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Abstract: In this article, many concepts such as Korselt numbers that are related to Carmichael numbers have been studied. It deserves 

to mention that the Korselt numbers and sets were discussed for the first time in 2007 by Echi. Let N be a positive integer and α a non-

zero integer. If N̸ = α and p − α divides N − α for each prime divisor p of N, then N is called an α-Korselt number (Kα-number). Korselt 

numbers were determined by studying the converse of Fermat’s Little Theorem. To validate the concerned theorems, illustrated 

examples are solved in order to support the correctness of these theories. In this article we addressed errors in the relevant literature, 

and we introduced proper corrections with proofs for them. Finally, many notes have been taken and directed us to build and develop 

a number of algorithms in order to find Korselt sets for relatively large numbers in an effective way which may require a great time and 

need tedious effort if it is to be calculated manually. 
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Introduction 

In 1640, Fermat proved his well-known result (Fermat’s Little 

Theorem [6- 9]) which states that: "If p is a prime number, then 

p divides ap − a for every integer a". On the other hand, Korselt 

studied the converse of Fermat’s Little Theorem [10]: If N divides 

aN − a for any integer a, does it follow that N is prime? Actually, 

he proved that a composite odd number N divides aN − a for any 

integer a if and only if N is square free and p − 1 divides N − 1 

for each prime divisor p of N, but he did not provide any 

numerical example of these numbers! In 1910, [5]. Carmichael 

observed that the number 561 provides a counterexample that 

proves the converse of Fermat’s little theorem helped him to 

make the conclusion that the theorem is not true in general, 

which motivated the appearance of the Carmichael numbers. 

A composite number N is called a pseudoprime to the base 

a iff aN −1 ≡ 1 (mod N) where a ∈ Z\{0} and gcd(a, N ) = 1 [11], it 

is called an absolute pseudoprime, or Carmichael number, if it is 

pseudoprime for all bases a with gcd(a, N) = 1 [8]. These 

numbers were first described by Robert D. Carmichael in 1910 

[5], and the term Carmichael number was used by Beeger in 

1950 [3]. In 1994, Alford, Granville and Pomerance showed that 

there are infinitely many Carmichael numbers [2]. 

In 2010, Echi, Bouallegue and Pinch introduced the notion 

of the Korselt number [4]. They defined that a natural number  

N > 1 is called an α-Korselt number with α ∈ Z\{0} (denoted Kα-

number) iff p − α divides N − α for every prime factor p of N . The 

Korselt set of N, denoted by KS(N), is the set of all α ∈ Z\{0, 1} 

such that N is Kα-number. The Korselt weight of N, denoted by 

Kw(N) is the cardinality of KS(N). Notice that Carmichael 

numbers are exactly k1-numbers [12].  

In general, numerical calculations need a lot of effort, and 

difficult to check errors unless automated algorithms are used by 

computer. This motivated us to construct algorithms to convert 
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suggested definitions and propositions into algorithms built 

through detailed instructions, consequently, helped us to check 

and compare results relevant to Korselt numbers under different 

conditions. Three algorithms were proposed by us in this work 

for verification, noting that other literature are lack of algorithms. 

Korselt Set of Square free Numbers That Have 2, 3 And 4 

Prime Factors 

We start this section by introducing the following definitions 

of Korselt numbers and Korselt sets. 

Definition 1. [1, 4] Let N ∈ N\{0, 1} and α be a non-zero integer. 

Then: 

1.  N is an α-Korselt number iff N̸ ≠ α and p – α divides N − α for 

every prime divisor p of N. If N is an α-Korselt number, then 

we write N is a Kα-number. 

2.  The set of all α such that N is a Kα-number is called the 

Korselt set of N, and denoted by KS(N ). 

3.  The cardinality of KS(N ) is called the Korselt weight of N , 

and denoted by Kw(N ). 

Below is an example illustrating the above definition 

Example 2. 

•  6 is a K4-number. Indeed, 6 = 2 ∗ 3 and 2 − 4 = −2 | 6 − 4 = 

2 and 3 − 4 = −1 | 6 − 4 = 2. Here, KS(6) = {4} and Kw(6) = 1. 

•  N = 770 = 2 ∗ 5 ∗ 7 ∗ 11 is K8 and K14-number. Hence, 

KS(770) = {8, 14} and Kw(770) = 2. 

The following result helps in finding the Korselt set of a given 

square free integer N. 

Proposition 3. [1] Let α be a non-zero integer and N be a 

composite number where largest prime factor is q and smallest 

prime factor is p. (eg. N = 30, here, p = 2 and q = 5). If N is a Kα-

number, then the following inequalities hold: 
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Proof. To prove that , assume that α ∈ KS(N). By 

definition of the Korselt number, q – α divides N − α. Thus, there 

exists a natural number y such that N − α = y(q − α). And as N > 

q, this implies that y ≥ 2. 

