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Abstract: In this paper, we applied the reproducing kernel method on elliptical region, we establish the formulas of the reproducing

kernel from several degrees and generalized those formulas whatever the dimension of space, we obtained all surfaces, points, and their
constants for compensation in the cubature formula, tables are included to show our results and examples to show the approximation

solution in this method.
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INTRODUCTION

The Reproducing Kernel Method was first discovered in
1968 by the scientist Myscovskikh in order to calculate the
double integrals in regions that have a center of symmetry and
that do not have a center symmetry [11-12], Bykova used the
Reproducing Kernel Method to form the cubature formula as the
integral region is symmetric in R2[2], The important development
of the Reproducing Kernel Method was obtained by Mdller in
1973, where he was able to prove the theorems and found the
cubature formula with 2k 4+ 1 algebraic precision in the case of
symmetric regions [7], and 2k in the case of asymmetric

regions[8-9], In the 1990s, Myscovskikh contributed to the
development of the Reproducing Kernel Method and to finding
the minimum number of integrative points [1], 15-16], and in
2001, The cubature formula on the square with a weight function

(1—x2)%(1—y2)% was studied [4], in 2003, the formulas of
cubature formula was collected to approximate multiple integrals
and to study the cubature formula on the unite ball [3,19], in
2004, the cubature formula was studied on the simplex area and
the surface of the unite ball [18], and in 2006 the cubature
formula was studied on the cube [10], in 2008 the cubature
formula was studied on the hexagon and the triangle [20], in
2012, conditions were set for the existence of cubature formula
[6], in 2014, periodic functions were used to find the cubature
formula for the simplex [5], in 2020 the cubature formula was

studied using the Gaussian weight function [17].

The current research in this field revolves around the study
of properties of the Reproducing Kernel, the application of this
method in wider areas of integration, and study this method in
Sobolev spaces, and obtaining new generalized cubature
formula that can be used to calculate the approximate value of
multiple integrals.

MATERIAL AND METHODS
Definition 2.1. Cubature Formula: (see [13-14]). The

cubature formula is an approximation equality for calculating the
approximate value of the multiple integrals by specifying a

number of points and finding a number of constants, and it is
given as:

1= [ w@ = 66 @1
=

Where x/ = (x{,x},..,x});j = 1,..,N are different points two by
two and they are called integration points or cubature formula
nodes, N the number of integral points, C; the constants
corresponding to those points (in this article C; € R), Q integrative
area E,, f(x) the function to be integrated dx = dx;dx, .....dx,
and w(x) the weight function even, check:

Jp o®)dx >0, 0(x) 20&x €0 = —x€Q &w(x) = w(-x)

We say (1-1) has an algebraic precision d, if it is
transformed into a true equality, when the degree of the integral
polynomial f(x) does not exceed d.

Theorem 2.1. Suppose that Q has internal points, we have
two cases:

— if the cubature formula (1-1) has d = 2k algebraic precision,
then the number of nodes of cubature formula achieves the
inequality:

(n+m)! [g]

NZ)(=M(n,m)=W ;m= (2.2)

— if the cubature formula (1-1) has d =2k + 1 algebraic
precision, and if 8 is not among the nodes of cubature
formula, then the number of nodes of cubature formula
achieves the inequality:

N> {2()( —v) ;m:odd number 2.3)

2v ; m: even number
d
m= [;]: X =M(n,m)
and if 8 is among the nodes of cubature formula, then the number
of nodes of cubature formula achieves the inequality:
2(x—v)—1 ;m:oddnumber
2v+1 ;m: even number

Where V' the number of uneven units of term which degree does
not exceed k with n variable.

