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Abstract: In underwater photography, images often suffer from color distortion, haziness, and low visibility due to the scattering of 

light by water and particles. To address these issues, we propose using advanced algorithms designed specifically for underwater 

conditions. Our approach involves correcting color distortion and restoring accurate color representation using a method called 

Wavelength Dehazing Zero Deep Network (WZDN). This algorithm enhances visibility and improves color fidelity by removing haze 

and adjusting colors to their true values. Additionally, we implement techniques to enhance contrast, making underwater details more 

visible and improving overall image quality. By reducing the impact of particulate matter and dissolved substances, we minimize 

haziness and murkiness, resulting in clearer images. Furthermore, our algorithms are optimized for efficient real-time processing, 

making them suitable for applications requiring rapid image enhancement, such as underwater exploration, surveillance, and marine 

research. our research focuses on developing algorithms that enhance underwater images by correcting color distortion, improving 

visibility, and reducing haziness. These algorithms, particularly WZDN, provide superior color fidelity and enhanced visibility, 

ultimately restoring the clarity of underwater images. 
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1. INTRODUCTION 

Underwater photography presents unique challenges due to the 

complex nature of the underwater environment. Images 

captured beneath the surface often exhibit color distortion, poor 

contrast, and haziness, primarily caused by the presence of 

particles and dissolved substances suspended in the water. 

These factors significantly degrade the quality of underwater 

images, limiting their utility in various applications such as 

marine research, environmental monitoring, and underwater 

exploration. To overcome these challenges and enhance the 

visual quality of underwater images, we propose a series of 

algorithms designed to correct color distortion, enhance 

contrast, and mitigate the impact of particulate matter and 

dissolved substances [1]. Our aim is to provide clearer and more 

accurate representations of underwater scenes, facilitating 

better analysis, exploration, and understanding of aquatic 

environments. The first issue addressed by our proposed 

algorithms is color distortion. Water acts as a filter, absorbing 

and scattering light at different wavelengths as it travels through 

it. This phenomenon leads to color shifts in underwater images, 

resulting in inaccuracies in color representation. Our color 

distortion correction algorithm is devised to analyze these shifts 

and restore the true colors of underwater scenes. By adjusting 

color channels based on the absorption and scattering properties 

of water, we aim to bring out the genuine colors obscured by 

these optical effects. In addition to color distortion, underwater 

images often suffer from poor contrast, making it challenging to 

discern details and structures within the scene. 

 

 

To address this issue, our algorithms incorporate 

techniques such as histogram equalization and adaptive 

contrast enhancement. These methods work to redistribute 

pixel intensities across the image, effectively improving 

visibility and enhancing detail perception. By enhancing 

contrast, we aim to reveal finer details even in low-

contrast underwater environments, thereby improving the 

overall visual quality of the images. Furthermore, the 

presence of particulate matter and dissolved substances in 

the water contributes to haziness and murkiness in 

underwater images. These substances scatter light and 

introduce additional optical distortions, further degrading 

image quality. To minimize the visual impact of 

particulate matter and dissolved substances, we propose 

methods involving image dehazing and selective filtering 

[2]. By selectively attenuating the effects of these 

substances, our algorithms aim to reduce haze and restore 

clarity to underwater images, enabling better visualization 

of underwater scenes. Importantly, we recognize the 

significance of real-time processing in underwater 

applications, where timely decision-making and action are 

often crucial. Therefore, we optimize our algorithms for 

efficient real-time processing, ensuring their suitability for 

applications requiring rapid image enhancement 

underwater. This includes underwater robotics, 

surveillance, scientific research, and various other 

underwater imaging applications. By optimizing for 

efficiency, we aim to enable seamless integration of our 

algorithms into existing underwater imaging systems, 

providing real-time enhancements to underwater imagery. 

2. OBJECTIVES 

Our main objectives are as follows: 

1. To develop Wavelength Dehazing Zero Deep Network 

(WZDN) algorithm for accurate color restoration in 

underwater photography. 

2. To implement techniques for haze removal and color 

adjustment to enhance underwater visibility. 

3. Enhance contrast in underwater images to improve 

detail visibility and overall image quality. 

4. Optimize algorithms for real-time processing to 

facilitate rapid image enhancement for various 

applications. 

5. Minimize haziness caused by particulate matter and 

dissolved substances to ensure clearer underwater 

image capture. 

6. Focus on research and development efforts to achieve 

superior color fidelity and enhanced visibility in 

underwater photography. 

 

3. RELATED WORK 

3.1 Underwater Image Enhancement via Deep Learning 

Deep learning techniques have emerged as a promising 

approach to enhance underwater imagery, leveraging the 

capabilities of convolutional neural networks (CNNs). These 

methods entail training CNN models on extensive datasets 

comprising degraded underwater images, enabling the 

networks to learn the intricate mapping between distorted and 

undistorted representations [3]. By exploiting the inherent 

power of deep learning, these approaches effectively tackle 

common challenges encountered in underwater photography, 

including color distortion, haze, and limited visibility.  

