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Abstract: Cancer treatment is witnessing significant advancements with two notable therapies: Chimeric Antigen Receptor (CAR) T 

cell therapy and Bispecific antibody therapy. These therapies represent a shift towards more personalized cancer care. CAR T cell 

therapy modifies a patient's immune cells, known as T cells, to target and destroy cancer cells. This method has been effective in 

treating blood cancers like leukemia. However, it faces challenges when dealing with solid tumors, such as those in breast or lung 

cancer, and can sometimes cause severe side effects. Additionally, the complex environment of tumors poses a significant hurdle. 

Bispecific antibody (BsAb) therapy, in contrast, uses specially designed antibodies. These antibodies can attach to both cancer cells 

and immune cells, aiding the immune system in identifying and eliminating cancer cells. This approach is effective against both solid 

and liquid cancers but requires further refinement to enhance its effectiveness and safety. While both therapies have achieved 

remarkable successes, they also confront distinct challenges. CAR T cell therapy excels in treating blood cancers but struggles with 

solid tumors and managing side effects. Bispecific antibody therapy shows promise but needs more development to optimize its 

benefits. These therapies are at the forefront of a movement towards treatments that are more tailored to individual patients. Ongoing 

research aims to overcome their limitations, making them safer and more effective for a broader range of cancers. This review 

underscores the progress and obstacles of these innovative therapies. It highlights the ongoing pursuit of more precise, effective 

treatments that could revolutionize the future of cancer care. 
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Introduction 

Recent advancements in cancer therapy have shifted the 

focus from traditional methods like surgery, chemotherapy, and 

radiotherapy to immunotherapy, especially CAR T cell therapy. 

This approach uses genetically modified T cells with Chimeric 

Antigen Receptors (CARs) to target cancer cells independently 

of the Major Histocompatibility Complex (MHC) [1]. Proven 

effective in chemotherapy-resistant B-cell malignancies [2], CAR 

T cell therapy achieves notable remission rates. Its efficacy is 

underpinned by Adoptive Cell Transfer (ACT), wherein patients 

receive immunocompetent cells to target and destroy cancer 

cells, bypassing the constraints of conventional vaccine-based 

therapies [3]. 

In parallel, newer immunotherapies like bispecific T-cell 

enhancing antibodies and monoclonal antibodies against 

immune checkpoints CTLA-4 and PD-1 are showing promise 

across diverse cancer types [4-5]. CAR T cell therapies are 

particularly potent in blood cancers due to their self-amplifying 

and persistent nature. However, their effectiveness against solid 

tumours is still under investigation [3]. Recent trials in multiple 

myeloma treatment with CAR T cells are encouraging [6-7]. 

Another innovative approach is the use of Bispecific antibodies 

(BsAbs), which can target two antigens simultaneously. BsAbs 

are crucial in liquid tumours, like leukaemia’s and lymphomas, 

enhancing the precision of immunotherapy by linking immune 

cells to cancer cells [8-9]. They also show potential against solid 

tumours by disrupting the immunosuppressive tumour 
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microenvironment, improving tumour cell detection and 

elimination. Yet, optimization of BsAbs is necessary which 

involves a multifaceted approach encompassing improvements 

in specificity, binding affinity, immunogenicity, pharmacokinetics, 

tumour penetration, and resistance prevention for enhanced 

effectiveness [10]. Their dual-targeting ability marks a significant 

breakthrough in cancer immunotherapy, potentially reducing the 

dosage of therapeutic antibodies. 

To conclude, CAR T cell therapy and bispecific antibodies 

have revolutionized cancer treatment [13-14]. CAR T cells are 

particularly effective against B-cell malignancies but face 

challenges in solid tumours. Bispecific antibodies, conversely, 

target both liquid and solid tumours innovatively. These 

therapies signify a shift towards more personalized, effective 

cancer treatments, emphasizing the reprogramming of T cells 

and connecting immune cells to tumour cells. Continuous 

research and development are crucial, but their synergistic 

potential heralds a new, more targeted era in cancer therapy. 

CAR T cell therapy 

Origin and Development: Immunotherapy has significantly 

advanced cancer treatment, offering hope to patients with 

cancer. The foundation for CAR T cell therapy was laid in 1987 

by Dr. Yoshikazu Kurosawa and his team at Japan's Institute for 

Comprehensive Medical Science. They introduced the concept 

of a chimeric T cell receptor combining antibody-derived variable 



 

2/16 
Saritha Medapati, et al.                Revolutionizing the treatment of cancer using CAR T Cells and Bispecific Antibodies 

regions (VH/VL) with T cell receptor (TCR)-derived constant 

regions. Their study showed that these receptors, when 

expressed in murine T-cell lymphoma EL4 cells, could trigger a 

response to antigens, marking a significant breakthrough in 

understanding the immune system's role in combating cancer 

[11]. In 1989, Israeli immunologist Zelig Eshhar proposed 

reprogramming T cells to recognize antigens independently of 

the major histocompatibility complex (MHC). This concept led to 

the development of Chimeric Antigen Receptors (CARs) in the 

early 2000s. CARs revolutionized cancer immunotherapy by 

enabling T cells to target specific tumour antigens. This 

breakthrough has transformed cancer treatment, illustrating the 

impact of foundational research on medical innovation [12]. They 

developed a chimeric T-cell receptor (cTCR) fusing the variable 

regions of an anti-2,4,6-trinitrophenyl (TNP) antibody with TCR 

constant regions. This innovation allowed T cells to recognize 

antigens independently of MHC molecules, a crucial step 

forward. Eshhar's team overcame initial challenges of low co-

transduction efficiency by creating a single-chain chimeric 

receptor, the first-generation CAR, linking the scFv antigen-

binding domain to an intracellular signalling domain. This design 

preserved the specificity and affinity of the original antibody [13]. 