N> { @4
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Definition 2.2. Reproducing Kernel: It is a polynomial with
2n a variable used in cubature formula with even algebraic
precision d = 2k is given by the formula:

Ky (u,x) = z F,(u)F;(x) @25)

while the Reproducmg Kernel for cubature formula with odd
algebraic preC|S|on d = 2k + 1 is given by the formula:

Ro(wx) = ZF WF,(x) (2.6)

Where u = (ul,uz, v Up), X = (X1, X5, ..., Xp), F;(x)Orthonormal
polynomials on E, with n variable, the degree of F;(x) in (2.6) is
s <k (if kis an odd number then s =1,3,5,..,k and if kis an
even number then s = 0,2,4,.., k ), the degree of F;(x)in (2.5)is
s<k(s=0123,..,k)

To form the cubature formula, we use the following two
theorems:

Theorem 2.2. (see [13],[14]) Assuming that ubtu?, ... ut
points satisfy the condition K, (u’,u’) = b;6;;, and N, H; consist
of points x/;j=1,..,s;s = k™ where H;:=K,(u,u’)=0;i=
1,..,n, The exact cubature formula exists for polynomials whose
degrees do not contiguous 2k:

J| awreac= ;blif(ui) " Z G f ) @7

The number of integral points: is the sum of the number of points
xJ plus the number of points u!

Theorem 2.3. (see [13-14]) Assuming that u!,u?,...,u"
points  satisfy the condition K,(ul,uw)=b5; and
N, H; consists of pointsx/;j=1,..,s;s=k" , then the
cubature formula can be formed which algebraic precision 2k +
1.

[ weorear= Z 2 (F) + )

+ 27 6f6) 28)
j=1

The number of integral points: is the sum of the number of
points x/ plus the number of points u' and plus the number of
points —u'.

Results and Discussion
E,elliptic in the spaceR™:
2 2 2
n. (%1 LA £} '
E, = {x € R™; ( 1) + (az) + -t (an) < 1}, Let's evaluate the
integral P, = [x%dx on E, whereas a=(ay,..,a,)x=
(x4, ..., x,) if one of the a; is an odd number, then P, = 0, but if

a; an even numbers, we can write them in the form «; = 2q;,
then we find:

n a;+1
n i
g=]] a# flal=a++a (31
i=1 r( a > ny 1)
By the (3.1) we found the Orthonormal Polynomials (zero, first,
second and third degree with n varible) on E,, by Using schmidt's
role:

a
Letitbey = (n+2)(n+4)(n+ 6),u(E,) = ) we find
2
1
Fg = (3.2)
Vu(En)
n+2x
Fl = ji=12,..,1 (33)
u(En )
(n+3-Dn+2)(n+4)|x? N
\] 2af(n+2 — Du(E,) a? n+3—i ZZf
F§= ’ 349

m+2)(n+4) xx;
alaiu(Ey)  aq
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- n+5-0A 2 a? ix? 1
W \JZ(n +4—i)afa}u(E, ) n+5-—i s a?
3 (n+5-021 [ (lzl:xﬁ 1)] A
— = -1|xsi=],
n+ 5 i <

”‘7\J6(n+271)a u(E,) 1“3 -

X550 <Jj

Fi= e e 39
n+3-i aj Xs g
Fiy \JZ(n+2 L)aau(E) n+3—1(;a7§71> Git>J
3 A o
Fie = mx,xjxk siEjEK
Finding The Reproducing Kernel:
Finding The Reproducing Kernel Of The First Degree:
n
~ n+2 UjX;
K, (u,x) = — 3.6
0 @) L a? GO
Jj=1
Ky = By ) + Ry ) = ——+ 2 2N'W5 ()
u,x) = Uu,x u,x .
! ! ° w(Ey) u(E)

Finding The Reproducing Kernel of the Second Degree:

The Reproducing Kernel is given by the formula:
K,(u,x) = ?+Z" L FPOOFP (W) + X FE (O F () (3.8)
Substitute (3.2) and (3.4) in (3.8), we get:

Ro(wx) = = + NI 2 [U][4] + By RO (39)

En) J=1n42—j
Whereas:
_ (n+2)(n+4) _ u_jz j- 1u_s _
- 2u(En) i a? + n+3-j (2 1) (310)
Z
i Jj- 1"_5_
X - aj n+3 -j (Z 1)

Relationship (3.9) can be Written as:

Ro(wx) = s+ NS T2 (U2 +NZ T e B

) j=1 LTnz—jos=142

NZ/ 1 [U/] +Zl$} Fz(x)Fz(u)

n+2-j

Ro(u,x) = s+ N(S 45+ 89) + 20y, S0t (3.0)
7

Let's find 51,52,53:We take out the indexed sum n in S;, then we
replace eachj with a s so we find:

n+3-s

S = an+25 1 ez Us] % (3.12)

We make a substltutlon in the addition operation in S,, and we
find:

Uj

2
S2 = B G i e (3.13)
Adding (3.12) and (3.13), we get:
3 _ 2
$+5S, = ﬁUnxfl + 2;;11’;—‘354 (3.14)
Whereas:
S,=U +Z i 3.15
4 — Ys . n+ 2 _]- ( . )
j=s
Substituting (3.10) into (3.15), we get:
_u} 1 s—lu_g _ 1 n 1 u_f
S4_a§+n+3s t=14 n+3-s J=S n42- ]af+
S S S S
1 S (n+2— 1)(n+3 ])Zt 1q2 1 S (n4+2-j)(n+3—-j) (3'16)

We make a substitution in the order of the sum in fifth term, which
we will denote by the symbol Ss in (3.16), so we find:

S— 1“t . r n— 1ﬁ n
=2 ZJ =5 (n+3- 1)(n+2 ) +2is

J=t+1 (ny3— 1)(n+2 ) (17

The sum in (3.17) can be written in the form:
1 1 1

n =1_
ZJ:S (m+3-j)(n+2-j) 2 n+3-s

n 1 _1__1

Zf:t“ m+3—-))(n+2-j) 2 n+2-t (3.18)

Substituting (3.18) into (3.17), then substituting the result into
2 2

(3.16) and then grouping the terms, we find: S, = Z—i + %Z’;S“—; -

1

2

substituting S, into (3.14), we find:
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2 2
X 1 U, 1
S +S,=3" S(S+- n,_s__)
1 2 s=1 2 2 2 S_1a§ 2

Let's find S5:

;] 1ud
_c o —ymn i _ j= _5_
Ss J=1p42-j 21 1n+2 ]a +Z} 1 (nt2- })(n+3 })Z

J 1 (n+2- j)(n+3 )
u§ n
2(n+2)

_53__ s=1,
And therefore s=8+S,+S;is:

1 S HUs S .Sz‘ 'S S
=iz e Sy S - (2 S e mn, ) +

a n+2

Substitute in (3.11), we find:

= +2 (n+2 XX jUU +4 Zu?
Ry x) = ;5){"—+<n+4)2#, PR Dt
Sy, Y ( Lz, )

Let's suppose that (uy,u,, ....,un) belong to the elliptic surface,
uf

and therefore Z;‘ﬂ; = 1, we substitute in the last relationship,

so we find the final formula for I?Z(u x)is:

(n+2)(n+4) n usxS n usxs_ 1
KZ(u X) 2u(Ep) ( s=1 as2 )(Z as \/n+4)
(3.19)

In the same way, we find K, (u, x):
(u ) _ (n+2)(n+4) (2? 1% + 1+Vn+5 )(ZS 1usxs + 1—Vn+5)

2u(En) a? n+4 a? n+4

(3.20)
The Reproducing Kernel of the third Order
Following the same steps as section 3.1.2, we find:

|2 -

Ky(u,x) = (3.21)

Y t
6u(E,) n+6

Rawx) = [0 + 2o (02 - = 3i e -

3
n+6 (n+4)(n+6)] (3-22)

Y
61.(En)
UsXs

t=yr, . y=m+2)(n+4)(n+6)

The formation of the cubature formula for the Reproducing
Kernel K;(u,x),K,(u,x):

For K,(u,x): Let's find the cubature formula in order to
algebraic precision d = 3, we choose u! = (a;,0, ...,0), S0 —a, <
a, < aq, substitute in (3.6), we get:

_n+2ax;
GO
From H;: x, = 0, substitute in —+ <1, we get x, =a,
—a, < a, < ay, sou? = (0,a,,0, O) substltute in (3.6), we get:
o n+2ax,
2T uE) a

Choose u?® from E, N(H, n HZ) we get x; = x, = 0 form H,
and H,  substitute in X + S+ X3 <1, we find u3

(0,,0,a3,0,...,0), then we flnd H3,H4,... LH,, NI, His x'=
(0,0, ...,0), and the number of integral points is 2n + 1, and the
minimum number of points according to (2.4) is 2n + 1, where

2
-1 _jHER)
(Zbl) - 2(n+2)a?