One notable advantage of deep learning-based enhancement 

methods is their ability to capture and learn complex patterns 

and relationships within the data. Unlike traditional image 

processing techniques, which often rely on predefined 

heuristics or handcrafted features, CNNs can automatically 

extract relevant features from the input images, leading to 

more accurate and robust enhancement results.  

Despite their efficacy, deep learning approaches may entail 

some drawbacks. The training of CNN models typically 

demands significant computational resources and large 

datasets, which can be challenging to obtain in the context of 



 

 

underwater imagery. Additionally, the inference process may 

require substantial computational power, potentially limiting 

real-time applicability in certain scenarios such as underwater 

exploration or surveillance. Nonetheless, ongoing 

advancements in hardware and algorithmic optimization 

continue to mitigate these challenges, making deep learning-

based underwater image enhancement increasingly practical 

and effective. 

3.2 Physical Model-Based Correction 

 

In the realm of underwater photography, certain 

researchers are delving into the development of physical 

models that mimic the intricate process of light 

propagation underwater. These models are designed to 

encapsulate various environmental factors such as water 

depth, turbidity (the presence of suspended particles), and 

light absorption, all of which significantly influence the 

visual appearance of underwater scenes [4]. By 

comprehensively understanding the underlying physics 

governing light behavior in water, these models enable the 

creation of algorithms aimed at effectively correcting 

color distortion and haze prevalent in underwater imagery. 

Physical model-based methods offer a unique advantage 

in that they provide valuable insights into the fundamental 

mechanisms at play in underwater imaging. By accurately 

simulating how light interacts with the underwater 

environment, these approaches can lead to more precise 

and realistic enhancement techniques compared to purely 

empirical methods. However, a notable challenge 

associated with physical model-based approaches lies in 

the requirement for precise knowledge of environmental 

parameters. This demand for accurate input data can 

potentially limit the adaptability of these methods to 

diverse underwater conditions, where obtaining such 

precise information may prove challenging. Nonetheless, 

ongoing advancements in sensor technology and data 

collection methodologies continue to enhance the 

feasibility and effectiveness of physical model-based 

underwater image enhancement techniques. 

3.3 Multi-Modal Fusion Approaches 

In the pursuit of enhancing underwater imagery, 

researchers are exploring a sophisticated approach that 

involves integrating data from multiple sources or 

modalities [5]. This method, known as multi-modal 

fusion, combines information from various sensors or data 

streams, such as visual images and depth maps obtained 

from sonar readings. By synergizing these diverse sources 

of information, multi-modal fusion techniques aim to 

capitalize on the complementary nature of different 

modalities to improve the accuracy and robustness of 

image enhancement algorithms. 

One of the key advantages of multi-modal fusion is its 

ability to provide a more comprehensive understanding of 

the underwater scene. By incorporating depth information 

alongside visual data, these methods can better estimate 

the geometry and physical properties of the scene, which 

is crucial for tasks such as haze removal and color 

correction. Additionally, leveraging depth information 

allows for better delineation and enhancement of 

underwater objects and structures, ultimately enhancing 

visibility. 

However, the practical implementation of multi-modal 

fusion techniques may pose challenges, particularly in 

real-world underwater environments. Acquiring and 

synchronizing data from multiple sensors or sources can 

be technically demanding and may require specialized 

equipment or calibration procedures. Despite these 

challenges, ongoing research in multi-modal fusion holds 

promise for advancing the state-of-the-art in underwater 

image enhancement, offering the potential for more 

accurate and reliable results in diverse underwater 

scenarios. 

 

3.4 Image-to-Image Translation Techniques 

Image-to-image translation methods represent a cutting-edge 

approach to improving underwater image quality by directly 

transforming degraded images into clearer and more visually 

appealing representations. These techniques operate by 

learning the intricate mapping between distorted underwater 

images and their corresponding undistorted counterparts [6]. 

By training on pairs of degraded and high-quality images, 

these models can effectively correct common underwater 

issues such as color distortion, haze, and low visibility. A 

notable framework employed in this domain is Generative 

Adversarial Networks (GANs), which consist of two 

competing neural networks: a generator and a discriminator. 

The generator attempts to produce realistic outputs from 

degraded input images, while the discriminator distinguishes 

between generated and real images. Through adversarial 

training, GANs can learn to generate high-quality underwater 

images with realistic textures and details, thereby bypassing 

the need for explicit physical models. 

Despite their promising capabilities, image-to-image 

translation methods may encounter challenges such as mode 

collapse or limited diversity in generated images. Mode 

collapse refers to a scenario where the generator produces 

limited variations of outputs, resulting in visually repetitive 

results. To address these issues, careful design and training 

strategies are necessary, including techniques such as data 

augmentation, regularization, and network architecture 

modifications. Overall, image-to-image translation approaches 

offer a data-driven solution to underwater image enhancement, 

capable of producing visually appealing results and 

overcoming the limitations of traditional methods. Continued 

research and refinement of these techniques hold significant 

promise for improving underwater imaging in various 

applications, from marine research to underwater exploration 

and surveillance. 