Initial clinical applications in 2005 for metastatic renal cell 

carcinoma and ovarian cancer revealed safety concerns and 

uncertain therapeutic benefits [11]. However, the landscape 

changed dramatically with the introduction of anti-CD19 CAR T 

cells, which demonstrated remarkable efficacy in treating 

lymphomas and leukaemia. These successes at the NCI and the 

University of Pennsylvania marked a pivotal point in the therapy's 

evolution [1]. The development of CAR T cell therapy in the USA 

catalysed its global expansion, underscoring the vital 

contributions of these early studies to the field of immunotherapy 

[14]. CAR T cell therapy, a revolutionary cancer treatment, 

utilizes engineered T-cells with Chimeric Antigen Receptors 

(CARs). These receptors target tumour cells with high specificity. 

A CAR comprises an extracellular antigen recognition domain, a 

transmembrane domain, and an intracellular T cell activation 

domain, combining precision targeting with effective immune 

response [15-16]. 

The extracellular domain begins with a signal peptide, 

leading the protein into the endoplasmic reticulum, followed by 

an antigen recognition section. This section includes a single-

chain Fragment variant (scFv), formed by linking heavy and light 

immunoglobulin chains [16-17]. A spacer, typically from the IgG1 

hinge region, connects this to the transmembrane domain, which 

is vital for receptor stability and commonly uses the CD28 

transmembrane domain [15-17]. The intracellular domain, 

primarily comprising the CD3ζ component, is critical for initiating 

T cell responses upon antigen detection, thus playing a pivotal 

role in activating the immune response against cancer cells [16]. 

CAR T cell technology has evolved significantly since the first-

generation CARs developed between 1989 and 1993, which had 

limited efficacy without additional IL-2 [18-19]. Subsequent 

generations have seen improvements in T-cell antitumor activity 

and in vivo persistence. Notably, the fourth-generation CARs, 

known as TRUCKs, have elevated antitumor efficacy and 

cytokine activity [14]. Research in CAR T cell therapy is 

continually evolving. Techniques such as CRISPR and the 

development of smart T cells are being explored to enhance 

safety and efficacy [20-23]. The optimal mix of costimulatory 

signals, including CD28 [14], ICOS, OX40, and 4-1BB, is an area 

of active research, with 4-1BB showing promise in improving 

CAR T cell persistence [25-27]. 

 

Figure (1): Details the structural progression across five CAR T cell generations and their targets on tumour cells. The first-generation focuses on the CD3ζ 

component. The second and third generations introduce and combine additional signalling elements like CD28 and 4–1BB. Fourth-generation CARs, or 

TRUCKs, incorporate genetic modifications for enhanced cytokine secretion. The fifth generation adds a novel intracellular domain, including truncated cytokine 

receptor domains, to further refine targeting and effectiveness (A Z Mehrabadi et al., Biomedicine& Pharmacotherapy 2022,146) [28]. 

Engineering CAR T cells, target recognition and tumour 

cell killing: CAR T cell therapy, a ground-breaking treatment, 

stands out for its self-replicating and persistent nature in 

patients. This process, depicted in Figure 2, starts with isolating 

T cells from the patient or a donor's blood. These cells are then 

activated and genetically altered to express the CAR construct 

[14]. After this modification, the CAR T cells undergo expansion 

outside the body, leading to the formation of the final therapeutic 

product. The patient typically receives this product via infusion 

after conditional chemotherapy [14]. 
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Figure (2): The initial step of CAR T cell generation involves harvesting immune cells through leukapheresis. Post-harvesting, T cells are isolated, activated, 

expanded, and then undergo gene transfer via a viral vector to express CARs. To increase the quantity of these modified T cells, they are cultivated in a 

bioreactor. Finally, they are harvested and infused into the patient, usually following lymphodepletion conditioning chemotherapy (KatarzynaS et al., Archivum 

Immunologiae et Therapiae Experimentalis 2020,68[6)) [29]. 
CAR T cells are classified as autologous, derived from the 

patient's own blood, or allogeneic, obtained from a healthy 

donor. Regardless of their source, these cells are engineered to 

express an artificial T cell receptor, enabling them to target 

disease-related cells without relying on Major Histocompatibility 

Complex (MHC) engagement [14]. CARs are synthetic proteins 

designed to direct T cells toward tumour cell surface molecules, 

independent of T cell receptor (TCR) - MHC interactions [30-31]. 

Introduced typically via gene transfer, CARs incorporate a 

mouse-derived monoclonal antibody-based single-chain 

variable fragment (scFv) for antigen recognition. These scFvs, 

connected by an extracellular spacer, bind to specific epitopes 

and trigger activation signals through intracellular domains [32]. 

Once introduced to peripheral blood-derived T cells and 

expanded in culture, these CAR T cells are used to detect and 

eliminate tumour cells expressing the target antigen [33-34]. 

Targeting a broad spectrum of tumour cell surface molecules, 

including proteins, carbohydrates, and glycolipids, is a key 

feature of CARs. The interaction between CAR and its target 

creates immune synapses, leading to direct cytotoxicity against 

tumour cells. The effectiveness of this approach hinges on the 

selected antigen being abundantly present on the tumour cells 

[35]. 

CARs are engineered constructs that bind specific cell 

surface antigens, using a scFv for recognition [36]. The initial 

generation of CARs fused a ligand recognition domain with the 

CD3 zeta (3ζ) chain, comprising an extracellular hinge and a 

transmembrane domain. This design enables the CD3ζ chain to 

autonomously signal T cell activation via phosphorylation of 

ITAMs by the lymphocyte-specific protein tyrosine kinase (Lck). 

Later generations of CARs incorporated additional signalling 

endodomains, such as CD28, CD137 (4-1BB), and inducible T 

cell co-stimulator (ICOS), to mimic antigen-presenting cells' co-

stimulatory signals during T cell receptor engagement [37]. 

