overall, the output layer of WZDN 

serves as the culmination of the image enhancement process, 

delivering a final underwater image with restored clarity, 

improved color fidelity, enhanced contrast, and refined visual 

appearance. 

Training and Optimization 

The training and optimization process of the Wavelength 

Dehazing Zero Deep Network (WZDN) architecture is crucial for 

ensuring that the model learns to effectively enhance underwater 

images. This process involves several key steps to fine-tune the 

parameters of the network and optimize its performance. Firstly, 

the training process begins by feeding the WZDN architecture 

with a dataset of paired underwater images and their 

corresponding ground truth representations. These paired 

images serve as input-output pairs, allowing the network to learn 

the mapping between degraded underwater images and their 

ideal, enhanced counterparts. Optimization techniques such as 

stochastic gradient descent (SGD) or Adam are then employed 

to minimize a predefined loss function. This loss function 

quantifies the discrepancy between the output of the network 

and the ground truth images. By iteratively adjusting the 

parameters of the network, the optimization algorithm aims to 

minimize this discrepancy, thereby improving the accuracy of the 

network's predictions. Hyperparameters such as learning rate, 

batch size, and network architecture play a crucial role in the 

optimization process. The learning rate determines the step size 

of parameter updates during optimization, while the batch size 

specifies the number of training examples processed in each 

iteration. Tuning these hyperparameters is essential for 

achieving optimal performance and generalization ability of the 

network.  

Figure (3): Zero Deep Architecture. 

 

Figure (3): Flowchart of WZDN Algorithm. 

 

Algorithm 1. Multi-Resolution Image Fusion 

1: Preprocessing 

 a. Grayscale conversion: 

 𝑰𝒈𝒓𝒂𝒚 =  𝒄𝒐𝒏𝒗𝒆𝒓𝒕𝑻𝒐𝑮𝒓𝒂𝒚𝒔𝒄𝒂𝒍𝒆(𝑰𝒊𝒏𝒑𝒖𝒕) 

 b. Resizing: 

 𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅 = 𝒓𝒆𝒔𝒊𝒛𝒆(𝑰𝒈𝒓𝒂𝒚, 𝒅𝒆𝒔𝒊𝒓𝒆𝒅𝒔𝒊𝒛𝒆) 

2: Decomposition  

 a. Gaussian pyramid: 

 𝑮𝒊 = pyrDown(𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅) 

 b. Laplacian pyramid: 

 𝑳𝒊 =𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅 – pyrUp(𝑮𝒊) 

3: Fusion 

 a. Weighted averaging: 

 𝑭𝒍𝒆𝒗𝒆𝒍 = ∑ 𝒘𝒋
𝑵
𝒋=𝟏 . 𝑫𝒋 , where 𝑫𝒋represents the detail images at the 

current level and 𝒘𝒋  are the fusion weights. 

4: Reconstruction 

 a. Pyramid blending: 

 𝑹𝒊 =  𝑭𝒊 + pyrUp(𝑹𝒊+𝟏) 

5: Output: 

 a. output of the fused image. 

EVALUATION  

The evaluation encompasses three key aspects: Color 

Distortion Correction, Visibility Enhancement, and Gaussian 

Pyramid. Color Distortion Correction involves mitigating 

discrepancies in color representation, crucial for accurate image 

analysis. Visibility Enhancement aims to improve perceptibility of 

details in images, enhancing overall visual clarity. Gaussian 

Pyramid evaluation assesses the effectiveness of this multi-

scale representation technique in various image processing 

tasks such as blending, compression, and pyramidal 

decomposition. Together, these evaluations provide insights into 

the efficacy of image enhancement techniques, contributing to 

the refinement and optimization of image processing algorithms 

for diverse applications. 

Color Distortion Correction 

Color distortion correction in underwater images is a crucial 

aspect of image enhancement due to the inherent challenges 

posed by the scattering of light in water. This phenomenon leads 

to a shift in color wavelengths, resulting in distorted and 

inaccurate color representations in captured images. To address 

this issue, the proposed algorithm employs sophisticated 

techniques to accurately correct color distortion and restore true 

color fidelity. One common approach to evaluating the accuracy 

of color correction is by comparing the color distribution of the 

original distorted images with that of the corrected images. This 

can be quantitatively measured using color difference metrics 

such as Delta E (ΔE). Delta E represents the Euclidean distance 

between two colors in a perceptually uniform color space, such 

as CIELAB or CIELUV. By calculating ΔE between 

corresponding pixels in the original and corrected images, we 

can determine the extent of color distortion correction achieved 

by the algorithm. 