 

 

 

3.5 Optical Polarization-Based Enhancement 

Certain research endeavors delve into leveraging the unique 

polarization properties of light to significantly enhance the 

quality of underwater images. These polarization-based 

techniques capitalize on the fact that light becomes polarized 

as it interacts with underwater environments. By discerning 

between the direct and scattered components of polarized light, 

these methods enable more accurate estimation of scene 

properties. 

One key strategy involves selectively filtering polarized light, 

thereby mitigating the detrimental effects of scattering and 

haze prevalent in underwater environments [7]. This selective 

filtration helps to reduce image degradation, resulting in 

clearer and more vibrant underwater images with enhanced 

visibility. Such techniques show particular promise in 

environments characterized by shallow depths or high 

turbidity, where scattering effects are particularly 

pronounced.Despite their potential benefits, the adoption of 

optical polarization approaches may pose certain challenges. 

Implementing these techniques often necessitates specialized 

hardware or imaging systems capable of capturing and 

processing polarized light information. 

 

3.6 Statistical Color Constancy Algorithms 

Statistical color constancy methods represent a 

sophisticated approach to address color distortion in 

underwater imagery by estimating the true colors of 

objects within a scene. These algorithms operate by 

analyzing statistical properties of observed colors, 

leveraging the regularities inherent in natural scenes to 

infer the most likely illumination conditions. By 

discerning global image statistics or local color 

distributions, statistical color constancy approaches can 

effectively compensate for underwater lighting effects and 

restore accurate color representations.One of the key 

advantages of these methods lies in their computational 

efficiency, making them suitable for real-time 

applications such as autonomous underwater vehicles 

(AUVs) or underwater monitoring systems. By leveraging 

statistical properties of the image, these techniques can 

perform color correction swiftly and reliably, without 

imposing significant computational overhead. 

However, statistical color constancy methods may rely on 

certain assumptions about scene illumination or surface 

reflectance properties, which can limit their performance 

in certain underwater environments. Variations in lighting 

conditions or surface properties may challenge the 

accuracy of these assumptions, potentially leading to 

suboptimal color correction results. Nonetheless, ongoing 

research efforts continue to refine and optimize statistical 

color constancy techniques, aiming to enhance their 

robustness and applicability across diverse underwater 

scenarios. 

3.7 Deep Reinforcement Learning for Adaptive 

Enhancement 

Deep reinforcement learning (DRL) techniques represent 

a novel approach to dynamically enhance underwater 

images in real-time by treating the enhancement process 

as a sequential decision-making problem. Unlike 

traditional methods that rely on fixed parameters or 

heuristics, DRL algorithms learn to adjust enhancement 

parameters iteratively based on feedback signals received 

during the process. This adaptive framework allows DRL 

models to optimize image quality continuously, taking 

into account factors such as environmental conditions and 

user preferences. 

One of the key advantages of DRL-based image 

enhancement lies in its flexibility and adaptability to 

diverse underwater scenarios. By learning from 

experience, DRL models can adapt their enhancement 

strategies to varying lighting conditions, water turbidity, 

and other environmental factors, thereby improving their 

robustness and effectiveness. Additionally, DRL 

algorithms can incorporate user feedback or task-specific 

objectives into the enhancement process, allowing for 

customized image enhancement tailored to specific 

applications or user preferences. 

However, the practical applicability of DRL techniques in 

underwater imaging may be constrained by the 

requirement for extensive data collection and 

computational resources. Training DRL models typically 

involves large-scale data sets and computationally 

intensive processes, which may pose challenges in 

resource-constrained underwater settings. Nonetheless, 

ongoing advancements in hardware and algorithmic 

optimization hold promise for overcoming these 

challenges, making DRL-based image enhancement 

increasingly viable for real-world underwater 

applications. 

4. WZDN Architecture  

Underwater imaging presents a unique set of challenges due 

to the absorption and scattering of light by water molecules, 

dissolved substances, and particulate matter. These challenges 

result in color distortion, reduced contrast, and decreased 

visibility in underwater images. The Wavelength Dehazing 

Zero Deep Network (WZDN) architecture is specifically 

designed to address these issues by leveraging convolutional 

neural networks (CNNs) and advanced dehazing techniques. 



 

 

 

     Fig. 1. Overall Workflow of WZDNArchitecture  

 

4.1 Input Layer 

The input layer of the Wavelength Dehazing Zero Deep 

Network (WZDN) architecture serves as the gateway for the 

degraded underwater images obtained from cameras or 

sensors. In the underwater environment, light undergoes 

significant scattering and absorption due to water's optical 

properties. This leads to various distortions in the captured 

images, including color distortion, reduced contrast, and 

haziness.Color distortion occurs as water selectively absorbs 

different wavelengths of light, altering the true colors of 

objects. Reduced contrast is a consequence of light scattering, 

where light rays deviate from their original paths, resulting in 

a loss of sharpness and definition in the image. Additionally, 

haziness arises from suspended particles and dissolved 

substances in the water, which scatter light and obscure 

details.The input layer receives these degraded images in their 

raw form, with all the aforementioned distortions intact. It acts 

as the starting point for subsequent processing steps within the 

WZDN architecture. Through preprocessing and feature 

extraction, the network aims to analyze and understand the 

underlying features of the input images, ultimately facilitating 

the restoration of clarity, contrast, and color fidelity in the 

enhanced outputs. 

