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Abstract: Fog computing bridges the gap between loT devices and cloud servers by providing low-latency computational resources
closer to the network edge. Despite its potential, the rapid increase in loT applications with diverse resource and quality-of-service
(QoS) requirements presents significant challenges in application deployment and resource optimization. This paper addresses these
challenges by introducing a comprehensive application placement framework designed to optimize execution time and energy
consumption in a heterogeneous fog environment. The proposed framework consists of three phases. A pre-scheduling method is
developed to efficiently allocate tasks by analyzing workflows to reduce computation delays and energy usage. Leveraging an Improved
Memetic Algorithm (IMA), this strategy enables effective scheduling of parallel 1oT workflows across fog and cloud servers, ensuring
balanced resource utilization and enhanced scalability. A lightweight recovery method is incorporated to address runtime failures,
ensuring the robustness and reliability of task execution. The performance of the proposed framework is evaluated using real and
synthetic loT workflows in the iFogSim environment. Experimental results demonstrate that the framework achieves a 65% reduction
in the weighted cost and a 51% decrease in execution time compared to existing approaches. This makes it a promising solution for
managing resource-intensive loT applications in fog computing environments.
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Introduction

Human life has been greatly enhanced by the extensive use
of Internet of Things (loT) devices in a variety of fields, including
intelligent transportation, smart healthcare, and industrial
automation [1]. Due to the massive volumes of data produced by
these devices, sophisticated and latency-sensitive Internet of
Things applications have emerged, such as online gaming, video
streaming, augmented reality, and virtual reality. By 2030, there
will be roughly 3.5 billion connected devices, according to Cisco
reports and other IoT research studies.[19] These loT devices
usually transfer data processing tasks to more powerful
computing layers because of their limited computational and
energy resources. Using a pay-as-you-go model, cloud
computing provides scalable solutions for networking, storage,
computation, and management. However, maintaining stringent
Quality of Service (QoS) requirements is still difficult because of
the enormous volume of data produced by IoT devices and the
considerable physical distance between users and cloud data
centers. Traditional cloud-based models are inappropriate for loT
deployments because latency-sensitive applications require
ultra-low response times, high availability, security, and
guaranteed QoS.

To overcome these restrictions, the Open Fog Consortium
unveiled Fog Computing, a framework intended to reduce the
latency, storage inefficiencies, and bandwidth restrictions that
come with cloud computing. To improve real-time capabilities,
this paradigm emphasizes data processing and intelligence near
the data production location. Fog Computing is an extension of
cloud computing that was founded in 2015 by prominent
technology companies like ARM, Cisco, Dell, Intel, Microsoft,
and Princeton. It integrates various network layers while
maintaining  important advantages like virtualization,
orchestration, and efficiency. However, putting a fog network into
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practice necessitates carefully weighing several variables, such
as CPU, RAM, and network capacity, as well as computational,
communication, and storage demands. [21,22] Before
implementing a fog service model, other factors like anticipated
loT service requests, service types, execution environments, and
mobility need to be determined. Smart gateways, routers, and
base stations are important networking elements of the fog
infrastructure that offer virtualized computer resources to satisfy
real-time responsiveness demands [17].

All of the benefits of cloud computing are combined with
extra features like mobility management and context-aware
services in the three-layer Fog Computing (FC) architecture. For
mobile-based loT applications like the Internet of Vehicles and
vehicular loT systems, this architecture is especially helpful
[19,20,24]. Fog computing dramatically lowers network
propagation delays by positioning computing resources close to
loT devices. loT applications are software as a service that,
when they receive loT data, perform a variety of tasks. For
subsequent tasks like pre-processing decision analysis, these
loT data must be calculated in real-time. Every Internet of Things
application consists of a collection of modules, tasks, or services
that need different configurations of computing resources to
operate. Finding the services' availability is a very difficult task
for the service provider because of the diverse and dynamic
behavior of these loT applications that estimate precise
computing resources. In addition to loT applications' diversity
and dynamic nature, different loT applications have different
needs for real-time responsiveness depending on the situation.

It is essential to map the set of services to the available
computing resources to meet at least one of the goals, which will
simplify the challenges of loT applications and optimize the QoS
index of different loT application use cases [18,23,26]. Finding
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the best computing resources for diverse loT services is the goal
of the loT service placement problem (SPFC). Making the best
choice for service placement addresses several problems, such
as meeting deadlines, maximizing the deployment of loT
applications by optimizing resource usage, and effectively
balancing loads to prevent overload and underload, among
others. On the other hand, determining the best mapping choice
for heterogeneous services is a well-known NP-complete
problem [21]. As a result, the majority of authors made decisions
that were almost ideal for their work [15-18] In addition to
determining the best way to map different services in fog-cloud
infrastructure, determining whether the objectives are single- or
multi-objective increases SPFC's complexity. As a single
objective optimization problem, the majority of authors
developed SPFC using various models, such as linear
programming (LP), integer linear programming (ILP), mixed
integer linear programming (MILP), mixed integer non-linear
programming (MINLP), etc. [21, 14-19,2]. A single objective
optimization centered on either network usage, QoS
maximization, cost minimization, or energy consumption
minimization is the foundation of the majority of recent SPFC
works [19, 20]. Nonetheless, there are numerous instances in
which an loT user aims to maximize multiple goals.

A single objective optimization appears unrealistic and
unfeasible in these situations. In the literature, many authors
have formulated SPFC as a biobjective or multiobjective
optimization problem [16,25,27]. With multiple optimization
objectives, the Multi-objective SPFC seeks to determine the best
mapping between the collection of 10T application services and
computing resources. These goals, which typically conflict and
come from the perspective of the loT user or service provider,
include maximizing performance, maximizing reliability,
minimizing energy consumption from the service provider's
perspective, and minimizing costs from the user's perspective.
Consequently, it appears feasible to formulate SPFC as a
multiobjective, and it is crucial to optimize each objective function
at an acceptance level without letting another solution dominate.
Finding the best placement strategy for diverse heterogeneous
loT applications made up of separate services is the main focus
of this paper. To solve the problem, a hybrid algorithm based on
meta-heuristics is suggested. Finding a good trade-off between
makespan, energy, and cost for a set of loT tasks in the fog cloud
system is the main goal of the hybrid meta-heuristic approach.
Furthermore, the weighted sum multi-objective optimization can
be readily converted to aggregated objective functions for
multiple objectives, giving the user the freedom to select the
objective functions' priority by selecting the appropriate weight.

Literature Survey

This section discusses relevant studies for application
placement techniques in fog computing environments, where
cloud and fog servers collaborate to meet the needs of loT
applications. Based on the dependency model of their loT
application's constituent pieces, they are categorized into
independent and dependent categories (e.g., tasks). Each loT
application can be thought of as a collection of tasks that are
either independent or dependent. The dependent one refers to
programs that are made up of numerous dependent tasks, each
of which runs only when its previous tasks have been completed.
The tasks of the programs in the independent one, on the other
hand, do not have such execution limits.