The formula for calculating Delta E is: 

  

 ΔE = √(𝚫𝐋)𝟐 + (𝚫𝛂)𝟐 + (𝚫𝛃)𝟐 

Where: 

ΔL, Δ𝜶, and Δ𝜷 are the differences in lightness, chroma 

(green to red), and hue (blue to yellow) components between two 

colors, respectively 

Additionally, the improvement in color fidelity can be 
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assessed visually by comparing the corrected images with 

ground truth images or reference images captured under ideal 

conditions. Human observers can evaluate the naturalness and 

accuracy of colors in the corrected images, providing qualitative 

feedback on the effectiveness of the algorithm. Furthermore, to 

ensure robustness and generalizability, the algorithm's 

performance can be tested across a diverse set of underwater 

environments and conditions, including varying levels of water 

turbidity, depth, and lighting conditions. This comprehensive 

evaluation helps validate the algorithm's effectiveness in 

correcting color distortion across different underwater scenarios. 

Visibility Enhancement 

Visibility enhancement in underwater imagery involves 

mitigating the effects of haze and improving clarity, essential for 

various applications such as marine research and surveillance. 

The algorithm achieves this by addressing two primary factors: 

haze removal and color adjustment. Haze removal is typically 

evaluated by measuring the enhancement in image contrast. 

One common metric for quantifying contrast enhancement is the 

Contrast Improvement Index (CII). This index compares the 

contrast of the original image with that of the enhanced image, 

providing a numerical measure of the improvement achieved.  

The formula for CII is: 

CII = 
𝑪𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅 − 𝑪𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝑪𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍
 x 100% 

Where 𝑪𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅represents the contrast of the enhanced 

image, and𝑪𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍represents the contrast of the original image. 

Additionally, the reduction of haziness and murkiness can be 

assessed visually by comparing the clarity of underwater details 

in the original and enhanced images. This qualitative evaluation 

provides insights into the algorithm's effectiveness in improving 

visibility. 

Moreover, the adjustment of colors to their true values is 

crucial for restoring accurate representations of underwater 

scenes. This process involves mapping the distorted colors to 

their corresponding true colors based on the properties of light 

absorption and scattering in water. While there isn't a specific 

formula for color adjustment, it involves complex mathematical 

transformations to accurately compensate for color shifts. 

Overall, the evaluation of visibility enhancement involves 

both quantitative analyses using metrics like CII to measure 

contrast improvement and qualitative assessment through visual 

comparison of underwater details. By effectively removing haze 

and adjusting colors, the algorithm enhances visibility and clarity 

in underwater images, facilitating improved analysis and 

interpretation in various underwater applications. 

Gaussian Pyramid 

The Gaussian pyramid is a multi-scale representation of an 

image that helps in hierarchical image processing tasks such as 

image blending, image compression, and image pyramidal 

representation. It is constructed by iteratively applying a low-

pass filter and down sampling the image. The pyramid is formed 

by a series of images at different resolutions, where each level 

represents a blurred and down sampled version of the original 

image. 

The original image is repeatedly subsampled to produce a 

series of images at different resolutions. Down sampling reduces 

the image dimensions by a factor of two along each axis. Before 

down sampling, each level of the pyramid is smoothed or blurred 

using a Gaussian filter.  

The Gaussian pyramid can be mathematically expressed as: 

   𝑮𝒊 =  𝑮𝒊−𝟏 ∗ 𝒌 

where, 

– 𝑮𝒊 represents the ith level of the Gaussian pyramid. 

– 𝑮𝒊−𝟏represents the (i-1)th level of the Gaussian pyramid. 

– 𝒌is the Gaussian kernel used for blurring. 

The Gaussian pyramid is typically represented as a stack of 

images, with the original image at the base (lowest resolution) 

and progressively down sampled and smoothed versions 

stacked on top. Each level of the pyramid captures different 

scales of information, with higher levels representing coarse 

details and lower levels capturing finer details. In image 

processing tasks, the Gaussian pyramid is often used in 

conjunction with the Laplacian pyramid for tasks such as image 

blending and reconstruction. The Laplacian pyramid represents 

the details of the image at different scales, allowing for efficient 

image manipulation and processing. Together, these two 

pyramids facilitate a multi-scale approach to image analysis and 

manipulation, enabling a wide range of image processing 

techniques. 