4.2 Preprocessing  

Preprocessing in the Wavelength Dehazing Zero Deep 

Network (WZDN) architecture serves to enhance the quality 

of the input image before further analysis and processing. 

Color space conversion is a critical step where the input 

image's representation is transformed from RGB to alternative 

color spaces like LAB or YUV. This conversion can better 

capture color information, allowing the network to interpret 

the image more effectively. 

 

Normalization is another crucial preprocessing step, 

ensuring that pixel values are scaled to fall within a certain 

range, typically between 0 and 1. This normalization 

standardizes the input data, facilitating consistency and 

stability during network training and 

inference.Additionally, noise reduction techniques are 

applied to mitigate sensor noise and other artifacts present 

in the input image. Gaussian smoothing or median 

filtering may be employed to suppress high-frequency 

noise components while preserving image details, 

ultimately improving the overall quality and reliability of 

the input data for subsequent processing stages within the 

network. 

4.3 Feature Extraction Layers 

The feature extraction layers within the Wavelength 

Dehazing Zero Deep Network (WZDN) architecture are 

pivotal components responsible for discerning and 

extracting relevant features from the input image. 

Comprising multiple convolutional layers, these feature 

extraction stages utilize convolutional filters of varying 

sizes and depths to perform operations on the input 

image.Convolutional filters are essentially small matrices 

applied across the input image to perform operations such 

as edge detection, texture recognition, and feature 

extraction. These filters are designed to detect patterns and 

structures at different scales, ranging from fine details to 

broader features within the image. By applying filters of 

varying sizes and depths, the network can capture features 

across multiple levels of abstraction.The hierarchical 

nature of convolutional neural networks (CNNs) allows 

for the extraction of both low-level features, such as edges 

and corners, and high-level semantic information, 

including object shapes and textures. As the input image 

passes through successive convolutional layers, each layer 

extracts increasingly complex features by combining 

information from preceding layers. This hierarchical 

feature extraction process enables the network to 

progressively build a rich representation of the input 

image, facilitating more accurate and robust image 

analysis.Overall, the feature extraction layers in WZDN 

play a critical role in distilling the essential characteristics 

of the input image, laying the foundation for subsequent 

processing steps such as dehazing and contrast 

enhancement. Through the extraction of meaningful 

features, WZDN can effectively discern relevant 

information from the input image, enabling it to produce 

enhanced outputs with improved clarity, contrast, and 

color fidelity. 

4.4 Wavelength-Aware Dehazing Module: 

The Wavelength-Aware Dehazing Module in the 

Wavelength Dehazing Zero Deep Network (WZDN) 

architecture is a critical component tailored to address the 

unique challenges encountered in underwater imaging. It 

is specifically designed to combat the adverse effects of 

light absorption, scattering, and the optical properties of 

water on image clarity.This module operates by 

dynamically adjusting its operations based on the 

wavelengths of light absorbed and scattered by water, as 

well as the optical properties of the underwater 

environment. By considering the spectral characteristics 

of underwater light, the dehazing module can effectively 

discern and mitigate the haze present in the input 



 

 

image.Through its wavelength-aware approach, the 

module can adaptively adjust the dehazing process to suit 

the specific characteristics of the input image. This 

adaptability ensures that the dehazing process is optimized 

for different underwater conditions, such as varying water 

depths, turbidity levels, and lighting conditions. 

The dehazing module may incorporate learnable parameters or 

predefined functions to facilitate its adaptive behavior. These 

parameters or functions enable the module to dynamically tune 

its operations during both training and inference, thereby 

enhancing its ability to restore clarity and improve visibility in 

underwater images.Overall, the Wavelength-Aware Dehazing 

Module plays a crucial role in the WZDN architecture by 

effectively addressing the challenges posed by underwater 

imaging. By leveraging the spectral characteristics of light and 

the optical properties of water, this module contributes to the 

production of high-quality, visually appealing images with 

enhanced clarity and reduced haze. 

