
 

1 
  An-Najah National University, Nablus, Palestine 

An-Najah University Journal for Research – A 

Natural Sciences 
 

The Approximate  Integrals By The Reproducing Kernel Method On 

The Elliptical Region 𝑬𝒏 In The Space ℝ𝒏 
Hiba Aslan *1, Dr. Hamed Abbas 2 

Accepted Manuscript, In press 

Abstract: In this paper, we applied the reproducing kernel method on elliptical region, we establish the formulas of the reproducing kernel from 

several degrees and generalized those formulas whatever the dimension of space, we obtained all surfaces, points, and their constants for compensation 
in the cubature formula, tables are included to show our results and examples to show the approximation solution in this method. 

Keywords: Reproducing kernel method, Cubature Formula, Orthonormal Polynomials, Algebraic Precision, Integral Points. 

1. Introduction 

The Reproducing Kernel Method was first discovered in 1968 by the 

scientist Myscovskikh in order to calculate the double integrals in 

regions that have a center of symmetry and that do not have a center 
symmetry [[11], [12]], Bykova used the Reproducing Kernel Method to 

form the cubature formula as the integral region is symmetric in ℝ2[2], 
The important development of the Reproducing Kernel Method was 

obtained by Möller in 1973, where he was able to prove the theorems 

and found the cubature formula with 2𝑘 + 1 algebraic precision in the 

case of symmetric regions [7], and 2𝑘 in the case of asymmetric 
regions[[8],[9]]  , In the 1990s, Myscovskikh contributed to the 
development of the Reproducing  Kernel Method and to finding the 

minimum number of integrative points [[1], [15], [16]], and in 2001, The 

cubature formula on the square with a weight function                               

(1 − 𝑥2)
1

2(1 − 𝑦2)
1

2 was studied [4], in 2003, the formulas of cubature 

formula was collected to approximate multiple integrals and to study the 

cubature formula on the unite ball [[3],19]], in 2004, the cubature 
formula was studied on the simplex area and the surface of the unite ball 

[18], and in 2006 the cubature formula was studied on the cube [10], in 

2008 the cubature formula was studied on the hexagon and the triangle 
[20], in 2012, conditions were set for the existence of cubature formula 

[6], in 2014, periodic functions were used to find the cubature formula 

for the simplex [5], in 2020 the cubature formula was studied using the 
Gaussian weight function [17]. 

       The current research in this field revolves around the study of 

properties of the Reproducing Kernel, the application of this method in 
wider areas of integration , and study this method in Sobolev spaces, and 

obtaining new generalized cubature formula that can be used to calculate 

the approximate value of multiple integrals. 
2. Material And Methods 

Definition 2.1. Cubature Formula: (see [13],[14])The cubature formula 

is an approximation equality for calculating the approximate value of 
the multiple integrals by specifying a number of points and finding a 

number of constants, and it is given as: 

𝐼(𝑓) ≔ ∫ 𝜔(𝑥) 𝑓(𝑥)
Ω

𝑑𝑥 ≅∑𝐶𝑗𝑓(𝑥
𝑗)

𝑁

𝑗=1

                    (2.1)  

                   

Where 𝑥𝑗 = (𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑛

𝑗
); 𝑗 = 1,… ,𝑁  are different points two by 

two and they are called integration points or cubature formula nodes, 

𝑁 the number of integral points, 𝐶𝑗 the constants corresponding to 

those points (in this article 𝐶𝑗 ∈ ℝ), Ω integrative area 𝐸𝑛, 𝑓(𝑥) the 

function to be integrated   𝑑𝑥 = 𝑑𝑥1𝑑𝑥2… . . 𝑑𝑥𝑛 and 𝜔(𝑥) the weight 
function even, check: 

 ∫ 𝜔(𝑥)𝑑𝑥 > 0, 𝜔(𝑥) ≥ 0 & 𝑥 ∈ Ω⟹ −𝑥 ∈ Ω  & 𝜔(𝑥) = 𝜔(−𝑥)
Ω
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We say (1-1) has an algebraic precision d , if it is transformed into a 

true equality, when the degree of the integral polynomial 𝑓(𝑥) does not 

exceed 𝑑. 

Theorem 2.1. Suppose that Ω  has internal points, we have two cases: 

_if the cubature formula (1-1) has 𝑑 = 2𝑘 algebraic precision, then the 

number of nodes of cubature formula achieves the inequality: 

𝑁 ≥ 𝜒 = 𝑀(𝑛,𝑚) =
(𝑛 + 𝑚)!