For f(x) = 1 and according theorem (2.8)we find:
C = #(En) ((n+2)ai2_n alz)

(n+2)a?
For K,(u,x): Let's find the cubature formula in order to
algebraic precision d = 2k, as in the previous paragraph:

u' = (a,,0,0, ...,0), u* = (‘—“1 2 [+ D +3),0,...,)

n+2’ n+2

_ (-2 -az |n+3 n(n+3)

T \n+2’n+2 (+D)(n+2)’ 0,...,0

_ [z —az [n+3 (n+3) (n+3)(n—-1) 0 0
T \n+2’n+2 (n+1)(n+z) nm+2) 7

i [z . (n+3) ) (n+3)(n—i+3) 0.0
W=\ T4 e ) (- G- D) 2y Y mra-n@mr)
i E,
And: (b)™ = [K, (uf, )]t = 252

ANUJR-A. Vol 39(1) 2025

-a; -ap [n+3 3(n+3)
n+2’ n+24 n+l 20(n+2)’ n 4(n+2)

the number of integral points is n + 1, and the minimum number of is
N>M (n,l): n+1, For f(x) = 1 substitute in (2.7), we find:

3
C= H(En)m
The formation of the cubature formula for the Reproducing
Kernel K,(u,x), K,(u, x):
For K, (u, x):

Table (1): points and constants of the Cubature Formula (2.7), for
K,(u,x),d = 4,n = 2.

The points The constant
—1+V7 V28427 L
u' = (a,,0),u* = (— 1 az) 1 T
1 —1+\F =727
xt= a,
6 3v28+2v7 N
13—V7
3 (7, - \Falazn
x° = a, 56
6 Vas+2v7 N
1
« = (e )
6 V28427
X2 = (—1+\/7 —-7+47 a ) 9+3ﬁa .
6 V32827 2 56 12

The number of integral points is equal to 6, and the minimum number
of points according to (2.2) is 6, and we note that all points are located
within the elliptic.

Table (2): points and constants of the Cubature Formula (2.7), for
K,(u,x),d = 4,n=3.

The points constant
u! = (ay,0,0),u? = (Q a, 40J'Z‘/ﬁaz,O)
7 a,a,a;m
U = <\/§ 1 9/B-16 104+64/8 > 15
T\ 7 M aoravs 2| 7(a0vzve) B
xl= (Eal _8+9ﬁa2 vag) t
7 T79 !
x? = (Eﬂh _8+9ﬁa2 TIa3)
7 T79 !
x3 = (E al,_s_Sﬁaz,gag)
7 79 ®
x5 = (_\/5_1 al,ﬁaz,ga3)
7 9
x8 = (_\/5_1 al,_—ﬁaz, cag)
7 9
x* = (E a, _8_5ﬁa2 —Ua3)
7 79 ’
x% = (_‘/f_l a;,%5a Ua3) 0
x7 = (ﬂal, a2,0a3)
7 B
. 14(v8-1)
Where: 7 = /2268 + 2422v8,9 = /10 + v2,¢ = ===
22+6V8 —-58+2V8 —50+22V8 175v2+231
= = V= = a,a,a3T
T T T 240+1200V2
287v2-217 81v2+173
= Zaos1200vz B2 AL @ = o Ta0ovz T2 43T

The number of integral points is equal to 11, and the minimum number
of points according to (2.2) is 10 and we note that all points are located
within the elliptic.

Table (3): points and constants of the Cubature Formula (2.7), for
K,(u,x),d =4,n = 4.

