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ABSTRACT: Frontotemporal dementia (FTD) involves a category of disorders characterized by behavioral, linguistic, and mobility 
abnormalities resulting from neurodegeneration in the frontal and temporal lobes. FTD represents the second most common etiology 
of early-onset dementia, and is distinguished by a wide range of clinical features. Indeed, three clinical variants are well known: the 
behavioral variant (bvFTD), which is the most prevalent and predominantly associated with personality and behavioral changes, the 
semantic variant primary progressive aphasia (svPPA), which is associated with gradual loss of speech integrity and word meaning, 
and the non-fluent variant primary progressive aphasia (nfvPPA), in which patients have difficulties getting words out, with slurred 
speech and an abnormal voice. About 15% of FTD patients also have another neurodegenerative motor neuron disease, amyotrophic 
lateral sclerosis (ALS), and this co-occurrence is called FTD-ALS. About half of FTD cases are familial. The most common observed 
mode of inheritance for familial FTD is autosomal dominant. So far, at least ten causal genes have been implicated in the etiology of 
FTD. Three of these genes: the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 
72 (C9ORF72), are the most common and are responsible for more than half of familial FTD. The remaining genes are rarely reported, 
and the pathological mechanisms of many of them are unclear. The causes of the remainder of the familial FTD proportion, as well as 
the sporadic FTD, are to be determined. We conclude that despite all the breakthroughs in discovering the etiology of FTD, the majority 
of work is still to be done. The discovered causal FTD genes give insights toward a better understanding of the clinical and genetic 
heterogeneity of FTD, and help in its early and correct diagnosis. Despite the current management of FTD relies mainly on supportive 
treatment several promising clinical trials showed promising results in the correction of the harmful effects caused by the mutant genes. 
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BACKGROUND  

Frontotemporal dementia (FTD) represents a group of 

clinical disorders that results due to loss of neurons, 

predominantly in the frontal and temporal lobes of the brain. FTD 

is the third most common type of dementia and the second 

leading cause of early-onset dementia in patients under the age 

of 65 years. In most cases, the age at onset varies from 45 to 70 

years old. FTD alone accounts for around 5% of all dementias 

[1]. A wide range of psychological and neurological disorders 

with symptoms similar to those of FTD may lead to misdiagnosis 

and underestimate the frequency of FTD due to diagnostic 

challenges. Epidemiological data estimates that FTD affects 15 

to 22 per 100,000 in the population [2, 3]. The incidence is 

2.2/100,000 between ages 40-49, 3.3/100,000 between ages 50-

59, and peaks to 8.9/100,000 between ages 60-69 [2, 4]. It is 

noteworthy that most of the published research on FTD has 

relied heavily on data from countries in North America, Western 

Europe, and Australia [2]. However, in most developing 

countries, little research about FTD and dementia in general has 

been published due to several challenges including the lack of 

funds and resources, the insufficient knowledge, and the 

unavailability of specialized centers for neurodegenerative 

disease research [5-7]. FTD affects both sexes, with a small 

dominance of males [8].  

The FTD has a substantial mortality rate, and the average 

survival time varies greatly depending on subtype. The typical 

survival time from diagnosis to death might be as short as three 

years for bvFTD patients with motor neuron disease, and up to 
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12 years for those with svPPA [9]. There is a family history of 

dementia in roughly 40% of cases of frontotemporal dementia 

(FTD), and autosomal dominant is the most common mode of 

inheritance [10-12]. Indeed, in 10-25% of cases, FTD shows an 

autosomal dominant inheritance pattern [13]. After discovering 

the link between chromosome 17 and hereditary FTD, a mutation 

in the microtubule-associated protein tau (MAPT) gene, which 

encodes the tau protein, was discovered in 1998. Notably, tau is 

a protein identified in the neurofibrillary tangles found in 

Alzheimer's disease patients' brains. However, this was not 

Alzheimer's disease because no amyloid plaques were found 

[14, 15].  The frontal and temporal lobes are responsible for 

personality, behavior, language learning, motivation, abstract 

thinking, and executive functions. Therefore, behavioral changes 

and/or language difficulties are the most prominent clinical 

manifestations of FTD patients, followed by a decline in 

executive function and cognitive capacities. FTD refers to a 

group of neurological conditions that primarily affect the brain's 

frontal and temporal areas. The anatomical localization is linked 

to the clinical picture characterized by impairments of social 

cognition, behavioral changes, executive function deficits, 

linguistic disorders, and, to a lesser extent, memory impairment. 