Advanced CAR T cells, like the fourth and fifth generations, 

include cytokine receptor domains and induce inflammatory 

cytokines, like interleukin-12 (IL-12) or IL-18, enhancing their 

efficacy against both solid and liquid tumours. 

Clinical applications: The evolution of anti-cancer therapy 

has historically relied on four primary treatments: surgery, 

radiation, chemotherapy, and immunotherapy. A notable 

advancement occurred at the University of Pennsylvania and 

Children’s Hospital in Philadelphia, where researchers Carl 

June, David Porter, and Stephan Grupp pioneered CAR T cell 

therapy in 2011 and 2012. Initially applied to chronic lymphocytic 

leukemia and acute lymphoblastic leukemia (ALL), this approach 

has shown significant success over the past decade, especially 

in treating B cell ALL and non-Hodgkin lymphoma (NHL) [18, 38-

40]. CAR T cells, which are genetically modified autologous T 

cells equipped with chimeric antigen receptors, excel at 

recognizing cell surface epitopes without HLA dependence. 

They are designed to specifically bind to antigens like CD19 and 

feature optimized T cell activation and co-stimulatory domains 

[41]. Recent advances in CAR-T therapy signify a new era in 

cancer treatment, demonstrating substantial progress in 

hematologic malignancies, including lymphoma and leukemia, 

and showing promising results in solid tumours like 

glioblastomas and neuroblastoma [42]. Additionally, adapting 

chimeric antigen receptors to natural killer (NK) cells is emerging 

as a potential cellular immunotherapy approach, effective in 

targeting cancer cells [43]. 

CAR T cell therapy is under active investigation for solid 

tumours and various diseases. For instance, mesothelin-specific 

CAR mRNA-engineered T cells show potential against solid 

malignancies [44]. Novel applications, such as HLA-A2-specific 

CARs, are being explored in organ transplants [45] and 

preclinical studies for targeting the 5T4 tumour antigen in ovarian 

cancer [46]. A key advantage of CAR T cell therapy is its rapid 

administration, typically involving a single infusion and requiring 

only 2–3 weeks of patient observation. This approach facilitates 

long-term CAR T cell persistence in the body, combatting cancer 

relapse effectively [47-48]. FDA-approved therapies like CTL019 

(Kymriah), KTE-C19 (Yescarta), and JCAR015, which target 

CD19, are examples of successful CAR T cell treatments on the 

market [49-52]. As of April 2023, six approved CAR T cell 

therapies have shown remarkable efficacy against B-cell 

malignancies and multiple myeloma [13]. 

However, applying CAR T cell therapy to solid tumours 

presents unique challenges, with responses not as robust as 

those seen with CD19 CAR T cells [53]. Solid tumours create 
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complex obstacles, such as genetic instability, hindered CAR T 

cell trafficking, and immunosuppressive microenvironments. 

Additionally, "on-target off-tumour" reactions can cause rapid 

adverse effects [54]. To overcome these challenges, innovative 

strategies are being developed, including inhibitory CARs 

(iCARs) and logic-gated CARs [55]. Enhancing CAR T cell 

performance can also be achieved by incorporating chemokine 

receptor genes that match tumour-produced chemokines, like 

CCR2b in CCL2-secreting neuroblastoma cells, and by arming 

CAR T cells with enzymes like heparinase to degrade the 

basement membrane [56]. Combining CAR T cell therapy with 

immunomodulatory agents such as checkpoint inhibitors, 

cytokines, and small-molecule antagonists is another approach 

showing potential for synergistic antitumor responses [57]. 

Efficacy and safety: Research on CAR T cell therapy, a 

ground-breaking cancer treatment, started almost twenty years 

ago. Initially, trials targeted ovarian cancer and renal cell 

carcinoma. Remarkable results were observed in some patients 

with neuroblastoma and follicular lymphoma. By 2016, the 

volume of clinical trials expanded significantly to 220, primarily in 

the USA and China, with an emphasis on treating blood cancers 

[14, 58]. A major advancement occurred with the FDA’s approval 

of Cellectis’ UCART123 for allogenic CAR T cell trials, which use 

donor-derived cells [59-60]. In trials for CD19 CAR T cells, which 

are engineered to attack cancer cells expressing the CD19 

protein, 67% of acute lymphoblastic leukemia (ALL) patients and 

82% of non-Hodgkin lymphoma (NHL) patients showed a 

positive response. At 9 months, 40% of ALL patients maintained 

this response. However, these promising results came with 

serious side effects like cytokine release syndrome (CRS) and 

neurotoxicity, which significantly affected patient health [61-62]. 

CRS leads to an overwhelming release of cytokines, causing 

symptoms such as high fever and low blood pressure. Treatment 

strategies for these side effects include the use of tocilizumab 

and intensive care support. Still, the recurrence rate remains 

high, with over half of the patient’s experiencing cancer return, 

and 30-50% relapsing within a year [62]. The challenges in 

treating patients without CD19 expression and those with solid 

tumours highlight the need for new approaches in B cell cancer 

therapies [63]. CAR T cell therapy can also cause severe CRS, 

leading to symptoms like fever, chills, and breathing difficulties 

[64]. With increasing experience, healthcare professionals are 

improving in both detecting and managing CRS. Neurological 

issues, including headaches, confusion, seizures, and speech 

problems — collectively known as immune effector cell–

associated neurotoxicity syndrome (ICANS) — are also 

prevalent, though their exact cause is not yet fully understood 

[64]. Other side effects of CAR T cell therapy include allergic 

reactions, changes in blood mineral levels, weakened immunity, 

increased infection risk, low blood cell counts, fatigue, and 

bruising [65]. A critical condition, tumour lysis syndrome (TLS), 

can arise from rapid cancer cell breakdown following therapy or 

lymphodepleting chemotherapy, potentially causing arrhythmias 

and renal failure. Preventive measures for TLS in patients with 

high tumour burdens include adequate hydration and the use of 

hypouricemic agents [66-70]. 