𝑛!𝑚!
   ;𝑚 = [

𝑑

2
]                     (2.2) 

      

_if the cubature formula (1-1) has 𝑑 = 2𝑘 + 1 algebraic precision, and 

if 𝜃 is not among the nodes of cubature formula, then the number of 
nodes of cubature formula achieves the inequality: 

𝑁 ≥ {
2(𝜒 − 𝜈)     ;𝑚: 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟
2𝜈               ;𝑚: 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

                  (2.3)    

  𝑚 = [
𝑑

2
] ;  𝜒 = 𝑀(𝑛,𝑚) 

and if 𝜃 is among the nodes of cubature formula, then the number of 
nodes of cubature formula achieves the inequality:  

            𝑁 ≥ {
2(𝜒 − 𝜈) − 1     ;𝑚: 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟
2𝜈 + 1               ;𝑚: 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

                     (2.4)  

                            

Where   the number of uneven units of term which degree does not 

exceed 𝑘 with 𝑛 variable.   

Definition 2.2. Reproducing Kernel: It is a polynomial with 2𝑛 a 
variable used in cubature formula with even algebraic precision         

𝑑 = 2𝑘 is given by the formula: 
                       

𝐾𝑘(𝑢, 𝑥) =∑𝐹𝑖(𝑢)𝐹𝑖(𝑥)                                   (2.5)

𝜒

𝑖=1

 

                                   

while the Reproducing Kernel for cubature formula with odd algebraic 

precision          𝑑 = 2𝑘 + 1 is given by the formula: 
                       

𝐾𝑘(𝑢, 𝑥) =∑𝐹𝑖(𝑢)𝐹𝑖(𝑥)                              (2.6)

�́�

𝑖=1

 

                                    

Where 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛), 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝐹𝑖(𝑥)Orthonormal 

polynomials on 𝐸𝑛 with 𝑛 variable, the degree of 𝐹𝑖(𝑥) in (2.6) is          

𝑠 ≤ 𝑘 (if 𝑘 is an odd number then 𝑠 = 1,3,5, . . , 𝑘 and if 𝑘 is an even 

number then 𝑠 = 0,2,4, . . , 𝑘 ), the degree of  𝐹𝑖(𝑥) in (2.5) is 𝑠 ≤ 𝑘(𝑠 =
0,1,2,3, . . , 𝑘) 
To form the cubature formula, we use the following two theorems: 

Theorem 2.2. (see [13],[14]) Assuming that 𝑢1, 𝑢2, … . , 𝑢𝑛 points 

satisfy the condition 𝐾𝑘(𝑢
𝑖, 𝑢𝑗) = 𝑏𝑖𝛿𝑖𝑗, and ⋂ 𝐻𝑖  

𝑛
𝑖=1 consist of points 

𝑥𝑗; 𝑗 = 1, . . , 𝑠; 𝑠 = 𝑘𝑛 where 𝐻𝑖 ≔ 𝐾𝑘(𝑢
𝑖, 𝑢𝑖) = 0; 𝑖 = 1, . . , 𝑛, The 
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exact cubature formula exists for polynomials whose degrees do not 

contiguous 2𝑘: 
          

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅∑
1

𝑏𝑖
𝑓(𝑢𝑖) +∑𝐶𝑗𝑓(𝑥

𝑗)                      (2.7)

𝑠

𝑗=1

𝑛

𝑖=1
𝐸𝑛

 

                    

The number of integral points: is the sum of the number of points 𝑥𝑗 
plus the number of points 𝑢𝑖 
Theorem 2.3. (see [13],[14]) Assuming that 𝑢1, 𝑢2, … . , 𝑢𝑛 points 

satisfy the condition 𝐾𝑘(𝑢
𝑖, 𝑢𝑗) = 𝑏𝑖𝛿𝑖𝑗,  and ⋂ 𝐻𝑖  

𝑛
𝑖=1 consists of 

points 𝑥𝑗; 𝑗 = 1, . . , 𝑠; 𝑠 = 𝑘𝑛  , then the cubature formula can be 

formed which algebraic precision 2𝑘 + 1. 

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅∑
1

2𝑏𝑖
(𝑓(𝑢𝑖) + 𝑓(−𝑢𝑖))

𝑛

𝑖=1
𝐸𝑛

+∑𝐶𝑗𝑓(𝑥
𝑗)

𝑠

𝑗=1

          (2.8) 

The number of integral points: is the sum of the number of points 𝑥𝑗 
plus the number of points 𝑢𝑖 and plus the number of points   −𝑢𝑖. 
 