The points The constant

ul = (a1r0r070).u2 = (lapgaz;o.())

3_ (1 V15 3 0
w = (10,50 % 5 %
ut = (1 «Ea L, V35 )
- 20 2’210 3'2W

La,a,a5a,m?
5 M02a30,

1 1 \/ﬁ 1
xt=(-a,—

1 2
a,a,a50,T
20ty 3’\/ 18
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The points

The constant

xzz(la Vis, 1, iﬁa)

47V 20 T2 oy10 Y a7 A

3=(1a ‘/ﬁa _Za )
4V g0 3’r

x4_(1a —3\/ﬁa 1 a a)
T\ T T2 VIt

1 2
77 110203047

1 -3V15 -3
x910 — (Zal'

x1516 —

-1 , 3
(7‘11' a2v— F 3'—ﬁa4>

a,+——a
2V10 3 T 2yiz 4

1112 — (=1 3 T |2

x —<7a1,i —az,i\/_a3,+\ﬁa4

1314 _ (-1 3 -3 3

x= =l=aq, |=a;——=a3,t——=a
(z 1HI20 2vi0 Y 2y 4

L a,a,a5a,m?
) 541234

)

The number of integral points is equal to 20,

and the minimum number

of points according to (2.2) is 15 and we note that all points are located

within the elliptic.
e e For K,(u,x):

Table (4): points and constants of the Cubature Formula (2.8), for

K,(u,x),d = 5,n=2.

The points The constants
p aia,m
N 41027
ut = (ayo),u’ = <_\/_%'\/;a2) ?
1_(_& _ g 1 4 _ (a1 az 8V6-3
x _( v ﬁ(1+@))"‘ (f E(1+ | SR wman
L))
NG
2o (—moaa(y 1)) 3 (a1 ax(_ 8V6+3
x _( \/E'\/E(l JE))X = («z'@( I+ | o a%”
1
)

The number of integral points is equal to 8,

and the minimum number

of points according to (2.3) is 8, and we note that all points are located

within the elliptic.

Table (5): points and constants of the Cubature Formula (2.8), for

K,(u,x),d = 5,n = 3.

The points

The constants

u' = (a,0,0),u* =
ay 6
o

3_[a az a3z
u <ff "7 2+f>

2ajazazm
45

xt= (a_f a_f“'ff)
a; —a; —as

(%5t

(3V7+9)aiazasm
90

BaE ) -

(52 000)

(—V7+9)aazasm
90
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The number of integral points is equal to 14, and the minimum number
of points according to (2.3) is 14, and we note that all points are located
within the elliptic.

Table (6): points and constants of the Cubature Formula (2.8), for
K,(u,x),d =5n=4

The points constants
u' = (a;,0,0,0)
2_(_% |7 1
3_[_a1 -1-v8 40-2V8
u —( N a,, - a3,0,0>
WBel_a —1—\/§a —-16-9v8 13—9w/§a
"\ Ve g 40-248 *
12 _ (191 4 1+V8 16+9V8 A
Xt = (im’i_sa az,i—ﬁ a3,i8a4)
1-V8 -
W= (22 152, F 0y 40, )
56 _ a; | 1+/8 16-5vV8 = — B
x —(i st =t 7 a3,+{a4)
34 _ (44 418 vz
0t = (£%2, 2580, 1 0, Fa, )
9,10 — a1V 7
x>0 = (i st 4t ” a3,+6a4)
11,12 _ a1 1-V8 V7 ¢
X = (i\@,i = a,, *—as, i6a4)
1304 _ (481 4 1+V8 16-5V8
x4 = (19 4 52 0y, £ 0y, 460, )
x1516 —
a 1+V8 16+9V8 88+25V8
(£ 15 @ £ 7y, 1 220 )
. 8+29v8 24-11V8
Where: ¥ = V8V40 — 2v8/13 — 98, = TR =B
_ — _56+7V8 , _ _ 700+231V8 2
y=+40—-2v8,6 = — ,B =+V56y,A = 336(80+45) a,Q,030,T
B = 1148—217\/§a @ aau? C = 324+173V8 P—
336(80+4vB) 1 2 374T 336(80+4vE) 1 2 374

The number of integral points is equal to 24, and the minimum number
of points according to (2.3) is 22, and we note that all points are located
within the elliptic.
3.4. The formation of the cubature formula for the
Reproducing Kernel K;(u,x), K3(u, x):
o For K;(u,x):
Table (7): points and constants of the Cubature Formula (2.7), for
K;(u,x),d =6,n=2.