Independent Tasks

In Mobile Edge Computing networks, the computing tasks of
many wireless devices are offloaded to multiple edge servers
and one cloud server. Taking into account various real-time
compute tasks at various wireless devices, each task is
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determined whether it should be performed locally at the wireless
device and should be processed either in edge servers or the
cloud server. Low-complexity computation offloading rules are
used to ensure mobile edge computing network quality of service
while reducing wireless device energy usage. For mobile edge
computing networks, both a linear programming relaxation-
based (LR-based) and a distributed deep learning-based
offloading (DDLO) technique are found separately. In
comparison to DDLO, heterogeneous DDLO can help achieve
greater convergence performance. The DDLO methods offer
greater performance than the LR-based algorithm, according to
extensive numerical studies. Furthermore, the DDLO algorithm
generates an offloading decision in less than 1 millisecond,
which is multiple times faster than traditional algorithms. The LR-
based algorithm is orders of magnitude faster [2].

Offloading with consideration for latency and power
consumption is a promising subject in the realm of mobile cloud
computing nowadays. The cloudlet concept has evolved to allow
latency-aware offloading. Offloading an application to the most
appropriate cloudlet, on the other hand, remains a significant
difficulty. Cloudlets can handle a variety of applications. The type
of application is checked when a request for task offloading
arrives from a mobile device. The most appropriate cloudlet is
chosen from a pool of cloudlets near the mobile device based on
the type of application. The energy consumption of mobile
terminals can be decreased using an application-aware cloudlet
selection method. By dispersing the processes to be offloaded in
various cloudlets, an application-aware cloudlet selection
approach for multi-cloudlets can balance the load on the system.
As a result, the chance of putting all loads on a single cloudlet
for load balancing can be calculated [3]. Managing the
transmission power of mobile devices and the assigned server
computation while preserving their latency threshold reduces
their energy consumption and computational cost in a
multilayered Mobile Edge Computing system [4].

Fog Computing seeks to process data at the network's edge.
Transmission delay, monetary cost, and application loss caused
by Cloud Computing can all be decreased with Fog Computing.
Because fog nodes have lower processing capacity than cloud
platforms, running all apps on these nodes may cause some
QoS requirements to be breached. As a result, crucial decisions
must be made about where to execute each program to develop
a cost-effective solution that meets all application requirements.
The unit-slot optimization is a quantified near-optimal solution for
balancing the three-way tradeoff between average response
time, average cost, and an average number of application
failures.

In a three-tier Cloud of Things system, the unit-slot
optimization technique can provide cost-effective processing
while ensuring average response time and average application
loss [5]. Fog computing attempts to provide Cloud-like services
at the network edge to enable the Internet of Things (loT)
applications that demand fast responses. Application
deployment in Fog is difficult due to the hierarchical, dispersed,
and heterogeneous nature of computing instances. The
application placement challenge is exacerbated by differing user
expectations and diverse functionalities of loT devices. The
placement of apps to compatible Fog instances based on user
expectations can improve the system's Quality of Experience
(QoE).

A QoE-aware application placement policy prioritizes distinct
application placement requests based on user expectations and
assesses Fog instances' capabilities based on their present
status. It also makes it easier to arrange applications on
appropriate Fog instances in the Fog computing environment,
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ensuring that user QoE is maximized in terms of utility access,
resource usage, and service delivery. The policy reduces data
processing time, network congestion, resource affordability, and
service quality dramatically [6]. Consider a multi-user mobile
cloud computing system with a computing access point (CAP),
in which each mobile user has numerous independent tasks that
can be completed locally, at the CAP, or on a remote cloud
server. For mobile users, the CAP serves as a network access
gateway as well as a computing service provider.

To minimize the overall cost of energy, computation, the
offloading decisions of all users' jobs as well as the allocation of
computer and communication resources. Semi-definite
relaxation (SDR), alternating optimization (AO), and sequential
tuning (ST) are efficient three-step algorithms that always
calculate a locally optimal solution and yield approximately
optimal performance under a wide range of parameter values.
Evaluating SDR-AO-ST’s performance against a lower bound on
the least cost, purely local processing, purely cloud processing,
and hybrid local-cloud processing without the use of the CAP [7].
The goal of minimizing each task's computation time and energy
consumption in the Industrial Internet of Things—edge—cloud
computing architecture is to formulate the joint problem in which
the Industrial Internet of Things (lloT) devices select their
computation-offloading methods. A finite improvement path to
Nash equilibrium can be ensured using a free—bound method.
The Nash equilibrium can be achieved with the help of a multi-
hop cooperative messaging method and two QoS-aware
distributed algorithms [8].

Dependent Tasks

A partitioning technique that transfers computation-intensive
workloads from a single mobile device to a single edge or cloud
server. The mobile device's placement engine is installed to
discover a group of jobs to offload and lower the mobile
application's execution time and energy consumption [9][10]. To
reduce the time needed for loT applications to run in an
environment where multiple fog servers and a cloud server are
readily accessible for application placement, which only
evaluates one mobile device in their offloading system model
and reduces mobile device power consumption by offloading
some computation to the cloud server [11]. To execute multi-user
jobs at the cloud server with low communication overhead and
tasks at the edge layer with larger communication overhead [26].

The communication cost of transferring data from the loT
layer's sensors and devices to the fog layer during the scheduling
process [12]. To ensure the quality of service (QoS) of
application in a fog environment, which meets service delivery
deadlines and maximizes resource utilization. A latency-aware
application deployment policy was suggested in a system with
numerous fog servers and a single cloud server [13]. To compute
a task, we need both the user task data and the program that
processes it as input. The use of caching at the Mobile Edge
Computing (MEC) system to dynamically store program and/or
task data has lately been acknowledged as a cost-effective
approach to reducing compute time, energy usage, and
bandwidth cost. It provides a strategy for joint optimization of
service caching placement and computation offloading, even
though the above-mentioned techniques focus on task
placement as their primary goal [14].[15] suggested a batch job
placement based on a Genetic Algorithm (GA), in which
numerous users' mobile applications are forwarded to a single
central edge server for placement decisions. The scheduling of
various workflows using metaheuristics algorithms is discussed
in [13]-[15]. The application placement in fog computing sussing
opposition-based memetic algorithm was discussed in [16]-[18].
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Several benefits have been found by current research on loT
service placement, such as effective offloading strategies, where
low-complexity algorithms and deep learning-based frameworks
have successfully decreased execution time and energy
consumption in mobile edge computing environments. By
allocating tasks according to application requirements, cloudlet
selection and load-balancing techniques have improved system
performance and energy efficiency. Additionally, by using
strategies like latency-aware placement and QoE-aware
policies, QoS and QoE optimization techniques have enhanced
resource utilization and latency-sensitive task handling.
Cooperative offloading and Nash equilibrium-based solutions
are useful for optimizing shared resource usage in multi-user and
multi-task scenarios. Additionally, flexible and dynamic
application deployment has been made possible by hybrid
approaches that integrate edge, fog, and cloud computing,
guaranteeing performance gains under various
circumstances.[25]

Existing work, however, also poses several difficulties.
Inefficient task placement under high loads is a result of many
approaches' limited scalability, which makes it difficult to manage
large-scale loT environments with a large number of devices and
resource-intensive workflows.[27] High computational
complexity is also an issue because, despite their effectiveness,
optimization methods like genetic algorithms frequently result in
excessive computational overhead and decision times, which
makes them inappropriate for real-time applications. The
reliability of loT deployments may also be jeopardized by
insufficient failure recovery, as only a small number of studies
have addressed runtime failures during task execution.
Furthermore, despite real-world restrictions like limited virtual
machine capacities and variable bandwidth, some models
assume infinite resources in edge or fog servers, ignoring
resource constraints. Lastly, there are still issues with task
dependencies because many studies overlook the intricate
relationships between IoT application tasks, which results in
inefficient task placement and execution order. These pros and
cons highlight the contributions and gaps in prior research,
forming the basis for the improvements proposed in the paper.