Claim: y ≠ 2. By contradiction, suppose that y = 2. Hence, N − α 

= 2q − 2α, consequently α = 2q − N. 

Claim: α ≠ 2q − N. Here, N ≠ q because N is a composite number 

and q is a prime number. Also, α being a non-zero implies that N 

≠ 2q, Thus, N = mq where m ≥ 3, and hence α = 2q − mq = −(m 

− 2)q. Now, if s is a prime factor of m, then since N is a Kα-

number, s − α = s + (m − 2)q divides N − α = q(2m − 2). But gcd(s 

+ (m − 2)q, q) equals 1 or q. If gcd(s + (m − 2)q, q) = q, then this 

leads that q divides s which is not possible. Hence, gcd(s + (m − 

2)q, q) = gcd(s, q) = 1, and this implies that s + (m − 2)q divides 

2m − 2. But 2m − 2 = 2 + 2(m − 2) ⪇ s + (m − 2)q because s ≥ 2 

and q ⪈ 2, this gives a contradiction. Therefore, y ≥ 3. This leads 

that N − α = y(q − α) ≥ 3(q − α). Hence, α ≥  

Now, the case α < 0 is trivially as > 0. If 0 < α ≤ p, then 

α ≤ . Also, when p < α < N, then |p − α| ≤ |N − α| and 

α − p ≤ N − α, hence α ≤ . Also, when α ≥ N and as q < N, 

then α − q > α − N ≥ 0. But q − α divides N − α (N is a Kα-number), 

which implies that α − N = 0, and hence α = N. But by definition 

of the Korselt number, N ≠ α, a contradiction. Thus α < N. 

Example 4. Let N = 165 = 3 ∗ 5 ∗ 11. Here, q = 11 and p = 3. 

 

One application of Proposition 3 is that it can be used to find 

the Korselt set of numbers with 2, 3 and 4 prime factors after a 

deep understanding and analysis to this Proposition and 

converting it into stages and steps, we managed to build 

algorithm through clear sequential steps and converting it into a 

powerful program using MATLAB software shown in the next 

figure (Figure 1) where the input is any integer and the output is 

the KS of this number 

The next tables (Tables 1, 2, 3) contain some squarefree 

numbers N with their prime factorization (Pf) and KS(N). Results 

of the proposed algorithm are presented in the following tables. 

 

 

Figure (1): Flowchart represents the way to calculate the KS(N). 

Table (1): KS of squarefree numbers with 2 prime factors. 

 

Table (2): KS of squarefree numbers with 3 prime factors. 
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Table (3): KS of squarefree numbers with 4 prime factors. 

 

Also, to find all composite squarefree N ∈ [0, 1000] for any 

α, we constructed a new algorithm to count the number of Kα-

numbers, in addition to it’s value/s. The following flowchart 

(Figure 2) shows how to find them, which works in an opposite 

direction to find N by using α. 

Table 4 contains all existing composite squarefree Kα-

numbers of less than 1000 for α ∈ {−10, 20} 

A summary representing the number of Kα-numbers as α ∈ 

[−10, 20] is depicted in Figure 3, there is no clear tend for the 

number of Kα as α ∈ [−10, 20], making it difficult to describe the 

behaviour of number of Kα- 

 

Figure (2): Flowchart represents the way to find Kα-numbers for 

a specific α if exist. 

number, but the results of the algorithm totally agree with 

definition of Korselt numbers which illustrate the theory involved. 

 

Figure (3): Bar chart represents −10 ≤ α ≤ 20 with corresponding number of Kα-numbers of less than 1000 

Korselt Set of N = Pq and The Correction of [7, Theorem 14] 

In this section, a focus on the Korselt set of a product of two 

distinct prime numbers is introduced by repro- ducing paper [7]. 

During that, we were able to discover and verify the existence of 

a fundamental error in [7, Theorem 14(6)], and after a lot of 

research and expert- imenting with numbers, we were able to 

find an alternative theory that can be considered as a correction 

to 
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Table (4): All Kα-number of less than 1000 for all α ∈ {−10, 20}. 

 

the theory presented by both Echi and Ghanmi in their paper [7]. 

Throughout the section, p and q are prime numbers with p < q, q 

= ip + s such that i ≥ 1 and 1 ≤ s ≤ p − 1 and N = pq. The theme 

throughout this section is how are some conditions on p and q 

deter- mines KS(N). The next theorem was proved in [7], we 

provide it here to be used along with our new result at the end of 

this section in building algorithm that deter- mine α’s for which 

given positive integer is Kα as well as the korselt set of that 

integer. 