Future directions: CAR T therapy, known for its impressive 

treatment outcomes, faces challenges such as limited response 

durability, leading to relapse rates as high as 66% [71]. 

Addressing this, recent advancements in immunology and 

molecular engineering have led to the development of next-

generation CAR T cells. These incorporate diverse mechanisms, 

including additional costimulatory domains, cytokine secretion 

induction, and immune checkpoint modulation. These strategies 

aim to enhance malignant cell elimination [71-73]. Third-

generation CAR T cells show variable efficacy, but immune 

checkpoint modulation, particularly in PD-L1 malignancies, has 

achieved response rates up to 78% [74-75]. Similarly, TRUCK 

CAR T cells, which utilize cytokines, have shown promising yet 

varied response rates, ranging from 0% to 100% [31, 76-78]. 

Such advancements are pivotal in improving therapies for both 

solid and liquid tumours, including CAR T-cell and BsAbs 

treatments. 

Bispecific Antibody therapy 

Overview and Development: BsAbs represent a significant 

advancement in cancer therapy. Their dual targeting ability 

enhances tumour treatment effectiveness. BsAbs exist in various 

formats such as quadroma, F(ab')2, diabodies, tandem 

diabodies, and single-chain variable fragments (scFv), detailed 

in Figure 3. Previously, antibody engineering faced challenges, 

leading to the development of the Knobs-into-Holes 

heterodimerization technique for CH3 domains by Carter and 

colleagues at Genentech in 2016. This method, while innovative, 

encountered issues like shared light chain usage and 

glycosylation problems. Advanced recombinant DNA 

technologies subsequently addressed these challenges, 

facilitating the production of diverse antibody forms including 

single-chain tandem Fv bispecific and scFv. According to [79], 

these forms enhance binding characteristics, improving 

specificity and affinity, and broadening application scope. 

 
Figure (3): illustrates a conventional antibody, Immunoglobulin G (IgG), and its genetically modified variants (P M Lopez et al.,Cancers 2022,14[17))[80]. 
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IgG, the most common antibody in human serum, has four 

subclasses [IgG1-4). Its structure, comprising two light and two 

heavy chains, forms a Y-shaped configuration. This arrangement 

includes three protein segments connected by a hinge region 

[81], each segment showing symmetry with two fragment 

antigen-binding (Fab) regions and one fragment crystallizable 

(Fc) region [82]. The Fab domain, containing hypervariable 

regions from heavy and light chains, mediates antigen binding 

[83]. Understanding antibody architecture and isotypes is vital for 

bispecific antibody design. Figure 4 showcases antibody 

isotypes such as IgA, IgG, IgM, IgD, and IgE. Bispecific 

antibodies are categorized into non-IgG-like, lacking Fc 

fragments, and IgG-like, incorporating Fc fragments [84]. 

 

Figure (4): Human antibodies are categorized into five primary isotypes: IgG, IgA, IgM, IgE, and IgD. These isotypes are further divided into subclasses. 

Despite their diversity, all isotypes share a common structural layout. This layout includes two heavy and two light chains, which are connected by disulphide 

bonds. The chains comprise a variable domain (VH and VL) and constant domains (CH1, CH2, CH3, and CL). Antibodies function through two subunits: The 

Fab, which is responsible for specific antigen binding, and the Fc, which activates effector functions (Vukovic N et al., Clinical and Experimental Immunology 

2020,203[3))[85].

The concept of BsAbs has evolved over more than five 

decades, with origins tracing back to the pioneering work of 

Nisonoff and colleagues [86]. These early researchers provided 

insights into antibody architecture. Unlike natural antibodies, 

BsAbs are primarily created using techniques such as 

recombinant DNA or cell-fusion technology. Initially, their design 

aimed at applications like redirecting T cells towards cancer 

targets. They were also used for binding simultaneously to 

tumour cells and an activating Fcγ receptor. The production 

methods of BsAbs have seen significant evolution. In their early 

stages, BsAbs were created using methods like manipulating 

monoclonal antibody hinge cysteines and through hybridoma 

fusion. A transformative shift in BsAbs production occurred with 

the advent of recombinant DNA technology [86]. This technology 

marked a new era in BsAbs development. Although the concept 

of BsAbs emerged in the 1960s, it wasn't until the 1980s that the 

first monoclonal BsAbs were successfully developed [87]. The 

early 1990s witnessed the documentation of their therapeutic 

applications. Over the last decade, there has been a surge in 

publications dedicated to BsAbs, indicating growing interest in 

their therapeutic potential [87]. This increased interest in BsAbs 

has led to significant milestones in their therapeutic application. 

In 2009, catumaxomab received approval for therapeutic use. It 

was followed by the approval of blinatumomab in 2014. These 

approvals were pivotal advancements in the field of bispecific 

antibody therapy, marking the beginning of a new chapter in 

medical treatment and research [87]. 

Mechanism of action: BsAbs are advanced therapeutic 

proteins used in cancer treatment. Their function hinges on 

connecting immune cells to cancer cells, thus triggering an 

immune response against the cancer [88]. BsAbs are uniquely 

designed with dual binding sites: one targets cancer-specific 

markers, and the other latches onto immune cells. This dual 

targeting is crucial for directing the immune attack on cancer 

cells [89]. The effectiveness of BsAbs lies in creating an 

'immunological synapse,' a link between cancer and immune 

cells [90]. There are two types: bispecific T cell engagers (BiTes) 

and immune effector cell-engaging bispecific antibodies (ICEs). 

BiTes connect T cells to cancer cells, while ICEs target various 

immune cells, like T cells or NK cells, to destroy cancer cells 

effectively [91]. 