The main contributions of this paper are as follows:

— We propose a novel weighted cost model that
simultaneously minimizes execution time and energy
consumption for loT applications in a hybrid fog-cloud
environment. This model accounts for the limited
computational resources of fog servers while ensuring
efficient application deployment.

— A pre-scheduling approach is developed to efficiently
organize and prioritize tasks based on their dependencies
and workflows. This technique reduces computation delays
and energy usage, enhancing the performance of resource-
constrained loT devices.

— A new batch application placement strategy is introduced,
leveraging the Improved Memetic Algorithm (IMA) to
optimize the placement of parallel IoT workflows. The
algorithm incorporates local search techniques and diversity
factors to avoid local optima and improve convergence
speed.

— To enhance system reliability, we design a lightweight failure
recovery mechanism that efficiently reallocates failed tasks
to alternative servers, minimizing disruption and ensuring
robust execution.

— The proposed framework is evaluated using real and
synthetic workflows in the iFogSim simulator. Experimental
results demonstrate up to a 65% reduction in weighted cost
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and a 51% improvement in execution time compared to
state-of-the-art approaches.

Materials and Methods
System Model

We consider a framework that includes various loT devices,
fog servers, cloud servers, and brokers, in which loT devices
execute their workflows (i.e., DAGs) locally or offload them
entirely or partially to cloud and/or fog servers. Our system model
is shown in Figure 1 at a high level. Each broker in this system
framework has the means to support up to N loT devices in its
immediate area. In this work, Directed Acyclic Graphs (DAGs)
are used to model loT application workflows. Each node in the
DAG represents a specific computational task, and the directed
edges represent dependencies between tasks, indicating the
execution order. This representation enables efficient
scheduling, task placement, and optimization in a fog-cloud

IoT Devices

environment while respecting the constraints imposed by task
dependencies and resource availability.

Problem Formulation

The task placement problem is formulated as an optimization
problem to minimize the overall execution time of loT
applications as well as loT energy consumption. The available
servers are represented as N with |N4|=Q because there are
multiple servers available to run the jobs V. i. The term an
identifies the type of server, and the N4*® denotes one server.
Then a=0 is an loT device, a=1 is a fog server, a=2 is a cloud
server, and b is the server index, T, signifies the offloading
configuration for each task, while t,; denotes the workflow
configuration for the nth loT device. It is calculated using
equation 1.
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Figure (1): Overview of the Proposed System.
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Here, t,,; =0 denotes that the task is assigned to the n™ loT
device for local execution, t,; =1 denotes that the task is
assigned to either a cloud server or a fog server for remote
execution. The f; and c4 denote the number of fog servers and
cloud servers.

Weighted Cost Calculation

The purpose of the task placement technique is to select the
optimal configuration of available servers for each loT application
to limit the weighted cost of execution for each IoT device, as
illustrated below in equations 2 to 6:

min  w(7,),Vne {1,2.3,..N} )
wa,wﬂE[O,ll
_ I'(Typ) 0(Tn)
l/}(T") - l/}a * TLocaly + lpﬁ * OLocaly (3)
Show that,
Ci1:VMpog; < Crog; Vi € Ny N3 4)
Ciz: [tn;| = 1,V;€ (L2, N} £, 1SS vy (5)
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Where I'(T;,), 0(T;,), T'Local,, ©Local, denote the loT device's
execution time, energy consumption, and local execution time
and energy consumption. Furthermore, 1, and 1)z are control
parameters for execution time and energy consumption,
respectively, that allow the weighted cost model to be
customized to the user's requirements. We also assume that the
task can be given to a single Virtual Machine (VM) on a fog or
cloud server. The number of VMs on the ith fog server VMry i is
fewer than or equal to the fog server's maximum capacity, Crog, i,
as indicated by C4. Cs2 indicates that each time slot can only
have one server allocated to job | from the workflow of the nth
loT device, Cq3 indicates that V,, i predecessor it" tasks must be
completed before the original task may be completed.

Execution Time Model

When 1), = 1 and y; = 0 is used in Eq. (3), and the weighted
cost optimization is equivalent to the execution time model. The
purpose of the execution time optimization model is to identify
the shortest possible execution time. The best setup for the
application that is running on the computer nth loT device, such
that the application's execution time is reduced. The total latency
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in task offloading (I'{/*) can be used to calculate the entire
execution time of each candidate configuration, the time it takes
for tasks in a workflow to be computed based on the servers
they've been assigned (I'7*¢) and the time it takes for data to be
transmitted between each pair of dependent jobs (FTT‘) workflow
is given below in equation 7:

M(T,) = TE° + i + Tge (7)

The computational execution time for the application
operating on the nth loT device is computed as follows in
equation 8:

= Dinen, Yons ®)

where yﬁjf“j denotes the computing time of task V, i and it is

exe
Ir,

calculated based on the server which is assigned from the
following equation 9:

i
) t,i=0
localP® g
exe — i £ o=1 9
Yoo, = Speed_Ff1xlocalcpu’ "™t
hY:
n,t — 2

Speed_F11xlocalcP% ’ tn,i
here local®? denotes the loT device computing
power Speed_F'* and Speed_F¢'denotes the speedup factor of
fog and cloud servers. Based on the tasks assigned to servers,
the offloading latency I'f** of tasks corresponding to the nth loT
device is estimated using equation 10:
Tt = T er, Vi, (10)
where ylt‘jlfi demonstrates the offloading task V, ; is
calculated based on the server which is assigned from the
following equation 11:
0, tn,i =0
vt = 4 Latpantn; =1 (11)
Latywantn; = 1
where Lat; sy and Latway, denotes the latency of LAN and

WAN. The transmission time of the task’s workflow to the nth loT
device is calculated using equation 12:

TE® =Xt em Vins (12)

where the transmission time of dependent tasks V, ;and V,;
is calculated using equation 13:
Snii_ - cCT; = CCTy, CCTy

BWran

tra _—
Yenij =

_nij_ - CCT; = CCT,, CCT, (13)

BWwan
0 , CCT;=CCT,
where BW, ,yand BW,,,y denotes the bandwidth of LAN and
WAN.