The definition of FTD has been refined over the course of 

many years. Prior to the twenty-first century, FTD was divided 

into three subtypes: behavioral difficulties predominance, 

progressive nonfluent aphasia [16], and semantic dementia [17]. 

In 2011, additional diagnostic criteria and subtypes were 

amended and added to the list of available options. Because of 
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this, the FTD was divided into two categories: behavioral 

variation FTD (bvFTD) and primary progressive aphasia (PPA), 

which was further subdivided into two subtypes: the semantic 

variant (svPPA) and the nonfluent variant (nfvPPA). (Figure 1) 

[18].   

 

Figure (1): Illustration of patterns of frontal and temporal lobes atrophy in FTD patients by magnetic resonance imaging. The pattern of 

atrophy is different between these variants but in general they involve the frontal and the temporal lobes. Note: avPPA refers to agrammatic 

variant of Primary Progressive Aphasia which is the nonfluent variant of primary progressive aphasia that is labeled as nfvPPA in this article 

[19].  

Over the course of several years, a large number of 

researchers have arrived at the conclusion that FTD may be 

traced back to its genetic roots. The first locus for FTD was 

discovered in 1998, and it was demonstrated that mutations in 

microtubule-associated protein tau (MAPT) are responsible for 

familial FTD with Parkinsonism, which is linked to chromosome 

17q21 (FTDP-17) [15]. A number of new mutations have been 

discovered after the year 2006, including hexanucleotide repeat 

expansions in the chromosome 9 open reading frame 72 

(C9ORF72) gene, transactive response DNA-binding protein 43 

(TDP-43), and the progranulin (GRN) gene [20-23]. The mode of 

inheritance in FTD patients due to mutations in these genes is 

autosomal dominant. 

Three clinical variants of FTD (Figure 2) 

1. bvFTD causes an early and progressive deterioration in 

social functioning, as well as personality changes. It 

accounts for almost 50% of all cases of FTD. The hallmark 

signs of borderline personality disorder are progressive 

changes in emotional control, behavior, and personality [24, 

25]. Patients with bvFTD may present with general lack of 

self-awareness and lack of empathy and sympathy toward 

friends or stranger due to lesions in right medial orbitofrontal 

cortex and anterior part of insula [26, 27], disinhibition due to 

the involvement of orbitofrontal cortex, repetitive movement 

suggesting frontosubcortical dysfunction [28], and deficit in 

executive function due to involvement of dorsolateral 

prefrontal cortex [29]. Despite the fact that some reports 

indicate that the right hemisphere is more affected than the 

left, the behavioral variation is characterized by localized and 

significant bilateral frontal atrophy [8, 30]. Phenotypic 

syndromes, in which a patient has mild autism spectrum 

disorder or personality problems alongside intact social and 

emotional functions and no atrophy in magnetic resonance 

imaging (MRI), and decreased daily functional capacity, both 

of which can be severe in early stages, are additional 

symptoms that behavior variant patients may have. Patients 

may also exhibit hyperorality, changes in nutrition, and 

repetitive or ritualistic behaviors, as well as perseverative or 

stereotyped tendencies [4]. Typically, diagnostic criteria are 

used in conjunction with neuroimaging, cognitive testing, and 

clinical evaluation to confirm a diagnosis of FTD. The 

International Consensus Criteria (ICC) guides the diagnosis 

of bvFTD [31]. The hallmarks of bvFTD include 

neuroimaging evidence of frontal and/or anterior temporal 

lobe atrophy, progressive behavioral or personality changes, 

and cognitive impairment affecting multiple domains. 

Significant cerebrovascular illness and alternative 

neurological or psychiatric disorders should be excluded 

before the diagnosis of bvFTD is established. It should be 

noted that neuropathological examination after death is 

usually required to confirm the diagnosis of FTD.  



2. svPPA: represents about 20 to 25 percent [32] of patients 

with a mean age at symptom onset of 60 years old. 