3. Results And Discussion 

𝐸𝑛elliptic in the spaceℝ𝑛: 
 𝐸𝑛 = {𝑥 ∈ ℝ𝑛; (𝑥1𝑎1)

2

+ (
𝑥2

𝑎2
)
2

+⋯+ (
𝑥𝑛

𝑎𝑛
)
2

≤ 1}, Let's evaluate the 

integral            𝑃𝛼 = ∫𝑥
𝛼 𝑑𝑥 on 𝐸𝑛 whereas 𝛼 = (𝛼1, … , 𝛼𝑛) 𝑥 =

(𝑥1, … , 𝑥𝑛) if one of the 𝛼𝑖  is an odd number, then 𝑃𝛼 = 0, but if 𝛼𝑖   an 

even numbers, we can write them in the form  𝛼𝑖 = 2𝑞𝑖, then we find: 
       

𝑃𝛼 =∏ 𝑎𝑖
𝛼𝑖+1

𝑛

𝑖=1

∏ Γ(
𝛼𝑖 + 1
2

)𝑛
𝑖=1

Γ (
|𝛼| + 𝑛
2

+ 1)
      ; |𝛼| = 𝛼1 +⋯+ 𝛼𝑛        (3.1) 

            
By the (3.1) we found the  Orthonormal Polynomials (zero, first, second 

and third degree with 𝑛 varible) on 𝐸𝑛 by Using schmidt's role: 

Let it be 𝛾 = (𝑛 + 2)(𝑛 + 4)(𝑛 + 6), 𝜇(𝐸𝑛) =
𝑎1…….𝑎𝑛(Γ(

1

2
))
𝑛

Γ(
𝑛

2
+1)

, we find: 

                                   

𝐹0
0 =

1

√𝜇(𝐸𝑛)
                  (3.2) 

                                                           

                         

𝐹𝑖
1 = √

𝑛 + 2

𝜇(𝐸𝑛)

𝑥𝑖
𝑎𝑖
       ; 𝑖 = 1,2,… , 𝑛              (3.3) 

                                      
          

𝐹𝑖𝑗
2 =

{
  
 

  
 
√
(𝑛 + 3 − 𝑖)(𝑛 + 2)(𝑛 + 4)

2𝑎𝑖
4(𝑛 + 2 − 𝑖)𝜇(𝐸𝑛)

[
𝑥𝑖
2

𝑎𝑖
2 +

1

𝑛 + 3 − 𝑖
(∑

𝑥𝑗
2

𝑎𝑗
2 − 1

𝑖−1

𝑗=1

)]  ; 𝑖 = 𝑗

√
(𝑛 + 2)(𝑛 + 4)

𝑎𝑖
2𝑎𝑗

2𝜇(𝐸𝑛)
  
𝑥𝑖𝑥𝑗
𝑎𝑖𝑎𝑗

                                                       ; 𝑖 = 𝑗 

          (3.4) 

     
 

𝐹𝑖𝑗𝑘
3 =

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐹𝑖𝑖𝑗
3 = √

(𝑛 + 5 − 𝑖)𝜆

2(𝑛 + 4 − 𝑖)𝑎𝑖
4𝑎𝑗

2𝜇(𝐸𝑛)
[𝑥𝑖

2 +
𝑎𝑖
2

𝑛 + 5 − 𝑖
(∑

𝑥𝑠
2

𝑎𝑠2
− 1

𝑖−1

𝑠=1

)] 𝑥𝑗; 𝑖 < 𝑗

𝐹𝑖𝑖𝑖
3 = √

(𝑛 + 5 − 𝑖)𝜆

6(𝑛 + 2 − 𝑖)𝑎𝑖
2𝜇(𝐸𝑛)

[𝑥𝑖
2 +

3𝑎𝑖
2

𝑛 + 5 − 𝑖
(∑

𝑥𝑠
2

𝑎𝑠2
− 1

𝑖−1

𝑠=1

)] 𝑥𝑖; 𝑖 = 𝑗, 𝑘

𝐹𝑖𝑖𝑗
3 = √

(𝑛 + 3 − 𝑖)𝜆

2(𝑛 + 2 − 𝑖)𝑎𝑖
4𝑎𝑗

2𝜇(𝐸𝑛)
[𝑥𝑖

2 +
𝑎𝑖
2

𝑛 + 3 − 𝑖
(∑

𝑥𝑠
2

𝑎𝑠2
− 1

𝑖−1

𝑠=1

)] 𝑥𝑗; 𝑖 > 𝑗

𝐹𝑖𝑗𝑘
3 = √

𝜆

𝑎𝑖
2𝑎𝑗

2𝑎𝑘
2𝜇(𝐸𝑛)