4.5 Adaptive Contrast Enhancement 

The Adaptive Contrast Enhancement component within the 

Wavelength Dehazing Zero Deep Network (WZDN) 

architecture plays a crucial role in improving the visibility and 

detail perception of enhanced underwater images. While the 

primary focus of WZDN is on dehazing to restore clarity, 

adaptive contrast enhancement further enhances the quality of 

the output by selectively adjusting contrast levels.These 

mechanisms operate by analyzing the input image to identify 

regions with low visibility or high haze. By pinpointing areas 

where contrast enhancement is most beneficial, the network 

can effectively bring out subtle details and structures that may 

otherwise be obscured by haze or low visibility 

conditions.Various techniques may be employed for adaptive 

contrast enhancement, tailored specifically to underwater 

imaging conditions. Histogram equalization is one such 

method that redistributes pixel intensity values to achieve a 

more balanced histogram, thereby enhancing contrast 

throughout the image. Local contrast enhancement 

techniques, such as adaptive histogram equalization or 

contrast stretching, focus on enhancing contrast in localized 

regions, ensuring that details are preserved and brought to 

prominence. The adaptive nature of these contrast 

enhancement mechanisms allows them to dynamically adjust 

their operations based on the characteristics of the input 

image. This adaptability ensures that contrast enhancement is 

applied judiciously, avoiding over-amplification of noise or 

artifacts while effectively enhancing visibility and detail 

perception in the final enhanced image. Overall, the 

integration of adaptive contrast enhancement within the 

WZDN architecture complements the dehazing process, 

resulting in high-quality underwater images with improved 

clarity, contrast, and perceptual fidelity. 

4.6 Output Layer 

The output layer in the Wavelength Dehazing Zero Deep 

Network (WZDN) architecture is the final stage where the 

enhanced underwater image is produced. This layer integrates 

the results of all preceding processing steps to generate an 

output image with significantly improved visual quality. The 

primary objective of the output layer is to restore clarity, 

improve color fidelity, and enhance contrast in the underwater 

image. After undergoing preprocessing, feature extraction, 

wavelength-aware dehazing, and adaptive contrast 

enhancement, the input image is transformed into a more 

visually appealing representation. This enhanced image 

exhibits reduced haze, sharper details, and more accurate 

color reproduction compared to the original degraded image.  

In addition to the enhancement provided by the core 

components of the WZDN architecture, postprocessing 

steps may be applied at the output layer to further fine-

tune the appearance of the image. These postprocessing 

techniques include color correction, sharpening, and noise 

reduction. Color correction adjusts the color balance and 

tone of the image to ensure accurate color reproduction, 

particularly in underwater environments where color 

distortion is prevalent. Sharpening techniques enhance the 

clarity and sharpness of details in the image, making them 

more distinct and visually appealing. Noise reduction 

algorithms aim to suppress any remaining artifacts or 

noise introduced during image processing, resulting in a 

cleaner and smoother final output. Overall, the output 

layer of WZDN serves as the culmination of the image 

enhancement process, delivering a final underwater image 

with restored clarity, improved color fidelity, enhanced 

contrast, and refined visual appearance. 

4.7 Training and Optimization 

The training and optimization process of the Wavelength 

Dehazing Zero Deep Network (WZDN) architecture is 

crucial for ensuring that the model learns to effectively 

enhance underwater images. This process involves several 

key steps to fine-tune the parameters of the network and 

optimize its performance. Firstly, the training process 

begins by feeding the WZDN architecture with a dataset 

of paired underwater images and their corresponding 

ground truth representations. These paired images serve 

as input-output pairs, allowing the network to learn the 

mapping between degraded underwater images and their 

ideal, enhanced counterparts. Optimization techniques 

such as stochastic gradient descent (SGD) or Adam are 

then employed to minimize a predefined loss function. 

This loss function quantifies the discrepancy between the 

output of the network and the ground truth images. By 

iteratively adjusting the parameters of the network, the 

optimization algorithm aims to minimize this discrepancy, 

thereby improving the accuracy of the network's 

predictions. Hyperparameters such as learning rate, batch 

size, and network architecture play a crucial role in the 

optimization process. The learning rate determines the 

step size of parameter updates during optimization, while 

the batch size specifies the number of training examples 

processed in each iteration. Tuning these hyperparameters 



 

 

is essential for achieving optimal performance and 

generalization ability of the network.

 

 

       Fig. 3. Zero Deep Architecture  

 

        Fig. 3. Flowchart of WZDN Algorithm 

 

Algorithm 1. Multi-Resolution Image Fusion 

1: Preprocessing 

 a.Grayscale conversion: 

 𝑰𝒈𝒓𝒂𝒚 =  𝒄𝒐𝒏𝒗𝒆𝒓𝒕𝑻𝒐𝑮𝒓𝒂𝒚𝒔𝒄𝒂𝒍𝒆(𝑰𝒊𝒏𝒑𝒖𝒕) 

 b. Resizing: 

 𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅 = 𝒓𝒆𝒔𝒊𝒛𝒆(𝑰𝒈𝒓𝒂𝒚 , 𝒅𝒆𝒔𝒊𝒓𝒆𝒅𝒔𝒊𝒛𝒆) 

2: Decomposition  

 a. Gaussian pyramid: 

 𝑮𝒊 = pyrDown(𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅) 

 b. Laplacian pyramid: 

 𝑳𝒊 =𝑰𝒓𝒆𝒔𝒊𝒛𝒆𝒅 – pyrUp(𝑮𝒊) 

3: Fusion 

 a.Weighted averaging: 

 𝑭𝒍𝒆𝒗𝒆𝒍 = ∑ 𝒘𝒋
𝑵
𝒋=𝟏 . 𝑫𝒋 , where 𝑫𝒋represents the detail 

images at the current level and 𝒘𝒋  are the fusion weights. 