Compulsions, loss of language skills, and bilateral anterior 

temporal lobe atrophy are all symptoms that are typical 

clinical manifestations of this condition [3, 4, 33]. 

Furthermore, this condition is associated with dysfunctional 

emotional processing. There is a correlation between svPPA 

and semantic information loss, which is described as the loss 

of object knowledge, impoverished content, semantic and 

paraphasic mistake. Neuroimaging research shows 

asymmetrical bilateral atrophy of the anterior temporal lobe, 

as well as changes in the left inferior frontal gyrus and 

posterior superior temporal gyrus. Furthermore, MRI 

indicated asymmetrical anterior hippocampus atrophy, which 

is associated to language, compulsions, and dysfunctions in 

emotional processing [34]. Genetically, svPPA is related with 

mutations in the GRN and MAPT genes. [35, 36]. However, 

genotype-phenotype correlations are complex, with variable 

clinical presentations even among individuals with the same 

genetic mutation. The diagnostic criteria for svPPA, outlined 

by the ICC and the International Behavioral Variant FTD 

Criteria Consortium (FTDC), emphasize progressive 

language impairment, relatively preserved other cognitive 

functions and characteristic neuroimaging findings [37]. 

3. nfvPPA is characterized by a noticeable and early symptom 

of language impairment. This impairment is characterized by 

apraxia of speech, which causes sluggish speech output due 

to a speech motor planning deficit. Additionally, nfvPPA is 

associated with a condition known as agrammatism in 

language production. Neuroimaging studies of nfvPPA 

typically reveal asymmetric atrophy in the left posterior 

frontal lobe, particularly affecting Broca's area and the 

supplementary motor area, along with corresponding white 

matter changes [38-40]. Genetically, nfvPPA is associated 

with mutations in the MAPT gene, and the C9ORF72 gene 

[35, 41, 42]. The diagnostic criteria for nfvPPA, outlined by 

the ICC and the FTDC, emphasize progressive non-fluent 

language impairment, relatively preserved other cognitive 

functions, and characteristic neuroimaging findings.  

Several research and centers have found a higher 

prevalence of bvFTD in males [2, 43]. Males are more likely to 

have svPPA, while females are more likely to have nfvPPA [44]. 

The median survival time from diagnosis to death varies from 

three years for bvFTD patients with motor neuron disease to 

twelve years for those with svPPA [9].  

 

Figure (2): The three clinical variants of FTD with their characteristics and the predominantly affected brain are in each variant. 

Association between FTD and ALS 

ALS is a fatal type of motor neuron disease caused by 

irreversible neurodegeneration of nerve cells in the spinal cord 

and brain. ALS has great overlap with FTD both in terms of 

clinical manifestations, neuropathological features, and more 

interestingly the genetic aspects [45]. About 15% of patients with 

ALS have also FTD, and the same percentage of FTD patients 

have also ALS. Nevertheless, the explanation of the co-

occurrence of both disorders in the same patient is not fully 

understood. It is believed that ALS and FTD are both ends of the 

same disorder [46-48]. 

 

Genetics of FTD 

FTD is a heritable neurodegenerative disease characterized 

by significant clinical, pathological, and genetic variations. [49], 

This is supported by the fact that approximately 25-50% of FTD 

patients reported a positive family history of dementia or related 

neurodegenerative disorders. Autosomal dominant transmission 

was the most frequently identified mode of inheritance [11, 50, 

51]. Notably, the heredity of FTD varies substantially depending 

on the clinical phenotype. The bvFTD was shown to be the most 

frequent heritable variation [52], while svPPA is generally 

considered the least one to have a genetic etiology [52]. 

Mutations in at least ten genes (Figure 3) were identified as 



causal in patients with familial FTD. Three of these genes 

(MAPT, GRN, C9ORF72) represent the most common genes in 

cases of FTD. Causal mutations in the remaining genes were 

rarely reported in some families and represented rare causes of 

FTD and/ or FTD-ALS. The summary of these ten genes are 

illustrated in Table 1. 

Table (1): Summary of genes implicated in the etiology of FTD with their characteristics. 