Energy Consumption Model

When ¥, =1 and y; = 0 are equal, and the weighted cost
optimization equals the energy consumption model, according to
Eq. (2). The goal of the energy consumption model is to discover
the best feasible configuration of the application's tasks to reduce
the energy consumption of the nth loT device. The total energy
consumed by any candidate configuration can be calculated as
the sum of the energy consumed in each component( 87%) job
offloading and the energy used in task computation (67¢), as
well as the energy used for the data exchange between each pair
of dependent tasks(0%*) of the application, as described in
equation 14:

0(T,) = 05 + O + o (14)

The amount of energy used to compute the nth IoT device's

application is calculated as follows using equation 15:
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07 = Xt et 00ns (15)
where 6¢7? denotes the amount of energy required to do the
task V,;, as computed in the following formula mentioned in
equation 16:
Yeni * POWepu, th; =0
{Vtiilie * POWigje, tn; = 1,2

exe —
tni

(16)

where POW,,,, is the loT device's CPU power, on which the task's
Vyi runs. Because we only consider energy consumption from
the perspective of loT devices, whenever each task is offloaded
to fog servers (t,;) or cloud servers (t,;), the respective energy
consumption is equal to the loT device's idle time yti‘"’l,’fmultiplied
by the power consumption of that device in its idle mode
POW,4,..The energy used to offload tasks corresponding to the

nth loT device G)lr‘f is computed as follows using equation 17:

OF =X, er, Ot (17)
where G)ltﬁi- denotes the offloading consumption of the task v
and is computed using equation 18:
{ (U i =0

elat — idl
Yine * POWige, tn; =12

tni

(18)

where 6}% denotes the offloading consumption of the task Vy;
and is derﬁonstrated from:

The transmission energy consumption % ¢for the nth loT
device is calculated as follows using equation 19:
OF" = Xt er, Otng (19)

where the transmission energy between the pair of dependent
tasks V,,; and V,;is calculated using equation 20:

(S84, poW, e, CCE, = CCE,
BWLAN
U R 20
en,ij — « POW,yqns» CCE; = CCE, @0
WAN
0 | CCE, = CCE,

The CCE displays transmission configuration for each edge
enij based on the assigned servers of its tasks to compute the
transmission energy, which is determined from the transmission
power of the loT device, which is designated as POW,,,,s and it
is calculated using equation 21

Table (1): Summary of Symbols and Notations.

Symbol Description
N Set of available servers (fog and cloud servers).
A Type of server (a=0: loT device, a=1: fog server,
a=2: cloud server).
B Index of a specific server within a type.
T Offloading configuration for tasks of the nth loT
device.
Vhi i" task in the workflow of the n™ loT device.
fi, ci Number of fog servers and cloud servers
T Execution time of a task.
E Energy consumption of a task.
A Awan Latency in Local Area Network (LAN) and Wide Area
Network (WAN).
Bran, Bwan Bandwidth of LAN and WAN.
Weighted cost optimization parameter for execution
§ time.
Weighted cost optimization parameter for energy
f consumption.
SI(Vh,) Server index assigned to task Vn,i.
Mfog,i, Mcloud,i Speedup factors of the fog and cloud servers.
Pcru CPU power of the IoT device.
Pidie Idle power consumption of the loT device.
Pirans Transmission power of the loT device.
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6@ty =1, i=1
CCEL-(e;;fi,j) =4t Bty =2, =2 (21)
otherwise, i =3

where CCE; signifies data flow between two jobs V,; and V,,
which are allocated to the loT device and fog servers,
respectively. CCE, is also used to depict the interaction between
two jobs assigned to loT devices and cloud servers. Because the
transmission energy consumption is calculated from the
perspective of the loT device, it is equal to zero whenever one of
the participating jobs in an edge ey; ; is not assigned to the loT
device, as shown in CCE; .The symbols and the notations used
are given in table 1.

Methodology
Application Placement Technique

Ordering, batch application placement, and failure recovery
are the three aspects of our suggested application placement
technique. Brokers can manage concurrent loT device
processes using an approach presented in the pre-scheduling
phase. Then, to minimize the weighted cost of each loT device,
we offer an optimized version of the Improved Memetic Algorithm
(IMA) for batch application placement. In addition, we provide a
lightweight failure recovery method in our technique to deal with
any potential runtime issues.

Ordering Phase

The broker receives workflows from loT devices.
Furthermore, depending on their particular workflows, it
evaluates the local execution time and energy consumption of
loT devices. In terms of the quantity and weight of tasks,
dependencies, and the amount of data flow between each pair
of dependent tasks, loT device workflows are diverse.
Furthermore, each workflow's task execution order should be
ordered so that a new task V,; cannot be run until all tasks in its
W(Vn,) have completed their execution.

Process of Ordering Phase

Algorithm 1 explains how the pre-scheduling phase
organizes tasks of each process and consequently builds
schedules and concurrent workflows. In Algorithm 1, the local
execution time and energy consumption for each workflow are
estimated and saved in Local Time and Local Energy
respectively, (lines 3 and 4). DAGs are useful because they can
have some root vertices (source nodes), The Find_ Root method
locates all of the DAG's root vertices, SRCn (line 5). This method
is used to check whether the P(Vn,i) is equal to null or not. The
Single Root_ Transformer method creates a new DAG called
nDAG which has only one single root (line 6). To attain this, we
should create a dummy vertex called n Dummy Root and
connect this vertex to all source vertices of SRCn obtained from
the original DAG. We can specify the schedule number for each
vertex starting from the Dummy Root by using the Breadth-First-
search (BFS) algorithm (line 7). The outcome of the overall loop
is to provide a scheduled number for every task. This algorithm
iterates over concurrent workflows so that the tasks with the
same schedule number are arranged in a row of 2D ArrayList
called Final2DArrayList. The method gets (x) and adds (Vn,i) are
used to access a 2D ArrayList and add a new entry to a
list(line12).

This pre-scheduling process is depicted a with an example
scenario. Consider there exists two workflows with four and three
vertices. The first workflow has one source vertex, while the
second workflow contains two source vertices. Following the
discovery of the source vertices, the Single Root_ Transformer
method forms a new DAG called n DAG with only one source
root. Then, the BFS algorithm is applied to schedule each task.
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While the schedule number for all the tasks is identified, the tasks
with the same schedule number should be placed in 2D ArrayList
called Final2DArrayList

Batch Application Placement Phase

We propose a batch application placement technique in
which an Improved Memetic Algorithm (IMA) is used to decide
where tasks in each schedule should be placed. Tasks in each
schedule can be conducted in parallel since they are either
independent tasks in one processor or tasks from various
workflows (with no dependency) that are executed in parallel.

Algorithm 1: Ordering Phase

Input: WOF: List of all workflows
Output: Final2D Array L ist, Local Time,
Local Energy
N = |[WOF| (number of workflows)
Iterate through each workflow (n = 1 to N):
— Local Time. Add (Cal Local Exe Time (WOFn))
— Local Energy. Add (Cal Local Exe Energy (WOFn))
— SRCn = Finder_Root (WOFn)
— nDAG = Single Root_Transformer (WOFn, SRCn)
— BFS (nDAG, Duplicate Root)
Iterate through each workflow (n = 1 to N):
For each node in WOFn (i = 1 to |WOFn|):
—  integer x = Checking Order Number (V, ;)
—  Final2DArrayList.get(x). add(Vp, )
Algorithm 2: Improved Memetic Algorithm
Input: List of Workflows, Final2DArrayList: The 2D ArrayList
that contains all schedules.
Output: Con_final, Cost_final
Set Result List MA = null
Iterate through each schedule (i = 1 to S):
— MAResult.get(i) =
— IMA(Final Ordered List. get(i))
— Con_final =
— Result Processor (Result L is tMA. get(i))
Iterate through each workflow (n = 1 to N):
— Compute cost: Cost_final [n] =
—  Cost Calculator (Con_final)

Algorithm 2 gives an overview of the suggested batch
application placement step. This phase takes as input a list of all
workflows WOF and schedules Final2DArrayList and outputs the
workflow configuration as Con_ final and the overall execution
cost as Cost_ final. Due to a large number of schedules, the
Improved Memetic Algorithm (IMA) is used to decide on tasks for
the current schedule while taking prior schedule server
allocations into account (line 3). Because tasks in each schedule
come from one or more workflows, the Result Processor Result
L ist MA method collects task assignments from all schedules
Result L is tMA, organizes them by workflow, and stores them in
a 2D Avrraylist called Con_ final, where each row represents one
workflow (line 4). The Cost Calculator Con_ final method
calculates the execution cost of each workflow based on the
relevant obtained configuration once the task assignment for all
schedules is completed. The IMA is the key function of this
phase.