4: Reconstruction 

 a. Pyramid blending: 

 𝑹𝒊 =  𝑭𝒊 + pyrUp(𝑹𝒊+𝟏) 

5: Output: 

 a. output of the fused image. 

 

 

 

 

5 . EVALUATION  

The evaluation encompasses three key aspects: Color 

Distortion Correction, Visibility Enhancement, and 

Gaussian Pyramid. Color Distortion Correction involves 

mitigating discrepancies in color representation, crucial 

for accurate image analysis. Visibility Enhancement aims 

to improve perceptibility of details in images, enhancing 

overall visual clarity. Gaussian Pyramid evaluation 

assesses the effectiveness of this multi-scale 

representation technique in various image processing 

tasks such as blending, compression, and pyramidal 

decomposition. Together, these evaluations provide 

insights into the efficacy of image enhancement 

techniques, contributing to the refinement and 

optimization of image processing algorithms for diverse 

applications. 

5.1.1 Color Distortion Correction 

Color distortion correction in underwater images is a 

crucial aspect of image enhancement due to the inherent 

challenges posed by the scattering of light in water. This 

phenomenon leads to a shift in color wavelengths, 

resulting in distorted and inaccurate color representations 

in captured images. To address this issue, the proposed 

algorithm employs sophisticated techniques to accurately 

correct color distortion and restore true color fidelity. One 

common approach to evaluating the accuracy of color 

correction is by comparing the color distribution of the 

original distorted images with that of the corrected 

images. This can be quantitatively measured using color 

difference metrics such as Delta E (ΔE). Delta E 



 

 

represents the Euclidean distance between two colors in a 

perceptually uniform color space, such as CIELAB or 

CIELUV. By calculating ΔE between corresponding 

pixels in the original and corrected images, we can 

determine the extent of color distortion correction 

achieved by the algorithm. 

 The formula for calculating Delta E is: 

   

  ΔE = √(𝚫𝐋)𝟐 + (𝚫𝛂)𝟐 + (𝚫𝛃)𝟐 

 Where: 

ΔL, Δ𝜶, and Δ𝜷 are the differences in lightness, chroma 

(green to red), and hue (blue to yellow) components 

between two colors, respectively 

Additionally, the improvement in color fidelity can be 

assessed visually by comparing the corrected images with 

ground truth images or reference images captured under 

ideal conditions. Human observers can evaluate the 

naturalness and accuracy of colors in the corrected 

images, providing qualitative feedback on the 

effectiveness of the algorithm.Furthermore, to ensure 

robustness and generalizability, the algorithm's 

performance can be tested across a diverse set of 

underwater environments and conditions, including 

varying levels of water turbidity, depth, and lighting 

conditions. This comprehensive evaluation helps validate 

the algorithm's effectiveness in correcting color distortion 

across different underwater scenarios. 

5.1.2 Visibility Enhancement 

Visibility enhancement in underwater imagery involves 

mitigating the effects of haze and improving clarity, essential 

for various applications such as marine research and 

surveillance. The algorithm achieves this by addressing two 

primary factors: haze removal and color adjustment.Haze 

removal is typically evaluated by measuring the enhancement 

in image contrast. One common metric for quantifying 

contrast enhancement is the Contrast Improvement Index 

(CII). This index compares the contrast of the original image 

with that of the enhanced image, providing a numerical 

measure of the improvement achieved.  

The formula for CII is: 

  CII = 
𝑪𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅 − 𝑪𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝑪𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍
 x 100% 

Where 𝑪𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅represents the contrast of the enhanced 

image, and𝑪𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍represents the contrast of the original 

image. 

Additionally, the reduction of haziness and murkiness can be 

assessed visually by comparing the clarity of underwater 

details in the original and enhanced images. This qualitative 

evaluation provides insights into the algorithm's effectiveness 

in improving visibility. 

Moreover, the adjustment of colors to their true values is 

crucial for restoring accurate representations of underwater 

scenes. This process involves mapping the distorted colors to 

their corresponding true colors based on the properties of light 

absorption and scattering in water. While there isn't a specific 

formula for color adjustment, it involves complex 

mathematical transformations to accurately compensate for 

color shifts. 

Overall, the evaluation of visibility enhancement involves 

both quantitative analysis using metrics like CII to measure 

contrast improvement and qualitative assessment through 

visual comparison of underwater details. By effectively 

removing haze and adjusting colors, the algorithm enhances 

visibility and clarity in underwater images, facilitating 

improved analysis and interpretation in various underwater 

applications. 

5.1.3 Gaussian Pyramid 

The Gaussian pyramid is a multi-scale representation of an 

image that helps in hierarchical image processing tasks such 

as image blending, image compression, and image pyramidal 

representation. It is constructed by iteratively applying a low-

pass filter and downsampling the image. The pyramid is 

formed by a series of images at different resolutions, where 

each level represents a blurred and downsampled version of 

the original image. 