Phenotype 
Mode of 

inheritance 
Mechanism of 

mutations 
Types of mutations 

Mutation 
frequency 

Date of mutation 
discovery 

Gene 

bvFTD with 
Parkinsonism 

AD 
Gain of toxic function of 

tau protein 
 

Missense, silent, 
deletion and splice 

site mutations 
 

5-20% of familial 
FTD 

First discovered 
major gene 1998 

MAPT 

bvFTD and nfvPPA 
with or without 
parkinsonism 

AD Loss of function 
Nonsense, splice 

site and frameshift 
mutations 

5-20% of familial 
FTD 

Second discovered 
major gene 2006 

GRN 

bvFTD and FTD-
ALS 

AD 
Haploinsufficiency and 

gain of function  

Hexanucleotide 
(G4C2)n repeat 

expansion  

The most 
frequent, 

responsible for 
one third of 
familial FTD 

Third discovered 
major gene 2011 

C9ORF72 

bvFTD and svPPA, 
FTD-ALS 

AD 
Unclear but thought gain 

of function, 
haploinsufficiency  

Missense mutations Rare 2008 TARDBP 

bvFTD with 
personality change 

as the most 
commonly 

presentation 

AD Loss of function 
Splice site and 

nonsense mutations 

Rare, private 
mutations in 
Danish and 

Belgian families 

2005 
called FTD3 as it is 

located on 
chromosome 3 

CHMP2B 

bvFTD and FTD-
ALS 

AD 
Gain of function, 

haploinsufficiency 
Missense mutations Rare 2004 VCP 

bvFTD and FTD-
ALS 

AD Loss of function 

Missense, inframe 
deletions, non-

sense, frame shift 
mutations 

Rare 2015 TBK1 

bvFTD and FTD-
ALS 

AD 
Unclear but thought gain 

of function, 
haploinsufficiency 

Missense mutations Rare  2009 FUS 

bvFTD and FTD-
ALS 

AD 
Unclear but thought gain 
of function, 
haploinsufficiency   

Missense mutations Rare  2012 SQSTM1 

bvFTD and FTD-
ALS 

XLD 
Unclear but thought gain 

of function, 
haploinsufficiency  

Missense mutations Rare  2011 UBQLN2 

 
Figure (3): The locations of the ten genes implicated in FTD on human chromosomes. Bolded genes are the common ones in FTD. * Genes 

which are involved in FTD-ALS. 



MAPT gene 

The microtubule-associated protein Tau (MAPT) gene, 

which is located on the 17q21 chromosome, contains 16 exons 

[53]. Its transcripts can undergo alternative mRNA splicing to 

produce six isomers [54]. These isomers are important to 

enhance the formation of microtubules, as well as to maintain 

their stability. These microtubules are vital for the integrity of the 

cytoskeleton and cytoplasmic transport in human cells, including 

neuronal cells, because this gene is strongly expressed in the 

nervous system [55]. More than 50 different MAPT pathogenic 

mutations were identified in patients with FTD, particularly in the 

bvFTD and, to a lesser extent, in the svPPA and nfvPPA which 

are often associated with the movement disorder Parkinsonism 

[56]. They showed autosomal dominant mode of inheritance [57]. 

These different mutations lead to abnormal structure and 

subsequently gain of toxic function of tau protein, which leads to 

its abnormal aggregation and disruption of the formation and 

stability of microtubules [58]. It is noteworthy that certain MAPT 

mutations are causal in rare familial cases of Alzheimer disease 

[59, 60]. 

GRN gene 

In 2006, a granulin (GRN) gene, located very close to MAPT 

gene on 17q21 chromosome, was discovered as causal for FTD 

[21]. GRN gene product is found in several tissues including the 

central and peripheral nervous system. It acts as a growth factor 

that is involved in angiogenesis, brain development and synapse 

functioning. More specifically, it is involved in the survival, 

growth, maintenance, and differentiation of both neurons and 

glia [61]. More than 70 different GRN mutations were detected in 

FTD. All GRN mutations cause FTD by haploinsufficiency with 

incomplete penetrance [62, 63]. Lysosome dysfunction in FTD 

patients was proposed as the main mechanism of pathology in 

FTD patients with GRN loss of function [64]. Moreover, it was 

reported that lysosome dysfunction might lead to the activation 

of microglia and the deposition of myelin debris in the central 

nervous system as proposed mechanisms of the 

neurodegeneration [65]. GRN mutations were mostly found in 

the bvFTD and nfvPPA with or without movement disorders. 