Function of BiTes and ICEs: BiTes consist of two specific 

parts: one binds to cancer markers, and the other to the CD3 

complex on T cells. This configuration directs T cells to attack 

cancer cells. Similarly, ICEs are tailored to bind specific immune 

cells, facilitating a targeted attack on cancer cells (Figure 5). 
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Figure (5): Tumour cell elimination involves using a therapeutic protein derived from antibodies to tag the cells. Effector cells are then recruited for the 

elimination process, which can occur through various mechanisms like ADCC, ADCP, or cytotoxic T-cell reactions. The agents involved include a monoclonal 

antibody, a chemically linked bispecific F(ab)2, and a recombinant bispecific tandem single-chain Fv-fragment (bsscFv) (Stein C et al., Antibodies1(1) 2012)[92]. 

BsAbs also interact with Fc receptors on immune cells and 

activate checkpoints like CTLA-4 and PD-1/PD-L1 (Figure 6). 

This interaction enhances the immune cells' ability to induce 

cancer cell death and inhibit tumour growth, underscoring the 

potential of BsAbs in cancer therapy [93-94]. 

 

Figure (6): T-cell activation requires two signals. Post-activation, CTLA-4 can inhibit T-cell responses, but anti-CTLA-4 antibodies lift this inhibition, enhancing 

T-cell activity. Similarly, PD-1 on T-cells, when interacting with PD-L1 and PD-L2, generally suppresses their response. Anti-PD-1 antibodies help overcome 

this, boosting T-cell function in targeting cancer. This summary focuses on the roles of CTLA-4 and PD-1 in T-cell regulation, vital for understanding cancer 

immunotherapy (P Momtaz et al., Taylor& Francis 2014) [95]. 

Clinical applications: Bispecific antibodies (BsAbs) have 

significantly expanded the therapeutic landscape of cancer 

immunotherapy, demonstrating remarkable efficacy across 

various malignancies, including multiple myeloma [96]. Notably, 

blinatumomab has received FDA and EMA approval for treating 

refractory or relapsed pre-B cell acute lymphoblastic leukemia 

(pre-B-ALL) in both adults and children [97-101]. BsAbs also 

hold promise in targeting specific markers such as HER2 in 

breast and gastric cancers, PSMA in prostate cancer, and 

glypican 3 (GPC3) in liver, lung, and other cancers [102]. 

Immunotherapy has become a pivotal component in cancer 

treatment, alongside traditional modalities like surgery, radiation 

therapy, and chemotherapy, offering transformative potential 

[103]. Combining antibodies with adoptive cellular therapy and 

vaccination is gaining attention for its synergistic effects in 

cancer treatment [104-105]. BsAbs, with their ability to engage 

two distinct epitopes, are advancing cancer diagnostics and 

therapy, demonstrating enhanced efficacy and cost-

effectiveness compared to using twoseparate monoclonal 

antibodies. This progress is exemplified by the FDA's approval 

of blinatumomab for B-cell precursor acute lymphoblastic 

leukemia and amivantamab for non-small cell lung cancer, 

reflecting the evolution of immunotherapy [106]. Addressing the 

challenge of treating lymphoid malignancies highlights the 
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importance of integrating personalized therapy with bispecific 

antibodies and immune checkpoint inhibitors [107]. Particularly 

in lymphoid neoplasms, bispecific antibody immunotherapy 

stands out as a potent strategy [108]. Notably, bispecific 

antibodies with lower CD3 affinity have shown promise in 

eliminating tumour cells and reducing cytokine release syndrome 

(CRS) in prostate cancer, signifying significant progress [109]. In 

the context of glioblastoma multiforme (GBM), targeting 

EGFRvIII with T-bispecific antibodies is emerging as a promising 

approach. However, effective systemic delivery across the 

blood-brain barrier (BBB) remains a challenge [110-111]. 

Comparative analysis with other therapies: In the realm 

of bispecific antibody therapies, addressing challenges such as 

immunogenicity and endogenous biotin interference is crucial. 

One leading strategy is Pretargeted Radioimmunotherapy 

(PRIT) using nonimmunogenic human or humanized antibodies, 

which effectively reduces problems associated with 

immunogenicity and biotin interference. An example of this 

approach is the HER2 T-cell-dependent bispecific antibody 

(TDB), featuring low-affinity HER2 arms that improve tumour 

targeting and offer better tolerability compared to HER2-targeted 

CAR-T cell therapies, as supported by clinical data [112]. On the 

other hand, the SA-biotin method, while effective, faces 

significant immunogenicity issues due to streptavidin (SA). This 

pose concerns for repetitive use in therapy cycles. Strategies to 

mitigate this include developing genetically engineered SA 

variants with reduced immunogenicity and designing mutant SA 

molecules. These mutants bind less to endogenous biotin while 

maintaining high affinity for synthetic radio-biotin ligands, as 

explored in various studies.Furthermore, bispecific antibodies 

demonstrate superior selectivity and efficacy compared to 

monoclonal antibodies, particularly in treatments requiring high 

specificity like antibody-drug conjugates (ADC) and CAR T cell 

therapy. By targeting multiple antigens, they enhance 

effectiveness and minimize toxicity, a significant advantage 

highlighted in recent research [113]. 

Efficacy and Safety: Cancer immunotherapy, such as 

ipilimumab targeting CTLA-4, a protein that regulates immune 

responses, presents unique challenges compared to 

conventional treatments [114]. Despite the potential of BsAbs in 

cancer treatment, they can cause immune-related adverse 

events (irAEs), including elevated cytokine levels, which are 

overproductions of immune system proteins [87]. Strategies like 

premedication and gradual dose increases are proposed to 

manage these irAEs [115], offering insights into treating immune-

mediated diseases [116]. New BsAbs, notably AFM13 targeting 

CD30/CD16A, show promise in reducing irAEs [116]. This 

antibody connects to both cancer and immune cells, potentially 

enhancing cancer cell destruction. Combining T-bispecific 

antibodies with anti-PD1 monoclonal antibodies—

immunotherapies that block PD-1 proteins on T-cells to 

strengthen immune responses—has shown increased T-cell 

activity in preclinical studies [117-118], indicating a robust 

approach in cancer therapy [10]. In a study involving PF-

06863135 (PF-3135), a bispecific humanized monoclonal 

antibody, results from 23 patients indicated one complete 

response, two minimal responses, and nine cases of stable 

disease, mostly with manageable side effects. However, six 

patients experienced grade 3 CRS [119]. 