𝑥𝑖𝑥𝑗𝑥𝑘                                             ; 𝑖 ≠ 𝑗 ≠ 𝑘 

    (3.5) 

3.1. Finding The Reproducing Kernel: 

3.1.1. Finding The Reproducing Kernel Of The First Degree:  

                     

𝐾1(𝑢, 𝑥) =
𝑛 + 2

𝜇(𝐸𝑛)
∑

𝑢𝑗𝑥𝑗

𝑎𝑗
2

𝑛

𝑗=1

                                     (3.6) 

                                         

𝐾1(𝑢, 𝑥) = 𝐾1(𝑢, 𝑥) + 𝐾0(𝑢, 𝑥) =
1

𝜇(𝐸𝑛)
+
𝑛 + 2

𝜇(𝐸𝑛)
∑

𝑢𝑗𝑥𝑗

𝑎𝑗
2

𝑛

𝑗=1

         (3.7) 

                       

3.1.2. Finding The Reproducing Kernel Of The Second Degree: 

The Reproducing Kernel is given by the formula: 

     𝐾2(𝑢, 𝑥) =
1

𝜇(𝐸𝑛)
+ ∑ 𝐹𝑗

2(𝑥)𝐹𝑗
2(𝑢) + ∑ 𝐹𝑖

2(𝑥)𝐹𝑗
2(𝑢)𝑖≠𝑗

𝑛
𝑗=1                   

(3.8)    
Substitute (3.2) and (3.4) in (3.8), we get:  
𝐾2(𝑢, 𝑥) =

1

𝜇(𝐸𝑛)
+𝑁∑

𝑛+3−𝑗

𝑛+2−𝑗
[𝑈𝑗][𝑋𝑗] + ∑ 𝐹𝑖

2(𝑥)𝐹𝑗
2(𝑢)𝑖≠𝑗

𝑛
𝑗=1              

(3.9) 
Whereas:  

      𝑁 =
(𝑛+2)(𝑛+4)

2𝜇(𝐸𝑛)
, 𝑈𝑗 =

𝑢𝑗
2

𝑎𝑗
2 +

1

𝑛+3−𝑗
(∑

𝑢𝑠
2

𝑎𝑠
2 − 1

𝑗−1
𝑠=1 )                                

(3.10) 

                 𝑋𝑗 =
𝑥𝑗
2

𝑎𝑗
2 +

1

𝑛+3−𝑗
(∑

𝑥𝑠
2

𝑎𝑠
2 − 1

𝑗−1
𝑠=1 )       

Relationship (3.9) can be written as: 

𝐾2(𝑢, 𝑥) =
1

𝜇(𝐸𝑛)
+𝑁∑

𝑛+3−𝑗

𝑛+2−𝑗

𝑛
𝑗=1 [𝑈𝑗]

𝑥𝑗
2

𝑎𝑗
2 +𝑁∑

[𝑈𝑗]

𝑛+2−𝑗
∑

𝑥𝑠
2

𝑎𝑠
2

𝑗−1
𝑠=1

𝑛
𝑗=1 −

𝑁∑
[𝑈𝑗]

𝑛+2−𝑗

𝑛
𝑗=1 + ∑ 𝐹𝑖

2(𝑥)𝐹𝑗
2(𝑢)𝑖≠𝑗   

𝐾2(𝑢, 𝑥) =
1

𝜇(𝐸𝑛)
+𝑁(𝑆1 + 𝑆2 + 𝑆3) +

(𝑛+2)(𝑛+4)

𝜇(𝐸𝑛)
∑

𝑥𝑖𝑥𝑗𝑢𝑖𝑢𝑗

𝑎𝑖
2𝑎𝑗

2𝑖≠𝑗            
(3.11) 

Let's find 𝑆1, 𝑆2, 𝑆3:We take out the indexed sum 𝑛 in 𝑆1, then we 

replace each 𝑗  with a 𝑠 so we find: 

             𝑆1 =
3

2𝑎𝑛
2 𝑈𝑛𝑥𝑛

2 +∑
𝑛+3−𝑠

(𝑛+2−𝑠)𝑎𝑠
2
[𝑈𝑠]

𝑛−1
𝑠=1 𝑥𝑠

2                                    

(3.12) 

We make a substitution in the addition operation in 𝑆2, and we find: 

                        𝑆2 = ∑
𝑥𝑠
2

𝑎𝑠
2

𝑛−1
𝑠=1 ∑

𝑈𝑗

𝑛+2−𝑗

𝑛
𝑗=𝑠+1                                              (3.13) 

Adding (3.12) and (3.13), we get: 