Theorem 5. [7] 

1. If q > 2p2, then KS(N ) = {p + q − 1}. 

2. If p2 − p < q < 2p2 and p ≥ 5, then KS(N ) ⊆ {ip, p + q − 1}. 

3. If 4p < q < p2 −p, then KS(N ) ⊆ {ip, (i+1)p, p+ q − 1}. 

4.  Suppose that 3p < q < 4p. Then the following conditions are 

satisfied: 

(a)  If q = 4p − 3, then the following properties hold: 

i. If p ≡ 1 (mod 3), then KS(N ) = {4p, q − p + 1, p + q − 1}. 

ii. If p ≠ 1 (mod 3), then KS(N ) = {q − p + 1, p + q − 1} 

except when p = 5, because in this case KS(N ) = {3p, q 

− p + 1, p + q − 1}. 

(b)  If q ≠ 4p − 3, then KS(N ) ⊆ {3p, 4p, p + q −1}. 

5.  Suppose 2p < q < 3p, then KS(N ) ⊆ {2p, 3p, 3q − 5p + 3, 

, q − p + 1, p + q − 1}. [7] 

The following examples illustrate the above-mentioned 

properties: 

Example 6. 1. Let N = 123 = 3 ∗ 41. Here, p = 3, q = 41 and 41 

> 2 ∗ 32 = 18. Therefore, KS(123) = {3 + 41 − 1} = {43}. 

2.  Let N = 185 = 5 ∗ 37. Here, p = 5, q = 37 and 52 − 5 = 20 < 

37 < 2 ∗ 52 = 50. Therefore, KS(123) ⊆ {7 ∗ 5, 5 + 37 − 1} = 

{35, 41}. 

3.  Let N = 217 = 7 ∗ 31. Here, p = 7, q = 31 and 4 ∗ 7 = 28 < 31 

< 72 − 7 = 42. Therefore, KS(217) ⊆ {4 ∗ 7, 5 ∗ 7, 7 + 31 − 1} 

= {28, 35, 37}. 

4.  Let N = 1387 = 19 ∗ 73. Here, p = 19, q = 73 where 73 = 4 ∗ 

19 − 3 and 19 ≡ 1 (mod 3). Therefore, KS(1387) = {4 ∗ 19, 

73 − 19 + 1, 19 + 73 − 1} = {76, 55, 91}. 

5.  Let N = 2047 = 23 ∗ 89. Here, p = 23, q = 89 where 89 = 4 ∗ 

23 − 3 and 23 ≠ 1 (mod 3). Therefore, KS(2047) = {89 − 23 

+ 1, 23 + 89 − 1} = {67, 111}. Note that in case p = 5, then q 

= 4 ∗ 5 − 3 = 17 which leads N = 85. Therefore, KS(85) = 

{3∗5, 17−5+1, 5+17−1} = {15, 13, 21} 

6.  Let N = 473 = 11 ∗ 43. Here, p = 11, q = 43 where 43 ≠ 4 ∗ 

11 − 3. Therefore, KS(473) ⊆ {3 ∗ 11, 4 ∗ 11, 11 + 43 − 1} = 

{33, 44, 53}. 

7.  Let N = 629 = 17 ∗ 37. Here, p = 17, q = 37 where 2 ∗ 17 = 

34 < 37 < 3 ∗ 17 = 51. Therefore, KS(629) ⊆ {2 ∗ 17, 3 ∗ 17, 

3 ∗ 37 − 5 ∗ 17 + 3, 37 − 17 + 1, 17 + 37 − 1} 

= {34, 51, 29, 35, 21, 53}. 

While reproducing paper [7] which is related to Korselt 

numbers of the form N = p ∗ q, we were able to introduce 

examples where Theorem 14(6) was not satisfied. Below are the 

result and the counterexample which ensures its mistake: 

The claimed mistaken result ([7, Theorem 14(6)]) is: 

Suppose that α be an integer and p < q < 2p. If α ∈ KS(N), 

then α ∈ (I(p, q) ∩ J(p, q)) ∪ {2p}, where 

 

The counterexample is: 

Example 7. Let N = 77. Here, p = 7, q = 11 and p < q < 2p 

 

hence, getting k = 1, 2, 5 and 10 which give I(7, 11) = {−3, 2, 5,  

6}. Also, 

 

hence, having l = 1, 2, 3 and 6 which gives J(7, 11) = {5, 8, 9, 

10}. Therefore, (I(p, q) ∩ J(p, q)) ∪ {2p} = {5, 1, 4}). Note that 

KS(77) = {5, 8, 9, 12, 14, 17}̸ ⊆ {5}. 