Blinatumomab, evaluated in three studies for 

relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL), 

a type of lymphatic system cancer, showed specific dosing and 

response effectiveness [120]. Likewise, REGN5458, a bispecific 

antibody, displayed potential in treating multiple myeloma, a 

white blood cell cancer, in preclinical studies [121]. 

Catumaxomab has been effective against malignant ascites in 

epithelial cancers. Duligotuzumab, or MEHD7945A, 

demonstrated encouraging outcomes in treating head and neck 

squamous cell carcinoma, with a different side effect profile 

compared to cetuximab [122]. Additionally, combining 

blinatumomab with a tyrosine kinase inhibitor, a medication 

blocking enzymes in cancer cells, showed effectiveness in 

certain leukemia cases [123]. Lastly, FBTA05 showed positive 

responses in paediatric recurrent or refractory B-cell 

malignancies, types of cancer affecting specific white blood cells, 

with documented side effects [124]. 

Adverse effects: Common Adverse Events (AEs) of 

Bispecific Antibodies: This study highlights several side effects 

common in bispecific antibody therapy, a cancer treatment 

method. Patients often experience lymphopenia, pyrexia, 

elevated C-reactive protein, fatigue, leukopenia, weight gain, 

and headaches. Notably, transient blood disorders are common, 

with febrile neutropenia occurring in 3% of patients [125]. 

Cytokine Release Syndrome (CRS): A notable adverse 

effect of T-cell-engaging immunotherapies, including bispecific 

antibodies and chimeric antigen receptor T-cell therapies, is 

CRS. This condition, marked by a systemic inflammatory 

response, can be triggered by infections, drugs, or biological 

therapies, and manifests in symptoms like fever, nausea, and 

fatigue [126]. 

Hematologic Abnormalities: The report emphasizes the 

importance of monitoring blood-related abnormalities in patients 

undergoing bispecific antibody treatment. These include 

thrombocytopenia, lymphopenia, anaemia, and neutropenia, 

crucial for managing the safety of patients with both solid and 

liquid tumours [125]. 

Future directions: BsAbs, particularly effective in treating 

hematologic malignancies due to their clinical efficacy and 

manageable toxicity, are facing challenges that require 

addressing [108]. To optimize their use, there is a need for 

simplifying BsAbs structures, streamlining production, selecting 

synergistic target pairs, engineering non-immunogenic BsAbs, 

and developing strategies to minimize adverse effects. Notably, 

the potential of BsAbs extends beyond hematologic 

malignancies, with ongoing research exploring their applications 

in solid tumours [108]. The insights gained from their use in 

hematologic malignancies are anticipated to enhance treatments 

for solid tumour patients. A significant trend in the field is the 

rapid expansion of BsAbs in the pipeline, with many expected to 

enter the market in the next 3-5 years [113]. This marks a period 

of accelerated advancement, poised to transform cancer 

therapy. Furthermore, the field is evolving towards the 

development of multispecific antibodies, such as trispecific and 

tetraspecific antibodies, derived from BsAbs. These innovative 

antibodies offer enhanced selectivity and efficacy, presenting a 

promising direction for cancer treatment [113]. In the realm of 

next-generation cancer therapies, bispecific antibodies stand 

out, offering new, more effective, and targeted treatment 

strategies [127]. The continuous research and development of 

BsAbs are crucial for improving outcomes in both hematologic 

malignancies and solid tumours [127]. 

Combination therapies: The Hyper-CVAD chemotherapy 

regimen, comprising Cyclophosphamide, Vincristine, 

Doxorubicin, and Dexamethasone, is a cornerstone treatment for 
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newly diagnosed B-cell acute lymphoblastic leukemia (B-ALL) 

patients [128]. An innovative approach being explored is the 

combination of Hyper-CVAD with blinatumomab in a phase 2 

study for newly diagnosed adult B-ALL patients [129]. This 

protocol involves four cycles of Hyper-CVAD followed by four 

cycles of blinatumomab, representing a strategic effort to 

enhance B-ALL treatment outcomes. This combination 

leverages Hyper-CVAD's established efficacy and 

blinatumomab's novel therapeutic potential, underscoring the 

commitment to advancing treatment options for B-ALL patients 

[129]. 

Comparative Analysis 

Liquid tumours: CAR T cell therapy has significantly 

advanced the treatment of hematologic malignancies, especially 

B cell neoplasms like diffuse large B-cell lymphoma (DLBCL) 

and follicular lymphoma [130]. These therapies are crucial for 

cases resistant to or relapsed after standard treatments, 

including immunochemotherapeutic and transplantation. For 

instance, CTL019, targeting CD19 in B-cell cancers, achieves 

high response rates and durable remissions, boosting immune 

recovery in many patients. However, about 33% of patients 

experience transient encephalopathy and 20% face severe 

cytokine-release syndrome [40]. This data, from a study backed 

by Novartis (ClinicalTrials.gov number, NCT02030834), 

underlines the efficacy of this therapy in certain hematologic 

malignancies. In DLBCL, the therapy response rate is 66%, with 

a 3-year event-free survival rate of about 20% post-rituximab 

autologous stem-cell transplant. Follicular lymphoma shows a 

20% early relapse rate post-rituximab treatment, with a 50% 5-

year survival rate. In refractory or relapsed cases, treatments like 

idelalisib or copanlisib yield median response durations of 10.8 

and 12.2 months, respectively [131-132]. CD19-targeted CAR T 

cells are particularly promising for B-cell cancers [133-136]. 