                   𝑆1 + 𝑆2 =
3

2𝑎𝑛
2 𝑈𝑛𝑥𝑛

2 +∑
𝑥𝑠
2

𝑎𝑠
2

𝑛−1
𝑠=1 𝑆4                                       (3.14) 

Whereas: 

                            𝑆4 = 𝑈𝑠 +∑
𝑈𝑗

𝑛+2−𝑗

𝑛
𝑗=𝑠                                            (3.15)      

    
Substituting (3.10) into (3.15), we get: 

      𝑆4 =
𝑢𝑠
2

𝑎𝑠
2 +

1

𝑛+3−𝑠
∑

𝑢𝑠
2

𝑎𝑠
2 −

1

𝑛+3−𝑠
+∑

1

𝑛+2−𝑗

𝑢𝑗
2

𝑎𝑗
2

𝑛
𝑗=𝑠

𝑠−1
𝑡=1 +

               ∑
1

(𝑛+2−𝑗)(𝑛+3−𝑗)
∑

𝑢𝑡
2

𝑎𝑡
2

𝑗−1
𝑡=1 −∑

1

(𝑛+2−𝑗)(𝑛+3−𝑗)
𝑛
𝑗=𝑠

𝑛
𝑗=𝑠         (3.16)                  

We make a substitution in the order of the sum in fifth term, which we 

will denote by the symbol 𝑆5 in (3.16), so we find: 

𝑆5 = ∑
𝑢𝑡
2

𝑎𝑡
2∑

1

(𝑛+3−𝑗)(𝑛+2−𝑗)
+ ∑

𝑢𝑡
2

𝑎𝑡
2 ∑

1

(𝑛+3−𝑗)(𝑛+2−𝑗)
𝑛
𝑗=𝑡+1

𝑛−1
𝑡=𝑠

𝑛
𝑗=𝑠

𝑠−1
𝑡=1 (3.17)                 

The sum in (3.17) can be written in the form: 

                          ∑
1

(𝑛+3−𝑗)(𝑛+2−𝑗)
=

1

2
−

1

𝑛+3−𝑠

𝑛
𝑗=𝑠   

                           ∑
1

(𝑛+3−𝑗)(𝑛+2−𝑗)
=

1

2
−

1

𝑛+2−𝑡

𝑛
𝑗=𝑡+1                                (3.18)  

Substituting (3.18) into (3.17), then substituting the result into (3.16) 

and then grouping the terms, we find:  𝑆4 =
𝑢𝑠
2

𝑎𝑠
2 +

1

2
∑

𝑢𝑡
2

𝑎𝑡
2

𝑛
𝑡=𝑠 −

1

2
  

substituting 𝑆4 into (3.14), we find: 

 𝑆1 + 𝑆2 = ∑
𝑥𝑠
2

𝑎𝑠
2 (

𝑢𝑠
2

𝑎𝑠
2 +

1

2
∑

𝑢𝑠
2

𝑎𝑠
2 −

1

2

𝑛
𝑠=1 )𝑛

𝑠=1   

Let's find 𝑆3: 

−𝑆3 = ∑
[𝑈𝑗]

𝑛+2−𝑗

𝑛
𝑗=1 = ∑

1

𝑛+2−𝑗

𝑢𝑗
2

𝑎𝑗
2 + ∑

1

(𝑛+2−𝑗)(𝑛+3−𝑗)
∑

𝑢𝑠
2

𝑎𝑠
2

𝑗−1
𝑠=1

𝑛
𝑗=1

𝑛
𝑗=1 −

              −∑
1

(𝑛+2−𝑗)(𝑛+3−𝑗)
𝑛
𝑗=1   

−𝑆3 =
1

2
∑

𝑢𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 −

𝑛

2(𝑛+2)
  

And therefore  𝑠 = 𝑆1 + 𝑆2 + 𝑆3 is: 

𝑠 =
1

2
[2∑

𝑥𝑠
2𝑢𝑠

2

𝑎𝑠
4

𝑛
𝑠=1 + ∑

𝑥𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 ∑

𝑢𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 − (∑

𝑢𝑠
2

𝑎𝑠
2 + ∑

𝑥𝑠
2

𝑎𝑠
2

𝑛
𝑠=1

𝑛
𝑠=1 ) +

𝑛

𝑛+2
]  

Substitute in (3.11), we find: 