Improved Memetic Algorithm (IMA)

The Improved Memetic Algorithm (MA) is an algorithm that
combines evolutionary-based search methods like GA with one
or more refinement methods (e.g., local search, individual
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learning) to solve various optimization issues like routing and
scheduling. Each candidate solution is represented by an
individual in the IMA, and the solution is retrieved from a
population of candidate individuals. By using GA functions, we
proposed an Improved Memetic Algorithm (IMA), in which a local
search method is applied to the selected individuals of each
iteration. Each possible configuration of servers assigned to
tasks in a single schedule is encoded individually in the IMA. The
atomic part of each individual is a gene that describes the task in
a schedule and carries a tuple (p,q) here, p defines the type of
assigned server and q defines the index of the server. The values
of each tuple are derived in which values of the type of assigned
server and index of the server are defined.

The Genetic Algorithm is made up of four steps initialization,
selection, crossover, and mutation. The IMA is made up of the
first four steps of a genetic algorithm and local search, which is
a refinement method. The utility of each candidate is evaluated
by using a fitness function that enables the IMA to choose the
best individuals in every iteration. In the context of the genetic
algorithm, a population consists of multiple candidate solutions,
referred to as individuals. Each individual is represented as a
chromosome, which is further divided into genes that encode
specific components of the solution. Fitness values are
calculated for each individual to evaluate their quality.

Algorithm 3: IMA Algorithm
Input: schedule_ tasks: Set of tasks
Output: Org P List. Get (0)

Set Org P List = null, DivP List = null
Call Initialization (schedule_tasks)
Assign Org PList = Selection (OrgP)
Assign Div PList = Selection (DivP)
Iterate fori=1to I

—  Crossover (Org PList, Div P List)

—  Mutation (Org P List, Div PList)

—  Local Search (OrgPList, Div PList)

—  Update Org PList = Selection (OrgP)

—  Update Div PList = Selection (DivP)

Initialization

In this step, the maximum number of iterations |, population
size P_Size, and other IMA parameters. Individuals in the
population are created, and the population is initialized.
Moreover, a new population has been added to the Original
Population (OrgP). Diversity Population is a term used to
describe a strategy for increasing the diversity of solutions
(DivP). Because the IMA's major purpose is to determine the
best possible server configuration. The cost of local execution
downs and a pre-defined individual is assigned and created for
the OrgP, in which all gene tuple values are tuples set to the local
servers of their choice. Because those whose fitness values are
lesser than the pre-defined individual are not selected in the
following iterations, the number of low-utility individuals is
reduced. In the initialization step, the rest of the individuals in the
OrgP and the individuals in the DivP are generated at random.

The solution is represented as an individual in the Improved
Memetic Algorithm (IMA), and each individual is associated with
a particular task assignment configuration within a specified
timeframe. Each gene in the person is a task and is encoded as
a tuple (p, q), where q is the server index and p is the type of
server (e.g., 0 for an loT device, 1 for a fog server, and 2 for a
cloud server). For example, a gene (1,2) indicates that the
second fog server is given the task. A person is made up of
several of these genes, which together determine where each
task should be placed in a schedule. The number of tasks (n)
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and the number of available servers (m) determine the size of
the search space, which leads to

The number of available servers (m) and the number of tasks
(n) determine the size of the search space, which comes out to
be mn. The effective search space is decreased by practical
limitations like task dependencies and resource limitations, even
though this size increases exponentially with the number of
tasks. When working with large search spaces, heuristic
algorithms like IMA are especially helpful because deterministic
approaches become computationally costly due to exponential
growth. Additionally, heuristic methods efficiently provide near-
optimal solutions when it is not possible to obtain an optimal
solution in a practical timeframe. The intricacy of constraints,
such as resource limitations, dependency models, and latency
considerations, emphasizes even more how flexible heuristic
methods are in comparison to deterministic algorithms.

Fitness Function

For Orginal Population (OrgP), the IMA employs two global
and local fitness functions, which are used to assess the utility of
each M,°% (indiv) indicating the utility of a server's configuration
for each task of one workflow on that schedule My°% (Vn,i). The
Mg (Vn,i) receives the task Vn,i and local fitness value is
calculated [from Equ. (2)] with the execution cost of the
unassigned workflow are equal to zero. Algorithm 4 describes
how the fitness value of every individual My % (Vn,i) is
calculated. The M, (Vn,i) is the total of local fitness My®"% (Vn,i)
of tasks in one schedule. Due to the concurrent execution of
tasks of one workflow in every schedule, the local fithess M9
(Vn,i) values of tasks that belong to the same workflow Maxi Loc
are calculated (lines 1-11). The Concurrent Task Checking is the
method that stores the parallel tasks of workflow in the
Concurrent Set (line 3). Moreover, the local fitness of every task
in the Concurrent Set is calculated and the maximum local
fitness is stored in Maxi Loc (lines 4-10). Thus, the global fitness
value is calculated by the sum of all values of MaxiLoc, which
stores the maximum local fitness value of each workflow.

Input: indiv: An individual showing tasks of Schedule
Output: pBest
Iterate through each workflow (n = 1 to K):
— Reset Concurrent Set = null
—  Concurrent Set = Concurrent Checking (indiv, WO Fn)
— Maxi Loc[k] = Mgorgp (Concurrent Set. get(1))
Iterate through Concurrent Set (i = 1 to |ConcurrentS et|):
— temp = Fqorgp (Concurrent Set]i])
— If temp > Maxi Loc[k], update: Maxi Loc[k] = temp
— Iterate through Maxi Loc (i = 1 to [MaxiLoc]):
P Best = p Best + Maxi Loc. Get (i)

In IMA, the main goal of Diversity Population (divP) is to
diversify the individuals so that the probability of local optimum
decreases. Moreover, the fitness function of divP,
The M{™P (indivdF) is completely different from orgP and it is
calculated as follows using equation 22 and 23:

Mg (indivg®?) = S5 HD (indivy"™”, indivi™) 22)

where Psize describes the population size of orgP and divP.
TgP
io g
indivd®? The HD(indiv{"", indivd™") is the Hamming distance
function that calculates the difference between individuals of the
assigned server to the tasks and it is described as follows:

HD(indiv!™" , indivi*?) = Y5_, div_f (23)