CAR T-cell therapy's side effects, including cytokine-release 

syndrome and neurotoxicity, are notable [40]. Severe cytokine-

release syndrome can be managed with tocilizumab [135]. 

Neurological effects range from mild disturbances to severe 

encephalopathy. Patients with progressive or unresponsive 

DLBCL or those relapsing post-transplantation, have a response 

rate of 20-30% and a median survival of about 6 months [137]. 

Refractory follicular lymphoma patients treated with idelalisib 

post-rituximab have a 22% 2-year survival rate [131]. BsAbs like 

Blinatumomab, are effective in Relapsed/Refractory Multiple 

Myeloma (RRMM) and B-cell precursor ALL, achieving a 32% 

complete remission rate in adult ALL treatment [138] and 

showing promise in minimal residual disease [139]. 

Daratumumab, another BsAbs, demonstrates anti-myeloma 

activity with minimal cytokine release [140], though concerns 

about toxicity remain. BsAbs can be used immediately, unlike 

CAR T cell therapy, but may be less effective due to the lack of 

T-cell co-stimulation [97, 141-142]. CAR T cell therapy's Overall 

Response Rates (ORR) are higher than BsAbs in RRMM and B-

ALL [143-146]. Blinatumomab retreatment in B-ALL has a 36% 

ORR, with ongoing trials examining CAR T cell retreatment 

feasibility [147]. Current research is exploring BsAbs in early-

stage Multiple Myeloma therapy and combating drug resistance, 

with clinical trials investigating combinations of various 

immunotherapies. 

Solid tumours: Blinatumomab (CD3xCD19), a BsAbs 

approved by the FDA, effectively treats haematological cancers, 

especially B-cell malignancies. It achieves over 40% in complete 

or partial responses, enhancing survival rates in these diseases 

[97, 148-149]. Flotetuzumab (CD3xCD123 BsAbs) shows a 30% 

response rate in acute myeloid leukemia [150], while 

epcoritamab (CD3xCD20 BsAbs) demonstrates high efficacy in 

early studies, with a 44% complete response in DLBCL or 

HGBCL and 100% partial response in FL patients [151-153]. 

However, CD3-BsAbs show limited effectiveness in solid 

tumours, underscoring the need for more research, particularly 

in comparing their efficacy to CAR T-cell therapies in these 

tumours [154]. 

In ovarian cancer, CAR T-cell therapies targeting antigens 

like TAG72, MUC16, Her2, Meso, 5T4, and FRα have shown 

promise. TAG72-specific CAR T cells reduce tumour growth and 

enhance survival in preclinical mouse models [155]. MUC16-

CAR T cells achieve complete regression of ovarian cancer in 

these models. Additionally, CAR T cells targeting Her2, Meso 

[156], 5T4 [46], and FRα [157] effectively inhibit ovarian cancer 

cell growth [154]. In breast cancer, HRG1β-based CAR T cells 

target HER family receptors to combat resistance [158], and 

human anti-HER2 CAR T cells destroy HER2-overexpressing 

cells [159]. Mesothelin-targeting CAR T cells are also being 

developed for breast cancer. In prostate cancer, PSMA-targeted 

CAR T cells show significant cytotoxicity [160], with clinical trials 

confirming their safety and efficacy in advanced cases [161]. 

Renal cell carcinoma treatments include CAR T cells targeting 

CA-IX [162-163], effective under hypoxic conditions [164]. In 

gastric cancer, bi-specific Trop2/PD-L1 CAR T cells exhibit 

strong efficacy [165], with ongoing research into CAR T cells 

targeting Claudin18.2, NKG2D, FOLR1, HER2, and ICAM-1 

[166-170]. CAR T cells also show potential in pancreatic [171] 

and liver cancers, targeting antigens like CEA, glypican-3, 

mucin-1, and carcinoembryonic antigen [172-173]. However, 

treating solid tumours with CAR T cell therapy is challenging 

compared to blood cancers. Solid tumours, often confined to a 

single organ, have diverse and evolving antigens and are 

surrounded by immunosuppressive environments that hinder 

CAR T cell migration, unlike blood cancers [174]. 

The amalgamation of CAR T cell therapy with additional 

therapeutic modalities: The integration of CAR T cell therapy 

with additional treatments represents a promising strategy for 

enhancing its efficacy against tumours. This novel approach 

combines CAR T cells with supplementary therapeutics, 

particularly beneficial in addressing solid tumours [174]. 

Incorporating CAR T cells with existing drugs opens new 

therapeutic avenues. Current clinical treatments often do not 

include adoptive cell therapy (ACT), but combining these 

methods necessitates understanding drug-immune system 

interactions. A notable example is lenalidomide, which has 

shown significant antitumor effects in multiple myeloma. When 

used in conjunction with CAR T cells, lenalidomide amplifies T 

cell infiltration and boosts IFNγ production and cytotoxicity. This 

synergy led to complete remission in treated mice, highlighting 

the potential of this combined therapy for managing solid 

tumours. 

Overcoming physical barriers to achieve tumour 

localization: CAR T cells, a type of cancer therapy, face two 

main challenges in treating solid tumours. First, they must 

penetrate the tumour’s dense structure, primarily made of 

fibroblasts and myeloid cells. These cells create a fibrous 

network called the extracellular matrix (ECM), which acts as a 

barrier. Wang et al. developed FAP-CAR T cells, which target 

and reduce fibroblasts, easing the way into the tumour and 

slowing its growth. Second, once inside, CAR T cells encounter 
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the tumour microenvironment (TME), a space that suppresses 

the immune system. This environment contains elements like 

regulatory T cells (Tregs), myeloid-derived suppressor cells 

(MDSCs), and tumour-associated macrophages (TAMs), along 

with factors like TGF-β and IL-10 that weaken the immune 

response. Checkpoint inhibitors such as PD-L1 also contribute 

to this suppression. To counter this, researchers like Caruana et 

al. have modified CAR T cells to express heparinase (HPSE), an 

enzyme that breaks down the ECM, facilitating easier T cell 

infiltration. 