The original image is repeatedly subsampled to produce a 

series of images at different resolutions. Downsampling 

reduces the image dimensions by a factor of two along each 

axis.Before downsampling, each level of the pyramid is 

smoothed or blurred using a Gaussian filter.  

 

The Gaussian pyramid can be mathematically expressed as: 

   𝑮𝒊 =  𝑮𝒊−𝟏 ∗ 𝒌 

Where, 

• 𝑮𝒊 represents the ith level of the Gaussian pyramid. 

• 𝑮𝒊−𝟏represents the (i-1)th level of the Gaussian 

pyramid. 

• 𝒌is the Gaussian kernel used for blurring. 

The Gaussian pyramid is typically represented as a stack 

of images, with the original image at the base (lowest 

resolution) and progressively downsampled and smoothed 

versions stacked on top. Each level of the pyramid 

captures different scales of information, with higher levels 

representing coarse details and lower levels capturing 

finer details. In image processing tasks, the Gaussian 

pyramid is often used in conjunction with the Laplacian 

pyramid for tasks such as image blending and 



 

 

reconstruction. The Laplacian pyramid represents the 

details of the image at different scales, allowing for 

efficient image manipulation and processing. Together, 

these two pyramids facilitate a multi-scale approach to 

image analysis and manipulation, enabling a wide range 

of image processing techniques. 

6 . EXPERIMENTS AND DISCUSSION 

This section elucidates the frameworks within the 

underwater image enhancement pipeline described below 

combines various techniques, including color 

compensation, white balancing, gamma correction, image 

sharpening, weight calculation, pyramid construction, 

fusion, and deep learning-based enhancement. Each step 

in the pipeline addresses specific challenges associated 

with underwater photography, ultimately resulting in 

enhanced image quality and improved visibility for 

applications such as marine research, underwater 

exploration, and surveillance. 

6.1. Frameworks 

Underwater photography poses unique challenges due to 

the absorption and scattering of light by water molecules 

and suspended particles, resulting in color distortion, 

haziness, and reduced visibility. Addressing these issues 

requires a comprehensive approach that combines various 

image processing techniques tailored specifically for 

underwater conditions. 

Color compensation and white balancing are crucial initial 

steps in the enhancement pipeline. Underwater 

environments tend to exhibit a red color cast due to the 

absorption of longer wavelengths of light, such as red and 

orange. Compensating for this distortion involves 

adjusting the color channels to restore accurate color 

representation. White balancing further refines the color 

balance by ensuring that white areas appear neutral, thus 

correcting any color biases introduced by the underwater 

environment. 

Following color compensation and white balancing, 

gamma correction is applied to the image. Gamma 

correction adjusts the brightness and contrast levels, 

which are essential for enhancing the overall tonal quality 

of the image.  

 

Image sharpening is another vital step in the enhancement 

pipeline. Underwater images often suffer from blurriness and 

lack of detail due to light scattering and optical distortions. 

Image sharpening techniques aim to enhance the clarity and 

sharpness of edges and fine details in the image, thereby 

improving overall image quality and making underwater 

features more discernible. 

Weight calculation plays a crucial role in combining 

information from multiple processing paths. Laplacian edge 

detection, saliency detection, and saturation weight are used 

to compute weights that prioritize certain image 

characteristics for fusion. These weights ensure that relevant 

information from each processing path contributes effectively 

to the final enhanced image, thereby optimizing the 

enhancement process. 

Pyramid construction and fusion leverage the multi-scale 

nature of images to enhance underwater scenes effectively. 

Gaussian and Laplacian pyramids are constructed for both 

input images, allowing for the representation of image details 

at different scales. By fusing information from multiple scales 

using the calculated weights, this technique preserves 

important details while mitigating artifacts and noise, 

resulting in a visually pleasing and contextually accurate final 

image. 

Finally, the enhanced image undergoes processing through a 

Zero Deep Network (ZDN). This deep learning-based 

enhancement technique further refines the image quality by 

leveraging the power of neural networks to learn complex 

relationships and patterns in underwater imagery. The ZDN 

applies sophisticated algorithms to enhance color fidelity, 

improve visibility, and reduce haziness, ultimately restoring 

the clarity and vibrancy of underwater scenes. 

6.2. Datasets 

The Underwater Image dataset has been instrumental in 

advancing research aimed at enhancing clarity in underwater 

imagery. This dataset is likely a comprehensive compilation 

of underwater images captured in diverse environments and 

conditions, including various depths, water turbidity levels, 

lighting conditions, and marine life presence. For researchers 

looking to benchmark their underwater image enhancement 

techniques, the Underwater Image Enhancement Benchmark 

Dataset offers a valuable resource accessible at https://li-

chongyi.github.io/proj_benchmark.html 

The analysis likely involved a comparative study between 

original underwater images and those processed using 

Weighted Zero-Divergence Non-local (WZDN) techniques. 

This examination provided insights into areas where WZDN 

effectively improved image clarity, such as enhancing edge 

definition, restoring lost details, and reducing color distortion. 