The individual of orgP and divP is described as indiv; °" and
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where f describes the size of each individual. To compute the
fitness of one individual of divP, we calculate its difference by the
number of individuals in the OrgP in Egs. (22) and (23), and the
individual with the higher difference receives a higher fitness
value. This aids in the retention of individuals with a greater divP
difference who are more diverse than the individuals in the IMA.
Since the various type of servers (i.e., Internet of Things, fog,
and cloud) with varying numbers of servers in each type (for
example, server index) is taken into account by the system. A
diversity factor div_f is defined in the model, which explains
each task's fitness based on the type and index of the task server
that has been assigned as follows using equation 24:

2 ,Sym(|sT(l‘Tldl"Ui‘korgp) - ST(indivr‘kdivp)D =1
sym(|ST (indiv, yorop) — ST(indiv, gaiwp )|) = 0
5

Y = \1, sym(|ST (indivgorar) — ST(indiv, ga)[) =1 @4

sym(|ST (indiv, yorep) — ST(indiv, amp)|) = 0

)
0, sym(|ST(indiv,gorge) — ST(indiv,, yaivp)|) = 0
Here, sym is the Symbolic Function which is described in
equation 25:

sym(p—qh = {YT 2" (25)

From Eqgn (25), each task in the DivP (i.e., ST (indiv, "))
receives a greater fitness value if the server type of the
corresponding task is an individual of OrgP (ST (indiv; " )). The
div_f is set as 1 if the server types of these tasks are equal.
Furthermore, if the two jobs are assigned to the same server (i.e.,
the same server type and server index), the DivP fitness value
for that work is zero.

Selection

The purpose of selection is to choose high-utility individuals
from both OrgP and DivP for future iterations based on their
respective fitness functions. The individuals of OrgP and DivP
are sorted according to their fitness functions, and the top three
candidate solutions from each population, as well as one random
individual, are selected and saved in the °%List and ““PList,
respectively.

Crossover and Mutation

The purpose of the crossover stage is to create new
individuals (known as offspring) from a group of individuals
chosen in the selection step (called parents). The IMA develops
two offspring from each pair of selected parents using a two-point
crossover operation. The total number of new offspring for each
population is computed in each iteration using the equation 26:

Offspring Number = wil (26)
— . p =2
(w— p)!

Two crossing points are chosen at random from the parents
in the two-point crossover. The genes between the two crossover
locations are then exchanged between the parent individuals,
leaving the rest unaffected. Because the IMA generally uses two
populations, OrgP and DivP, inbreeding occurs when individuals
from the same population crossbreed, whereas crossbreeding
occurs when individuals from separate populations crossbreed.
Individual variety is provided by crossbreeding, which helps to
avoid local optimal values with a higher probability. In addition,
crossbreeding results are recorded in a selected list of both
populations (OrgPList, DivPList), whereas inbreeding results are
stored in the selected list of corresponding populations. The
mutation function in the APMA affects many genes of progeny
based on a predefined probability in the hopes of developing
individuals with better utility. In the mutation step, a random
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resetting mutation is applied, where selected genes are
reassigned to a different server type and/or server index with a
predefined mutation probability. This ensures diversity in the
population and enhances the exploration of the search space to
avoid premature convergence."

Local Search Step

Optimization approaches that utilize a population of
candidate solutions are known as genetic algorithms (GAs).
Parent selection, crossover, mutation, and replacement are the
four processes that the population goes through. GAs is
commonly thought of as search techniques for locating high-
performance areas in large, complex search spaces, but they are
not well suited for fine-tuning solutions. The components of GAs,
on the other hand, might be custom-designed and their
characteristics fine-tuned to enable effective local search
behavior. Several models have lately been given with this goal.
These algorithms are referred to as Local Genetic Algorithms in
this chapter (LGAs). Considering that the crossover locations
and mutation genes are chosen at random, a new function called
local search is constructed, which is based on the
OrgP(F>%(Vn,i))’s local fitness function. The crossover function
and mutation provide randomness, which is important since it
allows for a higher possibility of jumping out of local optimal
locations. Together with those random functions, the local search
function accelerates convergence to the global optimal solution.

Algorithm 5: Local Search Step

Input: OrgP List: Selected list of the original population,
DivP List: Selected list of diverse population

Set length = |Org P List|
Buff List = set List (MAXINT)
Iterate through each individual (p = 1 to |indiv|):
Iterate through the original population list (q
=1 to length):
If Flop (indivg, porgp) < buff List. Get (p),
update:
— Buff List [p] = Flop (indivg, porgp)
— Org P List. Add (Generatelndiv (buff List. Get (0)))
— Update Popul (Org P, Org P List)
— Update Popul (Div P, Div P List)

Although the local search function enhances the likelihood of
faster convergence to the global optimal solutions, it may cause
two issues. First, relying entirely on local search functions
increases the likelihood of becoming stuck in local optimal spots.
Second, the local search mechanism takes a long time to
traverse the search space for an issue with a big solution space.
As a result, when implementing a local search function in the
IMA, these two considerations should be taken into initializing the
buff List with an infinite number of values. Genes with the same
index number are evaluated in terms of their local fitness values
for individuals in the Org P List. Flop (indivg, porgp) and best
genes are chosen and stored in buff List's respective index
numbers (lines 3-9). Because the fitness function is based on the
execution cost, a lower fitness value indicates a better
assignment (line 5). Following that, a new individual is generated
and saved in the Org P List (line 10). Finally, the Org P and Div
P are combined with the updated Org P List and Div P List from
the local search stage and the top candidate solutions from each
population are chosen for the populations of the next iteration
(lines 11-12). The best individual of the Org P stored in Org P
List. Get (0) is returned as the outcome of the IMA whenever it
reaches its halting criterion.
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Failure Recovery Phase

Failures can occur in any system, so providing an effective
failure recovery strategy is critical. Brokers in our system keep
track of all the servers and see if they have any plans to
undertake a whether the task will be completed soon or not.
Furthermore, they estimate the complete cost of each work
based on its local fitness value, Mqorgp (Vn, i) taking into account
the assigned server for each task. If any job fails to execute,
choose a surrogate server for that task. As inputs, the failure
recovery technique takes a list of currently available free servers
(including loT devices) and a failed job. The local fitness value
Mgorgp (Vn, i) of that task is then calculated for free servers.
Finally, jobs with the least Mqorgp (Vn, i) for execution will be
forwarded to the server.

Overhead Analysis

The computational steps of the Improved Memetic Algorithm
(IMA) and the lightweight pre-scheduling phase determine the
time complexity of the suggested application placement
technique. The task ordering procedure in the pre-scheduling
phase creates the Directed Acyclic Graph (DAG) by a traversal
of the Breadth-First Search (BFS). This results in a time
complexity of O(V + E), where V is the number of tasks (vertices)
and E is the number of dependencies (edges) in the workflows.
There are several computational steps in the Improved Memetic
Algorithm (IMA). The complexity of the initialization phase, which
entails creating a population of size, Psize is O(Psize*T) where
T is the number of tasks in a schedule. A complexity of
O(I*Psize*T) results from evaluating the fitness function for |
iterations. O(I*Psize*T) is the complexity of the crossover and
mutation operations, which also depend on Psize and T.
Furthermore, a subset of Psize is subjected to the local search
refinement step, yielding a complexity of O(L*T) where L is the
number of individuals undergoing local refinement. Thus, the
overall time complexity of the proposed solution is
O(V+E)+O(I*Psize*T). This analysis highlights that the algorithm
is scalable for moderate-sized workflows but may incur higher
computational costs for larger systems, which should be
considered in real-time applications.