𝐾2(𝑢, 𝑥) =
𝑛+2

𝜇(𝐸𝑛)
{
𝑛+2

4
+ (𝑛 + 4)∑

𝑥𝑖𝑥𝑗𝑢𝑖𝑢𝑗

𝑎𝑖
2𝑎𝑗

2𝑖≠𝑗 +
𝑛+4

4
[2∑

𝑥𝑠
2𝑢𝑠

2

𝑎𝑠
4

𝑛
𝑠=1 +

                                      ∑
𝑥𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 ∑

𝑢𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 − (∑

𝑢𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 + ∑

𝑥𝑠
2

𝑎𝑠
2

𝑛
𝑠=1 )]}  

Let's suppose that (𝑢1, 𝑢2, … . , 𝑢𝑛) belong to the elliptic surface, and 

therefore ∑ 𝑢𝑠
2

𝑎𝑠
2 = 1𝑛

𝑠=1 , we substitute in the last relationship, so we find 

the final formula for 𝐾2(𝑢, 𝑥)is: 
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   𝐾2(𝑢, 𝑥) =
(𝑛+2)(𝑛+4)

2𝜇(𝐸𝑛)
(∑

𝑢𝑠𝑥𝑠

𝑎𝑠
2 +

1

√𝑛+4

𝑛
𝑠=1 ) (∑

𝑢𝑠𝑥𝑠

𝑎𝑠
2 −

1

√𝑛+4

𝑛
𝑠=1 )              

(3.19) 

In the same way, we find 𝐾2(𝑢, 𝑥): 

𝐾2(𝑢, 𝑥) =
(𝑛+2)(𝑛+4)

2𝜇(𝐸𝑛)
(∑

𝑢𝑠𝑥𝑠

𝑎𝑠
2 +

1+√𝑛+5

𝑛+4

𝑛
𝑠=1 ) (∑

𝑢𝑠𝑥𝑠

𝑎𝑠
2 +

1−√𝑛+5

𝑛+4

𝑛
𝑠=1 )       

(3.20) 

3.1.3. The Reproducing Kernel Of the third Order: 

Following the same steps as section 3.1.2, we find: 

                        

𝐾3(𝑢, 𝑥) =
𝛾

6𝜇(𝐸𝑛)
[(𝑡)3 −

3

𝑛 + 6
𝑡]                (3.21) 

   

𝐾3(𝑢, 𝑥) =
𝛾

6𝜇(𝐸𝑛)
[(𝑡)3 +

3

𝑛+6
(𝑡)2 −

3

𝑛+6
∑ 𝑡 −

3

(𝑛+4)(𝑛+6)
𝑛
𝑠=1 ]      (3.22)    

𝑡 = ∑
𝑢𝑠𝑥𝑠

𝑎𝑠
2

𝑛
𝑠=1 ,   𝛾 = (𝑛 + 2)(𝑛 + 4)(𝑛 + 6)  

3.2. The formation of the cubature formula for the Reproducing 

Kernel  �̃�𝟏(𝒖,𝒙),𝑲𝟏(𝒖, 𝒙): 
  For �̃�𝟏(𝒖, 𝒙):  
Let's find the cubature formula in order to algebraic precision 𝑑 = 3, we 

choose           𝑢1 = (𝛼1, 0, … ,0), so −𝑎1 < 𝛼1 < 𝑎1, substitute in (3.6), 
we get: 

𝐻1 ≔
𝑛 + 2

𝜇(𝐸𝑛)

𝛼1𝑥1
𝑎1

= 0 

From 𝐻1: 𝑥1 = 0, substitute in 𝑥1
2

𝑎1
2 +

𝑥2
2

𝑎2
2 ≤ 1, we get 𝑥2 = 𝛼2                

−𝑎2 < 𝛼2 < 𝑎2, so 𝑢2 = (0, 𝛼2, 0,… ,0), substitute in (3.6), we get: 

𝐻2 ≔
𝑛 + 2

𝜇(𝐸𝑛)

𝛼2𝑥2
𝑎2

= 0 

Choose  𝑢3 from 𝐸𝑛⋂(𝐻1⋂𝐻2), we get 𝑥1 = 𝑥2 = 0 form 𝐻1 and 𝐻2  
substitute in 𝑥1

2

𝑎1
2 +

𝑥2
2

𝑎2
2 +

𝑥3
2

𝑎3
2 ≤ 1, we find 𝑢3 = (0, ,0, 𝛼3, 0, … ,0), then we 

find 𝐻3, 𝐻4,… . . , 𝐻𝑛, ⋂ 𝐻𝑖 
𝑛
𝑖=1 is 𝑥1 = (0,0,… ,0), and the number of 

integral points is 2𝑛 + 1, and the minimum number of points according 

to (2.4) is 2𝑛 + 1, where (2𝑏𝑖)
−1 =

𝑎𝑗
2𝜇(𝐸𝑛)

2(𝑛+2)𝛼𝑖
2 . 