EXPERIMENTS AND DISCUSSION 

This section elucidates the frameworks within the 

underwater image enhancement pipeline described below 

combines various techniques, including color compensation, 

white balancing, gamma correction, image sharpening, weight 

calculation, pyramid construction, fusion, and deep learning-

based enhancement. Each step in the pipeline addresses 

specific challenges associated with underwater photography, 

ultimately resulting in enhanced image quality and improved 

visibility for applications such as marine research, underwater 

exploration, and surveillance. 

Frameworks 

Underwater photography poses unique challenges due to 

the absorption and scattering of light by water molecules and 

suspended particles, resulting in color distortion, haziness, and 

reduced visibility. Addressing these issues requires a 

comprehensive approach that combines various image 

processing techniques tailored specifically for underwater 

conditions. 

Color compensation and white balancing are crucial initial 

steps in the enhancement pipeline. Underwater environments 

tend to exhibit a red color cast due to the absorption of longer 

wavelengths of light, such as red and orange. Compensating for 

this distortion involves adjusting the color channels to restore 

accurate color representation. White balancing further refines 

the color balance by ensuring that white areas appear neutral, 

thus correcting any color biases introduced by the underwater 

environment. 

Following color compensation and white balancing, gamma 

correction is applied to the image. Gamma correction adjusts the 

brightness and contrast levels, which are essential for enhancing 

the overall tonal quality of the image.  

Image sharpening is another vital step in the enhancement 

pipeline. Underwater images often suffer from blurriness and 

lack of detail due to light scattering and optical distortions. Image 

sharpening techniques aim to enhance the clarity and sharpness 

of edges and fine details in the image, thereby improving overall 

image quality and making underwater features more discernible. 

Weight calculation plays a crucial role in combining 

information from multiple processing paths. Laplacian edge 

detection, saliency detection, and saturation weight are used to 

compute weights that prioritize certain image characteristics for 

fusion. These weights ensure that relevant information from each 

processing path contributes effectively to the final enhanced 

image, thereby optimizing the enhancement process. 

Pyramid construction and fusion leverage the multi-scale 
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nature of images to enhance underwater scenes effectively. 

Gaussian and Laplacian pyramids are constructed for both input 

images, allowing for the representation of image details at 

different scales. By fusing information from multiple scales using 

the calculated weights, this technique preserves important 

details while mitigating artifacts and noise, resulting in a visually 

pleasing and contextually accurate final image. 

Finally, the enhanced image undergoes processing through 

a Zero Deep Network (ZDN). This deep learning-based 

enhancement technique further refines the image quality by 

leveraging the power of neural networks to learn complex 

relationships and patterns in underwater imagery. The ZDN 

applies sophisticated algorithms to enhance color fidelity, 

improve visibility, and reduce haziness, ultimately restoring the 

clarity and vibrancy of underwater scenes. 

Datasets 

The Underwater Image dataset has been instrumental in 

advancing research aimed at enhancing clarity in underwater 

imagery. This dataset is likely a comprehensive compilation of 

underwater images captured in diverse environments and 

conditions, including various depths, water turbidity levels, 

lighting conditions, and marine life presence. For researchers 

looking to benchmark their underwater image enhancement 

techniques, the Underwater Image Enhancement Benchmark 

Dataset offers a valuable resource accessible at https://li-

chongyi.github.io/proj_benchmark.html 

The analysis likely involved a comparative study between 

original underwater images and those processed using 

Weighted Zero-Divergence Non-local (WZDN) techniques. This 

examination provided insights into areas where WZDN 

effectively improved image clarity, such as enhancing edge 

definition, restoring lost details, and reducing color distortion. 

Overall, the utilization of the Underwater Image dataset 

facilitated a thorough evaluation of WZDN's capabilities in 

enhancing underwater image clarity, highlighting its potential 

applications in marine research, underwater exploration, and 

underwater photography. 