The points The constant
u1 = (a1; O)IMZ = E_TZ
( 381 /104839 ) 30
a,, a,
500 500
_ ( “29533_ ) —0.01467068687 1 2
500 M S00vToa835 22
_ ( 381 29661 ) 0.0961346475 w2
500 1 500viose3s 2
_ ( 381 143039 ) 0.074657325 w r?
500 M S00vToas35 22
_ (2 _-ssoir ) 0.1441217863 w12
500 M1 So0vioasss 2
_ (269 236989 a ) 0.00326883097  r?
500 1’500v104839 2
(259 oazsy ) 0.1852513736 w12
500 M’ 500vT07835 22
x7 = ( 191 a —549021 a 0.01281529675 m r?
1250 1’ 1250104839 2
~191 z
X = (g, 200, 0.1845697863 7 1

1712501104839

9 -191
X" =\"7—a
1250

—168271

a
1 1250y104839 2

)
o )
)

0.2471840999 1 12

we note that the points x2,x*, x% x8,x° are located inside the elliptic,
and the rest of the points are located outside it, The number of integral
points is equal to 11, and the minimum number of points according to

(2.2)is 10

-wheren = 3:

u' = (a;,00),1% =

443 /194376
A1, = G2 0

625

The Approximate Integrals by the Reproducing Kernel Method on ......



3 _ (—443 -473124 .
w = (T2 ay, 20, 1.565417474 ia;), we note that we

obtained complex values, and therefore it is impossible to obtain
cubature formula with real points and that is ford = 6,n = 3.

—6656 55657719
a,, 257 0,0
10000 10000

-wheren = 4:: u' = (a,,0,0,0),u? = (

3 _ (76656a —110932281
10000 1'10000\/55657719

a,,1.286247125 1 a5,0)

ut =

—6656 —110932281
(10000 %1 T5000v55657710
it is impossible to obtain cubature formula in the method of the
reproducing kernel with real points and that is for d = 6,n =4
therefore it is impossible to obtain cubature formula with real points
and thatis for d = 6,n > 3.

oo For K;(u,x):

Table (7): points and constants of the Cubature Formula (2.8), for
Ky(u,x),d =7,n=2.

ay,1.545995034 i as,2.011102263 i a4)

The points The constants
1o (13 2 _ (B, 1 e e
u _(z'zaz)u _(2 al'zaz) 40
xl — (0,0) 7aa;m

54

x? = (%al,%az),ﬁ = (4\Fa1,_‘/§a2)

16
o= (i) = Geiae) o
x5 = (%al,f—\/_;az)
x6 = (%Eal,—ﬁ_ﬂ az) Za;#
x8 = ( i;—fal'fj—g )
"= (3;/\/;‘11’_::;;3 az)

The number of integral points is equal to 13, and the minimum number
of points according to (2.4) is 13, and we note that all points are located
within the elliptic.

Table (8): points and constants of the Cubature Formula (2.8), for
Ky(u,x),d =7,n = 3.

The number of integral points is equal to 33, and the minimum number
of points according to (2.4) is 27, and we note that all points are located
within the elliptic.

Generalization of the reproducing kernel formula:

o For K, (u, x):

The method (1):

Let's put E,,(u,x) = K,,,(u, x) — K,,_, (u, x) and suppose that

t= ; I we get:
E.(t) = m t
0= 420 (- L)
E, ) = (n+2)6(:(+E:))(n+6) (t _ ﬁ t)

. i (n+2m)!!
and in general:  E,, = JT:(lEn)Pmoo“.o(f)

Where P,,q0._0(t) are basic polynomials on B,il) (a ball of radius 1 in
R™) (see p172 in [13]), and we can write it by the next formula:
Prgo..o(t) = t™ +

Zkz]l(_l)k m! [n+2(m-k-D)]! ok

2Kk (m=2K)!  [n+2(m-1)]!! ym =2
then we find:
K (t) = E (t) + Ky (£)
(n+2m)!t
K (t) = 0(t) + Epp_q () + Ky ()

nl'm! u(E,) Pmoo.