The immune-constraining environment within the 

tumour: Enhancing CAR T cell therapy involves not just getting 

these cells into the tumour but also ensuring they work effectively 

once there. Strategies include local antibody secretion to attract 

different immune cells into the TME [174], and using specialized 

CAR T cells like EGFRvIII CAR T cells. These cells target a 

specific protein on tumour cells, offering a focused approach with 

fewer side effects. Tuned CARs are another innovation, 

designed to identify and attack less common tumour antigens 

effectively. Additionally, 'iCARs' specifically target tumour cells, 

minimizing the impact on healthy cells, and include 'suicide 

genes' to eliminate the CAR T cells if necessary. Overall, these 

advancements in CAR T cell therapy highlight a multi-faceted 

approach to overcome the physical and immunosuppressive 

barriers presented by solid tumours. 

Challenges and considerations 

Immunogenicity of CAR T Cells: A major hurdle in CAR T 

cell therapy is its immunogenicity, specifically due to the CAR 

constructs [175]. These constructs often include non-human 

elements that trigger immune responses, leading to early 

clearance of the infused cells. Studies, including those 

referenced by [176], have provided strong evidence of such 

immune responses [175]. 

Antigen Escape in CAR T Therapy: Additionally, antigen 

escape poses a significant challenge, as demonstrated in 

studies at the University of Pennsylvania and the National 

Cancer Institute (NCI). This phenomenon, particularly in CD19-

CAR therapy, is a leading cause of relapse. Similar issues of 

antigen loss have been documented in CAR therapies targeting 

multiple myeloma and glioblastoma [177]. 

Immunogenicity Risk in Bispecific Antibody Therapy: In 

the realm of bispecific antibody therapy, the risk of 

immunogenicity is a key concern. Certain antibodies, designed 

for simultaneous checkpoint inhibition and immune cell 

activation, present heightened immunogenicity risks. This is 

particularly evident in combination therapies that involve drugs 

like nivolumab (anti-PD-1 mAb) and ipilimumab (anti-CTLA-4 

mAb), known for their increased antibody-related 

immunogenicity [178]. 

Bispecific Antibodies and Tumour Cell Immune 

Evasion: Recent studies show that certain bispecific antibodies, 

though effective in activating T cells, may inadvertently 

encourage tumour cells to adopt immunosuppressive tactics. 

Such adaptation allows these cells to avoid destruction by 

antibody actions, posing a significant challenge in effective 

cancer therapy. 

Cost Considerations and Accessibility: The 

implementation of CAR T cell and bispecific antibody therapies, 

although promising, is fraught with challenges, primarily due to 

their complexity and the high incidence of AEs. These therapies 

are currently limited to specialized tertiary centres equipped for 

intensive care and monitoring [179], restricting access for many 

patients. Efforts are underway to facilitate outpatient 

administration, which could increase accessibility. However, the 

prevalence of early-onset toxicities remains a significant 

obstacle to this transition [179]. 

Financially, these therapies impose a heavy burden on 

patients and their families due to the prolonged nature of the 

toxicities and the need for specialized care. It's imperative to 

have transparent discussions about the financial implications 

before starting treatment. The lack of global guidelines for 

evaluating and managing toxicities related to CAR T cell therapy 

and bispecific antibodies further complicates the situation [179]. 

These innovative treatments hold great potential in cancer 

therapy, yet their accessibility is a pressing societal concern. It 

raises important questions in political discourse about whether 

such life-saving treatments should be a privilege of the wealthy 

or a right for all in need [180]. 

Manufacturing Complexities: The manufacturing process 

of CAR T cell therapies, typically conducted in distant facilities, 

adds to the challenges. It involves time, cost, and logistical 

complexities. Improving this process is essential to extend 

access to patients, especially those with rapidly progressing 

diseases, living far from manufacturing sites, or in resource-

limited settings [180]. A promising alternative is innovating CAR 

T cell production to an in vivo approach, where a T cell-targeted 

transgene and transfer vehicle are introduced directly into the 

patient. However, this method faces significant technical, safety, 

and control challenges [180]. 

Manufacturing BsAbs also requires substantial investment in 

time and finances. It involves establishing secure and efficient 

cell lines, meticulous processing, and precise analytical 

purification methods [12]. Post-production, BsAbs face issues 

like degradation, aggregation, denaturation, fragmentation, and 

oxidation. Addressing these challenges is crucial for patients to 

fully benefit from these advanced therapies [12]. 

Conclusion 

The fusion of CAR T cell and BsAbs therapies is 

revolutionizing cancer treatment. CAR T cells excel in treating 

blood cancers but face challenges in solid tumours. 

Enhancements are needed for wider applicability and is also 

being explored for the treatment of various pathological 

conditions such as autoimmune diseases, fibrotic diseases, 

infectious diseases, etc. Bispecific antibodies bridge immune 

cells and tumour cells effectively in both blood and solid cancers. 

This versatility holds promise for more effective treatments. 

Emerging trends focus on improving CAR T cell therapy through 

diverse molecular mechanisms and optimizing Bispecific 

antibody therapy. The rise of multispecific antibodies and 

advancements in BsAb technology herald a new era of targeted 

cancer treatments. These immunotherapies are converging to 

offer personalized treatment options. Ongoing research aims to 

unlock their full potential against the varied challenges of solid 

and liquid cancers. 
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