 For 𝑓(𝑥) = 1 and according theorem (2.8)we find: 

 𝐶 = 𝜇(𝐸𝑛) (
(𝑛+2)𝛼𝑖

2−𝑛 𝑎𝑗
2

(𝑛+2)𝛼𝑖
2 ) 

  for 𝑲𝟏(𝒖,𝒙): Let's find the cubature formula in order to algebraic 

precision 𝑑 = 2𝑘, as in the previous paragraph:   

𝑢1 = (𝑎1, 0,0,… ,0), 𝑢
2 = (

−𝑎1

𝑛+2
,
𝑎2

𝑛+2
√(𝑛 + 1)(𝑛 + 3), 0,… , )  

𝑢3 = (
−𝑎1

𝑛+2
,
−𝑎2

𝑛+2
√
𝑛+3

𝑛+1
, 𝑎3√

𝑛(𝑛+3)

(𝑛+1)(𝑛+2)
, 0,… ,0 )  

𝑢4 = (
−𝑎1

𝑛+2
,
−𝑎2

𝑛+2
√
𝑛+3

𝑛+1
, −𝑎3√

(𝑛+3)

(𝑛+1)(𝑛+2)
, 𝑎4√

(𝑛+3)(𝑛−1)

𝑛(𝑛+2)
, 0… ,0 )  

 𝑢𝑖 = (
−𝑎1

𝑛+2
, . . . , −𝑎𝑖−1√

(𝑛+3)

(𝑛+4−(𝑖−1))(𝑛+3−(𝑖−1))(𝑛+2)
, 𝑎𝑖√

(𝑛+3)(𝑛−𝑖+3)

(𝑛+4−𝑖)(𝑛+2)
, 0,0 ) 

And: (𝑏𝑖)
−1 = [𝐾1(𝑢

𝑖, 𝑢𝑖)]−1 =
𝜇(𝐸𝑛)

𝑛+3
   

𝑥 = (
−𝑎1

𝑛+2
,
−𝑎2

𝑛+2
√
𝑛+3

𝑛+1
, … , −𝑎𝑛−1√

𝑛+3

20(𝑛+2)
, 𝑎𝑛√

3(𝑛+3)

4(𝑛+2)
)  

the number of integral points is 𝑛 + 1, and the minimum number of is 
  11,  nnMN , For 𝑓(𝑥) = 1 substitute in (2.7), we find:  

𝐶 = 𝜇(𝐸𝑛)
3

𝑛+3
  

3.3. The formation of  the cubature formula for the Reproducing 

Kernel 𝑲𝟐(𝒖, 𝒙), �̃�𝟐(𝒖, 𝒙): 
 For 𝑲𝟐(𝒖, 𝒙): 
Table (1): points and constants of the Cubature Formula (2.7), for 

𝑲𝟐(𝒖, 𝒙), 𝒅 = 𝟒, 𝒏 = 𝟐. 
The constant The points 

𝑎1𝑎2

14
𝜋  𝑢1 = (𝑎1, 0), 𝑢

2 = (
−1+√7

6
𝑎1,

√28+2√7

6
𝑎2)  

 
13−√7

56
𝑎1𝑎2𝜋  
  
 

𝑥1 = (
−1+√7

6
𝑎1,

−7−2√7

3√28+2√7
𝑎2)  

𝑥3 = (
−1−√7

6
𝑎1,

−√7

√28+2√7
𝑎2)  

𝑥4 = (
−1−√7

6
𝑎1,

√7

√28+2√7
𝑎2)  

9+3√7

56
𝑎1𝑎2𝜋  𝑥2 = (

−1+√7

6
𝑎1,

−7+4√7

3√28+2√7
𝑎2)  

The number of integral points is equal to 6, and the minimum number 

of points according to (2.2) is 6, and we note that all points are located 
within the elliptic. 

Table (2): points and constants of the Cubature Formula (2.7), for 

𝑲𝟐(𝒖, 𝒙), 𝒅 = 𝟒, 𝒏 = 𝟑. 
constant The points 
𝑎1𝑎2𝑎3𝜋

15
  𝑢1 = (𝑎1, 0,0), 𝑢

2 = (
√8−1

7
𝑎1,

√40+2√8

7
𝑎2, 0)  

 𝑢3 = (√8−1
7
𝑎1,

9√8−16

7√40+2√8
𝑎2, √

104+64√8

7(40+2√8)
𝑎3) 

ι 𝑥1 = (
√8−1

7
𝑎1,

−8+9√2

7𝜗
𝑎2, 𝜈𝑎3)  

 
 