GRN mutations are associated with great variability in the clinical 

presentation in patients with FTD [66]. 

C9ORF72 gene 

Hexanucleotide repeat expansions in chromosome 9 open 

reading frame 72 (C9ORF72) gene, located on chromosome 

9p21.2, consists of two non-coding exons (1a and 1b) and 10 

coding exons (from 2 to 11). Alternative splicing of its transcripts 

results in the formation of two isoforms: C9-short of 24 kDa and 

C9-long of 54 kDa [27]. C9ORF72 transcripts are detectable in 

most tissues, notably in all brain regions and the spinal cord, and 

play a role in neuronal axon growth and maintenance of neuronal 

synapsis integrity [67]. 

In 2011, a breakthrough in the uncovering of the genetic 

basis of FTD was achieved by the identification of a 

hexanucleotide (G4C2)n repeat expansion in the C9ORF72 

gene as the most frequent mutation in familial FTD [68, 69]. As 

with other genetic disorders caused by nucleotide repeat 

expansion, age at onset of FTD patients due to C9ORF72 

mutations varied greatly from 20s to 90s [70, 71]. The clinical 

presentations of patients with C9ORF72 mutations vary greatly 

from very rapidly to slow progressive disease [68, 72, 73]. 

Several genotype-phenotype relationships in bvFTD can result 

from C9ORF72 gene mutations. First, larger repeat expansions 

cause earlier onset and worse clinical progression. C9ORF72 

repeat expansion is connected to disinhibition, apathy, and 

social cognitive deficits. C9ORF72 mutations in bvFTD produce 

neuronal loss, gliosis, and proteinaceous inclusions including 

TDP-43 and p62-positive aggregates [68]. It is noteworthy that 

about one third of patients with C9ORF72 mutations receive 

another diagnosis at the onset due to the atypical clinical 

presentations [74, 75].  It is proposed that the mechanism by 

which C9ORF72 gene mutations lead to FTD include 

haploinsufficiency through the loss of function of the gene, as 

well as gain of novel toxic functions including RNA and protein 

toxicity [76]. It is important to note that the toxicity of C9ORF72 

hexanucleotide repeat expansions was suggested to be the 

result of a variety of mechanisms, such as the accumulation of 

toxic cytoplasmic proteins and the formation of RNA foci through 

phase separation. The C9ORF72 protein's functionality is 

significantly impaired as a consequence of these abnormal 

alterations [77, 78].  

Rare genes in FTD 

TARDBP gene 

TARDBP gene, which is located on 1p36 chromosome, 

codes TAR DNA-binding protein 43 (TDP43) which has a crucial 

role in RNA metabolism [79, 80]. Rare 

missense TARDBP mutations were identified in patients with 

FTD and FTD-ALS [81]. These mutations affect predominantly 

the C-terminal region inducing the aggregation propensity [82-

85]. 

CHMP2B gene 

Charged multivesicular body protein 2B (CHMP2B) gene, 

located on 3p11.2 chromosome, codes for a protein involved in 

autophagy and Endo-lysosomal trafficking. Rare autosomal 

dominant splice site and nonsense mutations were described in 

Danish and Belgian FTD families with great clinical variability 

among these patients [86-89]. These mutations affected the C-

terminus of the protein. It is proposed that CHMP2B mutations 

cause accumulation of autophagosomes with ubiquitinated 

proteins resulting in neurodegeneration [90]. Endosomal-

lysosomal dysfunction and ubiquitin-SDP-43 neuronal 

intranuclear inclusions (NIIs) result from CHMP2B mutations [91-

95]. 

VCP gene 
Valosin-containing protein (VCP) gene, which is located on 

9p13.3 chromosome, is a highly conserved eukaryotic protein 

[96, 97]. VCP is widely expressed in several organs including the 

brain. It belongs to the type II AAA family, which encompasses a 

variety of cellular processes, such as the regulation of the cell 

cycle, the maturation of the autophagosome and the ubiquitin-

proteasome system e [98, 99]. Several missense mutations in 

VCP were detected in FTD patients. These mutations are 

suggested to cause neurodegeneration by defects in protein 

clearance, and autophagy. It is noteworthy that VCP mutations 

are characterized by phenotypic heterogeneity as different 

mutations result in different disorders including myopathy, motor 

neuron disease, Paget, and FTD [100]. 