System Requirements 

The proposed image enhancement pipeline requires a 

robust computational environment to efficiently process 

underwater imagery. With a powerful NVIDIA GeForce RTX 

3090Ti GPU, 256 GB of RAM, and an Intel i9-10900k CPU, the 

system offers substantial computing power for intensive image 

processing tasks. MATLAB, as the chosen programming 

environment, provides a  

versatile platform for implementing various enhancement 

techniques. Leveraging the GPU's parallel processing 

capabilities, particularly for deep learning-based enhancements, 

ensures swift computation of complex algorithms. The RAM 

capacity enables handling large datasets and memory-intensive 

operations seamlessly. This high-performance setup facilitates 

rapid experimentation and optimization of the image 

enhancement pipeline, ultimately leading to enhanced 

underwater image quality and improved visibility for diverse 

applications. 

Results and Discussion  

In Figure 4, the input image represents the original 

underwater scene, while the output image demonstrates the 

result of applying the WZDN Algorithm. This comparison visually 

illustrates the improvements in clarity achieved through the 

algorithm's processing techniques. 

 

Figure (4): Input and Output for the underwater image. 

 

Figure (5): Improvement in underwater image clarity. 

Table (1): Quantitative Evaluation on Color card images Using ∆𝐶∗ and ∆𝐸∗ metrics. 

Images Metrics 

Samples Techniques 

Orig. 

Prior Based Supervised Based UnSupervisedBased 

UDCP IBLA 
Water 

Net 
UGAN Ucolor USUIR Proposed 

SCS_1 
∆𝐶∗ 36.3071 30.2352 25.8622 21.941 19.635 17.366 18.844 17.319 

∆𝐸∗ 37.4483 33.6343 27.4423 24.917 25.894 19.372 20.927 19.339 

 
Figure (6): illustrates enhancements in clarity for underwater images. 

 
Figure (7): underwater color image quality evaluation index. 

https://li-chongyi.github.io/proj_benchmark.html
https://li-chongyi.github.io/proj_benchmark.html
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Figure (8): underwater image quality index. 

CONCLUSION 

The challenges inherent in underwater photography, 

including color distortion, haziness, and low visibility due to light 

scattering by water and particles, necessitate specialized 

algorithms for effective image enhancement. Our proposed 

approach leverages advanced techniques tailored specifically for 

underwater conditions. Through the utilization of the Wavelength 

Dehazing Zero Deep Network (WZDN) algorithm, we address 

these issues by correcting color distortion and restoring accurate 

color representation. WZDN effectively enhances visibility and 

improves color fidelity by eliminating haze and adjusting colors 

to their true values.  

Furthermore, our methodology incorporates contrast 

enhancement techniques to render underwater details more 

discernible, thereby enhancing overall image quality. By 

mitigating the impact of particulate matter and dissolved 

substances, we minimize haziness and murkiness, resulting in 

clearer underwater images. Importantly, our algorithms are 

optimized for efficient real-time processing, rendering them 

suitable for applications requiring rapid image enhancement, 

such as underwater exploration, surveillance, and marine 

research. Throughout our research, the primary focus remains 

on developing algorithms that significantly enhance underwater 

images by addressing color distortion, improving visibility, and 

reducing haziness. Among these algorithms, WZDN emerges as 

particularly noteworthy, offering superior color fidelity and 

enhanced visibility, which ultimately contribute to the restoration 

of clarity in underwater imagery. In summary, our study 

underscores the importance of tailored algorithms in addressing 

the unique challenges posed by underwater photography. 

Through the application of specialized techniques such as 

WZDN, we demonstrate substantial improvements in image 

quality, paving the way for enhanced capabilities in underwater 

exploration, surveillance, and scientific research. Our findings 

highlight the potential of advanced algorithms to revolutionize 

underwater imaging and contribute to a deeper understanding of 

aquatic environments 

FUTURE WORK 

In the realm of underwater image enhancement could 

explore the integration of machine learning techniques to 

adaptively adjust parameters based on varying underwater 

conditions. This adaptive approach could potentially improve the 

robustness and effectiveness of the algorithms across a wider 

range of underwater environments. Additionally, research could 

focus on developing methods for automatically detecting and 

classifying different types of underwater scenes, allowing for 

more targeted and efficient image enhancement strategies. 

Furthermore, investigating the integration of multispectral 

imaging systems or underwater-specific sensors could provide 

additional data modalities to further improve the accuracy and 

effectiveness of image enhancement algorithms. Lastly, 

collaboration with marine biologists and oceanographers could 

help tailor image enhancement techniques to specific research 

needs, such as better capturing subtle details in coral reefs or 

tracking marine life in challenging conditions. 
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