Results and Discussion

(A)Execution Time
(LAN:2000KB/s, WAN: S00KB/s)

W Local
= Only Edge
Only Cloud

Execution Time(S)

M Proposed Solution
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The system setup and parameters, as well as a full
performance analysis of our technique in comparison to its
competitors, are discussed in this section.

System Setup and Parameters

In this experiment, we used the iFogsim simulator to assess
all approaches. Real workflows and synthetic workflows were
used here. The DAGs that were obtained from the facial
recognition app (Workflow1) and the QR code recognition
application were used to create the real workflows (Workflow2).
In contrast, several synthetic workflows are designed to examine
various possible kinds of workflows (Workflow3 to Workflow6).
Consider a case in which there are six loT devices, each with its
own workflow (Workflow1 through Workflow6). One fog broker
connects each group of six loT devices, and fog brokers have a
connection to six fog servers and three cloud servers. Every fog
server has three virtual machines (VMs) in this design, while
each cloud server has 16 virtual machines (VMs). loT devices
also have the computing power of 500 MIPS [15], with a power
consumption of 0.9W and 0.3W in processing and idle levels,
respectively. Additionally, loT devices need 1.3 watts of
transmission power. We also assume that each VM of fog
servers has to have a computer power of 6 to 8 times that of loT
devices [15], whereas each VM of cloud servers has a computing
power of 10 to 12 times that of loT devices. Table 2 displays the
parameters of our evaluation and their corresponding values.

Table (2): System Parameters.

Parameter Value

loT Devices 6

Fog Servers 6
Cloud Servers 3

LAN Bandwidth
WAN Bandwidth

2000-4000 KB/s
500-1000 KB/s

LAN Delay 0.5ms
WAN Delay 30 ms

loT Device Computing Power 500 MIPS

Fog Server Speedup Factor 6-8

Cloud Server Speedup Factor 10-12
loT Device Idle Power 0.3 W
loT Device CPU Power 0.9W
loT Device Transmission Power 1.3W

(B)Energy Consumption
(LAN:2000 KB/s,WAN:500 KBis)

=

B Local

u Only Edge

Only Cloud

N Proposed Solution

Energy Consum ption{l)
[==TRN S TRy SR S W = (RN I - N =

1131118
Published: An-Najah National University, Nablus, Palestine



(C)Weighted cost
(LAN:2000KB/s, WAN:S00KB/s)

14
12

0.8
0.6 —
04 4

0.2 1
o B Proposed Solution

N Local
u Only Edge
Only Cloud

Weighted Cost

‘\
\
&

& &

5‘., e

(E)Energy Consumption
(LAN:4000KB/5,WAN:1000KB/s)

=

W Local
B Only Edge
— Only Cloud

Energy Cons um ption(J)
[=T R SE R T S - (e B v e e

B Proposed Solution

’» 7 ]

&
\ \
& & qao@

S‘Jﬂ [%b\d;g U{é\ép
a3 &

(D)Execution Time
(LAN:4000KB/s,WAN:1000KB/s)

-
ra

~ 10
L8
g &
: B B Local
2
5 44 | mOnlyEdge
o
2 5 | Only Cloud

o - B Proposed Solution

2 "J;
& s*‘ a“ c“
d{g\ A\
S&ESS
(F)Weighted Cost
(LAN:4000 KB/s,\WWAN:1000 KB/s)

1

09

08
E 0.7

1
E 05 4 N Local
$ 04 4 1 Only Edge
= 03 —

07 - Only Cloud

D-; 1 B Proposed Selution

& é’ s" s“ a*’ s“
& & &
S ‘

Figure (2): Execution cost, Energy Consumption, Weighted Cost with various workflows on varying bandwidth values.

Performance Study

To analyze the performance of our technique in various
experiments, we evaluated three quantitative parameters:
execution time, energy consumption, and weighted cost. The
effectiveness of techniques with varying bandwidths, iteration
sizes, decision durations, failure recovery, and system size
analyses is evaluated in 5 trials. Both Wy and ¥, are set to 0.5,
indicating the importance of processing time and energy use in
the conclusions. These values, however, can be changed
depending on the needs of the users and network conditions. For
evaluations, the methods are also used to evaluate the ability of
our technique:

LOCAL: Because all workflow tasks in this technique are
completed locally on their respective loT devices, workflow tasks
cannot be executed in tandem. This method's outcomes can be
used to evaluate the technique's gain.

NLY EDGE: All workflow tasks are outsourced to fog servers
at the edge layer for implementation in this approach. If all of the
virtual servers on a server are full, no more virtual servers are
available; the remaining jobs will have to wait until more
computing resources become available.

ONLY CLOUD: All workflow tasks are to be carried out on
cloud servers by using the method.

Bandwidth Analysis

In this analysis, we look at how approaches perform at
different bandwidths, as shown in Figure 4 and Pop Size are set
to 100 and 20, respectively, for maximum iteration size and
population size. In comparison to the local execution of
workflows, Figure 3 demonstrates that when bandwidth grows,
process execution time, energy usage, and weighted cost
decrease, implying improved application placement.
Furthermore, because fog servers are located near loT devices
and can be accessed with faster bandwidth and low bandwidth,
the edge technique surpasses the only cloud option in most
circumstances. However, as fog servers have fewer resources
than cloud servers, they are unable to provide the best results.

N Malathy, et al.

As can be demonstrated, our proposed technique outperforms
all others due to two main aspects: it involves simultaneous
usage of fog and cloud servers. Second, due to its local fitness
function, local search, and the variation provided by the Div P, it
keeps a higher chance of staying away from local optimal values,
grows faster to the optimal solution, and has a higher probability
of remaining away from local optimal values. It's important to
note that while the weighted cost of the only cloud method in
some scenarios, such as Workflow5 in Fig. 2c, is lower than the
local execution, its execution time in Fig. 2a is much greater.
Because the Wy and W, are both set to 0.5, execution time and
energy usage are given equal weight. As a result, the weighted
cost indicates a low gain for task placement due to the lower
value for energy consumption in this workflow when compared
to the obtained execution time.

Figure 2 illustrates the impact of varying bandwidth values
on the execution cost of loT workflows using different application
placement strategies. It compares the proposed method with
baseline approaches (Local, Only Edge, and Only Cloud),
demonstrating how increased bandwidth improves application
placement efficiency. The figure highlights that the proposed
method consistently outperforms others due to its effective use
of both fog and cloud resources, as well as its capability to avoid
local optima through the Improved Memetic Algorithm (IMA).

Maximum Iteration Number Analysis

The maximum iteration number, which may be used to
assess the speed with which evolutionary application placement
approaches reach the ideal answer, is one of the most essential
factors to compare. The solutions of the local implementation,
edge, and only cloud approaches do not change over time; the
acquired outcomes of these methods are shown to help
understand the efficacy of other strategies. For this investigation,
the Pop Size, LAN, and WAN bandwidths are set to 20, 2000,
and 500 KB/s, respectively. As shown in Fig. 3, increasing the
maximum number of iterations improves our technique's
solutions for all workflows when compared to the local, only
edge, and only cloud techniques.
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Figure (3): Execution cost of workflows with different maximum iteration numbers of values.