TBK1 gene 

The TBK1 (TANK binding kinase 1) gene is located on the 

12q14 chromosome. It codes for a protein that plays a critical 



role in several cellular pathways including the selective 

clearance of mitochondria and regulation of inflammation. 

Several missense, inframe deletions, non-sense, and frame shift 

mutations identified in bvFTD and FTD-ALS patients. Behavior, 

motor and cognitive impairment result from TDP-43 pathology 

and TBK1 mutations. TBK1 mutations may contribute to 

neurodegenerative diseases through defective clearance of 

damaged mitochondria. Indeed, this process this vital in 

neuronal survival [92, 101-104].  

FUS gene 

The fused in sarcoma (FUS) gene, which is located on 

16p11.2 chromosome, codes for RNA-binding protein. This 

protein is involved in alternative RNA splicing, RNA translation 

and transport [105]. Some missense FUS mutations were 

reported in FTD patients and FTD-ALS patients [106-108]. The 

aberrant RNA metabolism especially defective splicing pattern 

was proposed as the cause of neurodegeneration of FUS 

mutations [109]. 

SQSTM1 gene 

The sequestosome 1 (SQSTM1) gene, which is located on 

5q35.3, codes for p62 adaptor protein. This multifunctional 

protein is involved in vital cellular processes including cell 

differentiation, apoptosis, transcriptional regulation, and 

oxidative stress, and ubiquitin-proteasome degradation 

pathways [110]. Some missense SQSTM1 mutations were rarely 

reported in the neurodegenerative disorders FTD, ALS, and 

FTD-ALS patients [111, 112]. It was suggested that the defects 

in cellular pathways caused by mutant SQSTM1 product result 

in neurodegeneration [104, 113]. 

UBQLN2 gene 

Several missense mutations were rarely reported 

in UBQLN2 gene, which is located on 

the Xp11. 21 chromosome, in patients with FTD-ALS. 

Interestingly, these mutations follow X-linked dominant 

inheritance [114, 115]. At least, some of these mutations altered 

the structural and functional characteristics of the resulting 

protein and showed a clear correlation between the increased 

tendency to aggregate and its ability to induce neurotoxicity [116-

118]. Indeed, it was proved that UBQLN2 encodes a protein that 

functions in protein quality control and regulation of proteasomal 

degradation [118]. 

Diagnosis of FTD 

The diagnostic criteria for FTD, both for the behavioral 

bvFTD variant and the two language variants of FTD (svPPA and 

nfvPPA), were established by international expert consensus. 

The clinical diagnosis of bvFTD [37] is established if the 

patient meets at least three of the following criteria: (I) early 

disinhibition; (II) apathy or early inertia; (III) early loss of 

empathy/sympathy; (IV) perseverative, stereotyped, or early 

compulsive/ritualistic behavior; (V) hyperorality and dietary 

changes; and (VI) neuropsychological profile with executive 

dysfunction and relative preservation of episodic memory and 

visuospatial abilities.  

On the other hand, the clinical diagnosis of the language 

variants of FTD (svPPA and nfvPPA) requires fulfilling three core 

criteria: (1) the presence of a language impairment that interferes 

with the usage and/ or comprehension of words; (2) this 

language impairment should be the most prominent 

neurobehavioural deficit that restricted the daily activities during 

the initial stages of disorder; and (3) the language impairment 

should be progressive in nature as it is caused by 

neurodegenerative changes. Furthermore, the pattern of deficits 

must not be explained by another neurological or psychiatric 

disorder [119].  

The definitive FTD diagnosis is established only when 

histopathological changes are observed on brain biopsy, post-

mortem examination, or by genetic testing with identification of 

the causal mutation [120].   It is important to rule out any 

metabolic or infectious disease which has clinical manifestations 

that overlap or looks like those cause by FTD. To this end, 

hormonal analysis, liver function tests, appropriate blood and 

urine tests should be performed. In addition to that, causes of 

reversible cognitive impairment like vitamin B12 and folic acid 

deficiency should be taken into consideration [120]. 