Overall, the utilization of the Underwater Image dataset 

facilitated a thorough evaluation of WZDN's capabilities in 

enhancing underwater image clarity, highlighting its potential 

applications in marine research, underwater exploration, and 

underwater photography. 

6.3. System Requirements 

The proposed image enhancement pipeline requires a 

robust computational environment to efficiently process 

underwater imagery. With a powerful NVIDIA GeForce 

RTX 3090Ti GPU, 256 GB of RAM, and an Intel i9-

10900k CPU, the system offers substantial computing 

power for intensive image processing tasks. MATLAB, as 

the chosen programming environment, provides a  

https://li-chongyi.github.io/proj_benchmark.html
https://li-chongyi.github.io/proj_benchmark.html


 

 

 

 

versatile platform for implementing various enhancement 

techniques. Leveraging the GPU's parallel processing 

capabilities, particularly for deep learning-based 

enhancements, ensures swift computation of complex 

algorithms. The RAM capacity enables handling large 

datasets and memory-intensive operations seamlessly. 

This high-performance setup facilitates rapid 

experimentation and optimization of the image 

enhancement pipeline, ultimately leading to enhanced 

underwater image quality and improved visibility for 

diverse applications. 

6.4. Results and Discussion  

In Figure 4, the input image represents the original 

underwater scene, while the output image demonstrates 

the result of applying the WZDN Algorithm. This 

comparison visually illustrates the improvements in 

clarity achieved through the algorithm's processing 

techniques. 

 

  Fig. 4. Input and Output for the under water image 

 

Fig. 5. Improvement in underwater image clarity 

 

 
 

Fig. 6. illustrates enhancements in clarity for underwater 

images. 

  Images     Metrics Samples                                                   Techniques  

         Prior Based Supervised Based UnSupervisedBased 

   Orig.     UDCP    IBLA Water 

Net 

UGAN Ucolor USUIR Proposed 

SCS_1 ∆𝐶∗ 36.3071 30.2352 25.8622 21.941 19.635 17.366 18.844 17.319 

∆𝐸∗ 37.4483 33.6343 27.4423 24.917 25.894 19.372 20.927 19.339 

Table 1:Quantitative Evaluation on Color card images Using ∆𝐶∗ and ∆𝐸∗ metrics 

 



 

 

 

 
 
Fig. 7. underwater color image quality evaluation index 
 

 

 

 

  Fig. 8. underwater image quality index 

7. CONCLUSION 

The challenges inherent in underwater photography, 

including color distortion, haziness, and low visibility due 

to light scattering by water and particles, necessitate 

specialized algorithms for effective image enhancement. 

Our proposed approach leverages advanced techniques 

tailored specifically for underwater conditions. Through 

the utilization of the Wavelength Dehazing Zero Deep 

Network (WZDN) algorithm, we address these issues by 

correcting color distortion and restoring accurate color 

representation. WZDN effectively enhances visibility and 

improves color fidelity by eliminating haze and adjusting 

colors to their true values.  

Furthermore, our methodology incorporates contrast 

enhancement techniques to render underwater details more 

discernible, thereby enhancing overall image quality. By 

mitigating the impact of particulate matter and dissolved 

substances, we minimize haziness and murkiness, resulting in 

clearer underwater images. Importantly, our algorithms are 

optimized for efficient real-time processing, rendering them 

suitable for applications requiring rapid image enhancement, 

such as underwater exploration, surveillance, and marine 

research. Throughout our research, the primary focus remains 

on developing algorithms that significantly enhance underwater 

images by addressing color distortion, improving visibility, and 

reducing haziness. Among these algorithms, WZDN emerges as 

particularly noteworthy, offering superior color fidelity and 

enhanced visibility, which ultimately contribute to the 

restoration of clarity in underwater imagery. In summary, our 

study underscores the importance of tailored algorithms in 

addressing the unique challenges posed by underwater 

photography. Through the application of specialized techniques 

such as WZDN, we demonstrate substantial improvements in 

image quality, paving the way for enhanced capabilities in 

underwater exploration, surveillance, and scientific research. 

Our findings highlight the potential of advanced algorithms to 

revolutionize underwater imaging and contribute to a deeper 

understanding of aquatic environments 

8. FUTURE WORK 

In the realm of underwater image enhancement could explore 

the integration of machine learning techniques to adaptively 

adjust parameters based on varying underwater conditions. This 

adaptive approach could potentially improve the robustness and 

effectiveness of the algorithms across a wider range of 

underwater environments. Additionally, research could focus 

on developing methods for automatically detecting and 

classifying different types of underwater scenes, allowing for 

more targeted and efficient image enhancement strategies. 

Furthermore, investigating the integration of multispectral 

imaging systems or underwater-specific sensors could provide 

additional data modalities to further improve the accuracy and 

effectiveness of image enhancement algorithms. Lastly, 

collaboration with marine biologists and oceanographers could 

help tailor image enhancement techniques to specific research 

needs, such as better capturing subtle details in coral reefs or 

tracking marine life in challenging conditions. 
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