81 
An - Najah Univ. J. Res. (N. Sc.) Vol. 38 (2), 2024  An-Najah National University, Nablus, Palestine 

In the next theorem, we introduce a correction of 

aforementioned mistaken result along with it’s proof, and hence 

we overcome the detected mistake. 

Theorem 8. Suppose that p < q < 2p. Then, setting 

 

we have KS(N ) ⊆ {2p} ∪ I(p, q) ∪ J(p, q). 

Proof. The proof divided into two cases: 

Case1: p divides α. By [7, Lemma 7], α = p or α = 2p. But if α = 

p then i − 1 must divide p + s − 1 with q = ip + s, and here, i = 1 

that leads i − 1 = 0 which does not divide p + s − 1, hence, α = 

2p. 

Case 2: p doesn’t divide α, which means that gcd(p, α) = 1. By 

[7, Proposition 4(2)], then 

q − p + 1 ≤ α ≤ p + q − 1, 

so 

q − (p − 1) ≤ α ≤ p + (q − 1). 

By Proposition [7, Proposition 4(1)], gcd(q, α) = 1. Hence, 

by Proposition [7, Lemma 5(2)], q − α di- vides p − 1. Thus, p − 

1 = l(q − α) which implies α = q − p−1 l with a non-zero integer l. 

Also, by hy- pothesis, gcd(p, α) = 1. Hence, by [7, Lemma 5(3)], 

p − α divides q − 1 which yields α − p divides q – 1 Thus, q − 1 = 

k(α − p) which implies α = p + q−1 k with a non-zero integer k. 

Therefore, α ∈ {q − p−1 l1 , q − p−1 l2 , ..., q − p−1 ls } ∪ {p + 

q−1 k1 , p + q−1 k2 , ..., p + q−1 kt }, where (k1, ..., kt) are factors 

of q − 1 and (l1, ..., ls) are factors of p − 1. Hence, from case1 

and case2, it is concluded that α ∈ I(p, q) ∪ J(p, q) ∪ {2p}. 

Example 9. Let N = 77. Here, p = 7, q = 11 and 7 < 11 < 22. 

 

hence, getting k = 1, 2, 5 and 10 which gives I (7, 11) = {17, 12, 

9, 8}. Also, 

 

hence, having l = 1, 2, 3 and 6 which gives J(7, 11) = {5, 8, 9, 

10}. Therefore, KS(77) ⊆ (I(7, 11)∪J(7, 11))∪ {2 ∗ 7} = {17, 14, 

12, 10, 9, 8, 5}. 

In our final algorithm, we introduced a comprehend structure 

that takes N as an input and then selects only those values of N 

satisfying the condition N = p ∗ q where p and q are primes to 

obtain first, the cate- gory which the algorithm used to find α, 

secondly, the KS(N). This algorithm puts our new theorem along 

with the old mentioned ones in this article and is used to give a 

modified new table. The following diagram (Figure 4) illustrates 

the algorithm. 

Applying this algorithm on the values of N which is less than 

10000 and satisfying the condition N = p ∗ q, giving the outputs: 

The category and α ∈ KS(N ) which are presented in the next 

table (Table 5). 
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Figure (4): A flowchart representing the fast approach to calculate the KS(N) 
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Table 5: A collection of KS(N) for N = pq which are less than 

10000.

 

 

Finally, the complexity of the suggested algo-rithms are of 

orders O(N ) (linear running time); as the loop depends on N. An 

emphasis of the complexity was empirically proved through 

implementing the suggested modified algorithm with different 

values and measured corresponding elapsed times, the best 

regression repre- sentation was linear regression which 

complies with the O(N) complexity (See Figure 5). However, a 

compar- ison between the different methods for calculating the 

Korselt numbers is made by defining composite squar- free N 

from 1 to 10000 that have the form pq. Results showed that the 

way for calculating the Korselt number by checking all numbers 

between consumed more time 

rather than the proposed technique in this section, such that the 

first method needed 3.110 sec on a laptop with i7 processor, 

while the improved tech- nique consumed 0.618 sec. This gives 

us the right to say the modified technique is more efficient, 

although the program was not yet fully optimized for the time 

being. 

Summary 

•  This article for the first time introduces a set of algorithms 

implemented to enrich the literature with tables of Korselt 

relatively large numbers. In previous works, the authors 

provide tables with- out algorithms. Moreover, we expanded 

the set of tested numbers covering more than what the 

literature covered previously. 

•  While reproducing the different theorems and propositions in 

the literature, we detected an important mistake in [7, 

Theorem 14 (6)] and through a robust work, one original 

theorem is introduced by us to overcome the detected mis- 

take. 

•  Through preparing the proper algorithms and writing 

program, we modified a compounded al-gorithm which 

showed a remarkable performance compared to traditional 

ones. 
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Figure 5: The performance of the suggested algorithm. 
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