Neuroimaging analyses of FTD patients can be used to 

confirm the clinical diagnosis and to exclude other 

neurodegenerative diseases such as Alzheimer disease, 

Parkinson disease, and ALS with overlapping clinical 

manifestations. Depending on the mechanism of action, these 

neuroimaging methods are classified into three categories: 

structural, functional, and molecular imaging. Structural imaging 

includes computed tomography (CT) and structural magnetic 

resonance imaging (MRI), which can show gross 

neuroanatomical changes. Functional imaging includes positron 

emission tomography (PET), single-photon emission computed 

tomography (SPECT), and functional MRI (fMRI), tests the 

metabolic activity, regional blood flow, or hemodynamic changes 

with patient activity. While the molecular imaging measures 

molecular and, biological, physiological, and cellular events in 

living neuronal tissues such as testing for specific receptors or 

protein aggregates. For the diagnosis of FTD, the structural MRI 

and PET are two of the most commonly used [121].  

Structural imaging can be used to test for the abnormalities 

in the neuroanatomy of the frontotemporal lobes, and to detect 

any increase in the sulci and fissures. They are also used to 

check for the presence of any frontotemporal tumors, ventricular 

dilatation, or cerebrovascular lesions that are associated with 

symptoms related to FTD [120].  

The functional imaging PET can be used to detect areas in 

the brain that are characterized by hypometabolic activity and a 

reduction in blood flow [122, 123].  

FTD Prognosis, treatment, clinical trials and future 
perspectives 

FTD is a fatal and irreversible condition for which there is no 

known curative therapy. The median survival age varied greatly 

according the clinical presentation. It was the poorest if FTD is 

associated with motor disease (FTD-ALS) with median survival 

age of only 2.5 years. On the other hand, the mean survival age 

was the longest (8 years) in patients with svPPA. In the most 

common variant (bvFTD) as well as in the nfvPPA, the mean 

survival rate was 8 years after diagnosis of the disorder. Notably, 

the sex of the patient did not affect the mean survival age [124]. 

There is no curative treatment to prevent, stop or delay the 

neurodegeneration in FTD patients until now. Supportive 

management is offered to patients and is directed to handle the 

cardinal symptoms and improving the quality of life  [125]. 

Significant research has been done to specify certain 

biomarkers to help in presymptomatic and early diagnosis. 

Nevertheless, there is currently no reliable specific biomarker to 

be tested for FTD [126]. There are ongoing clinical trials with 

drugs with potential disease-modifying effect. These therapeutic 

targets are directed towards preventing and clearing tau 

aggregates, maintaining the normal tau function, restoring 

progranulin levels; and suppressing the expression of harmful 

genes [127].  The ongoing promising clinical trials are designed 

for the three major genetic defects [128]. The use of antisense 

oligonucleotide (ASO) demonstrated beneficial effects by 

selective suppression of the toxic C9ORF72 transcripts 

containing the expansions but not affecting the normal 



transcripts of the gene [129]. ASO was also found to be effective 

to lower the expression and correct the disturbances resulting 

from MAPT mutations in neurodegenerative disorders [130, 

131]. On the other and, adeno-associated virus delivery gene 

therapy is being tested to offer a functional copy of the GRN gene 

in patients having mutations in this gene to correct the normal 

expression level, and consequently restore the normal functions 

of the protein [132]. Additional proposed therapeutic options 

include tau monoclonal antibodies which are beneficial in some 

MAPT mutations [133], and the use of sortilin protein to rescue 

GRN expression level by sortilin-GRN interactions [134] . 

CONCLUSION 

FTD is characterized by wide range of clinical variability and 

genetic heterogeneity. The etiology is still unknown in the 

majority of FTD patients. Identifying several causal genes of FTD 

is of great importance as it points towards a significant genetic 

component of this disease, as well as multiple disease 

mechanisms that might share common pathological pathways. 

The accumulation of these discoveries leads the progress of 

correct and early diagnosis, and the development of drugs that 

prevent or delay the neurodegeneration as the main pathological 

feature of the disorder. Establishing genotype and phenotype 

correlations in FTD (when present) is particularly important to 

provide genetic counseling for FTD patients and families. Further 

studies should be performed to discover additional genetic and 

environmental factors that impact in the etiology of familial and 

sporadic FTD.   
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