Our method converges to a superior solution in a less
number of iterations. The achieved results of our approach in I=
50 for all processes surpass the results obtained even at | = 200,
as shown in Fig. 3a. This pattern is shown in Fig. 3b for the
weighted cost of execution. It is crucial to remember that while
extending the maximum number of iterations can lead to better
solutions, it also increases the decision time of algorithms, this is
important for some workflows, especially those that are latency-
sensitive.

While increasing bandwidth and the number of iterations
demonstrably improve solution quality, these findings have
practical limitations. Higher bandwidth may lead to diminishing
returns, and achieving such conditions may be cost-prohibitive
or infeasible in certain environments. Similarly, increasing the
number of iterations comes with trade-offs in terms of decision
time and resource consumption, particularly for latency-sensitive
or energy-constrained applications. Future work should explore
adaptive strategies to optimize bandwidth usage and
dynamically determine the ideal number of iterations based on
system constraints.

The effectiveness of each strategy is evaluated in this
experiment based on the amount of time it takes to get a suitable
solution. Whereas application placement algorithms provide
server configurations that minimize loT application execution
time and energy usage, the time spent getting to that solution is
also crucial.

Establishing excellent server configurations for loT
applications over a long period of time might have a detrimental
impact on the loT applications' execution time needs. Another
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significant reason for the importance of decision time analysis,
particularly for optimization algorithms, is that iteration size
analysis alone cannot determine the efficiency of a single
application placement approach. This is because, while one
method may produce greater outcomes in fewer iterations than
its rivals, another strategy may need more iterations. The
duration of each loop may be significantly greater, resulting in a
longer decision time. As an outcome, whereas the maximum
iteration size analysis is critical, the decision time analysis is
used as a backup to ensure that one approach is effective. The
LAN and WAN bandwidth consumption in this experiment is
2000 KB/s and 500 KB/s, correspondingly. For four distinct
decision times,

Table 3 provides the COM2019 execution times for the
recommended solution. As the decision time of approaches
climbs from 100 milliseconds to 400 milliseconds, the execution
time of approaches decreases, meaning that higher utility
outcomes are attained. Our solution's obtained results gradually
decrease from 100 to 400 milliseconds, whereas COM2019's
study results show a significant decreasing trend in the variations
of 100-200 milliseconds and 200-300 milliseconds, as well as a
steady decrease between 300 and 400 milliseconds, intimating
that COM2019's results modeled convergence at 400
milliseconds. It is obvious that our approach not only produces
superior values in the same decision time as the COM2019 but
that its results at 100 ms also beat the COM2019's findings at
400 ms. This shows that irrespective of the number of iterations,
our method converges to the best solutions faster.
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Figure (4): System size analysis with different number of loT devices.

Table (3): Decision time Analysis.

Time | Technique Workflow Execution Time Result (s)
WF1 | WF2 | WF3 | WF4 | WF5 | WF6
100 Proposed 24 1.8 3.1 3.2 35 3.3
ms COM2019 | 4.333 | 2.917 | 3.422 | 6.276 | 6.526 | 3.09
200 Proposed 2.37 1.76 2.92 3.17 3.42 3.27
ms COM2019 | 4.073 | 2.707 | 2.984 | 5344 | 5109 | 2.529
300 Proposed 2.31 1.72 2.85 3.12 3.38 3.18
ms COM2019 | 3.656 | 2.494 | 2.868 | 4.388 | 4.709 | 2.746
400 Proposed 2.27 1.65 2.79 2.73 3.27 3.12
ms COM2019 | 3.623 | 2.445 | 2.753 | 3.663 | 4.295 | 2.523

This is mostly due to the fact that time is measured in
milliseconds (ms), representing the time allocated for the
optimization algorithm. Workflow execution time results are
measured in seconds (s) and represent the total time taken to
execute the workflows under the determined placement strategy.

Failure Recovery Analysis

The influence of failure recovery methods on application
placement approaches is investigated in this experiment. In
comparison to local execution, Table 3 shows the outcomes of
our method in failure recovery mode (FR Mode), where the
probability of failure is 5%. In this experiment, the maximum
number of iterations size | is set to 100, while the rest of the
parameters are left at their default settings from decision time
analysis. Table 3 shows that the results of our method in FR
mode continue to beat local execution for all processes and
generate offloading gains. Failed tasks result in inadequate
workflow execution due to interdependence among tasks in one
workflow in strategies that ignore failure recovery. However, by
tolerating a tiny overhead of the failure recovery phase, our
technique can yield a reasonable gain over local execution.

Table (4): Failure Recovery Analysis.

Technique Workflow Execution Time Results
WF1 WF2 WF3 WF4 WF5 | WF6
Proposed 2.871 2.732 2.885 3.511 3.66 1.51
Local 6.3 10.2 5.8 9.2 6.2 7.8

N Malathy, et al.

System Size Analysis

The impact of system size on various application placement
approaches is investigated in this system experiment. Each fog
broker in our system decides where each loT device's application
should be installed. As a result, we increase the number of loT
devices and fog servers for each fog broker by a factor of six,
from six to twenty-four for each fog broker. This allows us to
evaluate the performance of our suggested technique. In
addition, we use identical procedures in this experiment as we
did in the prior ones. The LAN and WAN bandwidth utilization are
also set to 2000 and 500 KB/s, correspondingly, with the
remainder of the parameters remaining unchanged from Table
4. When varying numbers of loT devices are linked to a single
fog broker, the result of Cumulative Execution Time (CET),
Cumulative Energy Consumption (CEC), and Cumulative
Weighted Cost (CWC) is shown in Fig. 6. The overall execution
cost of all loT devices is referred to as cumulative. As the
number of loT devices rises, the CET, CEC, and CWC rise as
well. All approaches CET, CEC, and CWC are cheaper than of
the local execution cost in all cases; nonetheless, our suggested
strategy beats other ways and saves money in all scenarios.

Conclusion

In this study, we proposed a weighted cost model and a
novel batch application placement technique using the Improved
Memetic Algorithm (IMA) to minimize the execution time and
energy consumption of loT applications in fog-cloud
environments. The proposed technique also incorporates a
lightweight pre-scheduling approach and an efficient failure
recovery mechanism to handle runtime issues -effectively.
Experimental evaluations demonstrate that our method
outperforms state-of-the-art approaches in various scenarios: In
Bandwidth Analysis the proposed system achieved a 65%
reduction in weighted cost compared to baseline techniques
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such as Local Execution, Only Edge, and Only Cloud methods.
In Decision Time Analysis the system attains improved execution
time by 51% compared to COM2019 at equal decision time, with
results converging faster even at lower decision times (e.g., 100
ms). In failure recovery mode, the proposed method consistently
delivered execution time gains of up to 53% compared to local
execution, highlighting its robustness. System Size Analysis
demonstrated superior scalability, with Cumulative Execution
Time (CET) and Cumulative Weighted Cost (CWC) reductions
across all scenarios, even as the number of loT devices
increased. These results confirm the effectiveness and
scalability of the proposed technique, offering significant
performance improvements over existing state-of-the-art
methods in terms of execution cost, energy consumption, and
weighted cost metrics. Future work will explore the integration of
monetary cost considerations into the weighted cost model and
address challenges associated with mobility models in dynamic
fog environments.
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