(n+2m)!t

Prngo. o(t) + i

Km (t) = nll(m-1)! u(Ey)

Pm—lOO...O(t)+- . +K0(t)

ni'm! u(En

+2
K (t)—zn(f L Pao.a(®

The method (2):
Let'sputn = 2 in K; (u, x), K, (u, x), K5 (u, x), and let's assume that:
9= (g8 5

2 2
ay az

we find that the relations of K; (u, x), K, (u, x), K3(u, x) are written in
the form:

1
Ki(u,x) = [2119 +1]
1
1
K,(u,x) =—— [Zl(l + )92 + 229 — 1]

K3(u,x) =
09 —/1]

/1(1 + /1)(2 + )93 + 201 + 1)9? — 2A(1 +

The polynomials in the right side are Gegenbauer polynomials, and in
general for 9 = Y% % and n = 2,3,4, ...,we find:

K (u,x) =

n+2 n+2
et @+6L®)] k=12,

oo For K,(u,x):
In the same way as before, we find:

The points constant
ul = (a1.0,0) 2a;a,a3m
105
u? = (0,a,,0)
u® = (0,0,a3)
x' = (0,0,0) 8a1a5a5m
105
s 1 2a1a,a3m
x°® = (i—3a1,0,0), 35
1
x45 = (O,i—az,o)
3
1
x67 = (0,0 + —a3)
3
1 1
x8 = (i_al,i_aZlO)
3 3 2a1a,a3m
x1°11=(ii3a1,0,4_-i3a3 35
+1  +1
X1213 — (0'_a2'_a3)
3 3
1 1
X415 = (i—a ,F—a ,0)
3 1 \/§ 2
+1 F1
x1617 = <_a1’ 0'_a3>,
3 3
1 1
x1819 = (O,i—a ,(F—a
3 2 \/g 3
1 1 T1 a;azazm
x2°'21=<—a,—a,—a , 70
3 1 \/'?: 2 \/g 3
+1 F1 F1
x?2B =—a,;,,—a,—a
< 3 VV3 V3 3)

ANUJR-A. Vol 39(1) 2025

Yl+2
Ky (u,x) = 9) ;k=12,.
Ky (u,x) = (E ) 2 ) ;
Examples:
Table (9): Examples
Approximation Ex
Integral pproximatio act
solution solution
L= [ m({x*+y*+ d=5 057
1)dxdy I; = 0.59930582m
a;=a,=1 d=7
I, = 0.51116108341
d=5 12.9699670
2 2
= H e dxdy I, = 14.902059097
h , f th d a=7
is the quarter of the episode()
I W P I, = 13.23574473m
a={rylisZ+L<1)
5/6
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d=5 1287
3
Iy = ﬂ(xz +y2) " 2dxdy I = 11.082753981
F2 d=7

a;=a; =2 I; = 12.842121621

CONCLUSIONS

The reproducing kernel method is distinguished from other
methods in that it can be applied regardless of the dimension of space
and whatever the shape of the studied area, and Through the above, we
find that it is useful to increase the degree of polynomials to obtain a
cubature formula with higher algebraic precision, and the formula of
reproducing kernel can be generalized for any degree of the polynomial
to obtain it without conclusion, we have been able through what we
previously concluded, that cubature formulas (2.7) and (2.8) can be
written in the form:

Jp @COf@dx = Ly - f ) + Ty GF ()

Jy 0GOf(dx = T, M2 £ (uh) + 532 (@) hf ()
fy @GOf(Odx = p(@) (Biky £ f W) + B5ey hif ()

Jy ©COf@)dx = mess(@) (Biy = f ) + Ty hif()))
i I @OF (O = T T W) + By hif ()

And in this way:
Joy @QOf()dx =3P, =

=13¢

mess(Q) (f(ul) + f(_ul)) +

X5 hif (69)

mess(£1): area size
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