ω 

𝑥2 = (
√8−1

7
𝑎1,

−8+9√2

7𝜗
𝑎2, 𝜂𝑎3)  

𝑥3 = (
√8−1

7
𝑎1,

−8−5√2

7𝜗
𝑎2, 𝜍𝑎3)  

𝑥5 = (
−√8−1

7
𝑎1,

√2

𝜗
𝑎2, 𝜍𝑎3)  

𝑥8 = (
−√8−1

7
𝑎1,

−√2

𝜗
𝑎2, −𝜍𝑎3)  

 

 
ϱ 

𝑥4 = (
√8−1

7
𝑎1,

−8−5√2

7𝜗
𝑎2, −𝜎𝑎3)  

𝑥6 = (
−√8−1

7
𝑎1,

√2

𝜗
𝑎2, −𝜎𝑎3)  

𝑥7 = (
−√8−1

7
𝑎1,

−√2

𝜗
𝑎2, 𝜎𝑎3)  

Where: 𝜏 = √2268 + 2422√8, 𝜗 = √10 + √2, 𝜍 =
14(√8−1)

𝜏
 

𝜎 =
22+6√8

𝜏
, 𝜂 =

−58+2√8

𝜏
, 𝜈 =

−50+22√8

𝜏
, 𝜄 =

175√2+231

240+1200√2
𝑎1𝑎2𝑎3𝜋  

𝜚 =
287√2−217

240+1200√2
𝑎1𝑎2𝑎3𝜋,𝜔 =

81√2+173

240+1200√2
𝑎1𝑎2𝑎3𝜋  

 The number of integral points is equal to 11, and the minimum number 

of points according to (2.2) is 10 and we note that all points are located 
within the elliptic. 

Table (3): points and constants of the Cubature Formula (2.7), for 

𝑲𝟐(𝒖, 𝒙), 𝒅 = 𝟒, 𝒏 = 𝟒. 
The constant The points 

 
1

54
𝑎1𝑎2𝑎3𝑎4𝜋

2  
𝑢1 = (𝑎1, 0,0,0), 𝑢

2 = (
1

4
𝑎1,

√15

4
𝑎2, 0,0)  

  𝑢3 = (1
4
𝑎1,

√15

20
𝑎2,

3

√10
𝑎3, 0) 

𝑢4 = (
1

4
𝑎1,

√15

20
𝑎2,

1

2√10
𝑎3,

√35

2√10
𝑎4)   

1

18
𝑎1𝑎2𝑎3𝑎4𝜋

2  𝑥1 = (
1

4
𝑎1,

√15

20
𝑎2,

1

2√10
𝑎3,

1

√56
𝑎4)  

 

 
 

1

27
𝑎1𝑎2𝑎3𝑎4𝜋

2  

𝑥2 = (
1

4
𝑎1,

√15

20
𝑎2,

1

2√10
𝑎3,

−5√2

4√7
𝑎4)  

𝑥3 = (
1

4
𝑎1,

√15

20
𝑎2,

−2

√10
𝑎3,

1

√14
𝑎4)  

𝑥4 = (
1

4
𝑎1,

−3√15

20
𝑎2,

1

√10
𝑎3,

1

√14
𝑎4)  

𝑥5,6 = (
−1

2
𝑎1, ±√

3

20
𝑎2, ±

1

√10
𝑎3, ±

1

√14
𝑎4)  

 
 
 

 
1

54
𝑎1𝑎2𝑎3𝑎4𝜋

2  

𝑥7 = (
1

4
𝑎1,

√15

20
𝑎2,

−2

√10
𝑎3, −√

2

7
𝑎4)  

𝑥8 = (
1

4
𝑎1,

−3√15

20
𝑎2,

1

√10
𝑎3, −√

2

7
𝑎4)  

𝑥9,10 = (
1

4
𝑎1,

−3√15

20
𝑎2,

−3

2√10
𝑎3, ±

3

2√14
𝑎4)  

𝑥11,12 = (
−1

2
𝑎1, ±√

3

20
𝑎2, ±

1

√10
𝑎3, ∓√

2

7
𝑎4)  

𝑥13,14 = (
−1

2
𝑎1, √

3

20
𝑎2,

−3

2√10
𝑎3, ±

3

2√14
𝑎4)  

𝑥15,16 =

(
−1

2
𝑎1, −√

3

20
𝑎2, ±

3

2√10
𝑎3, ±

3

2√14
𝑎4)  

The number of integral points is equal to 20, and the minimum number 

of points according to (2.2) is 15 and we note that all points are located 
within the elliptic. 

  For �̃�𝟐(𝒖, 𝒙): 
Table (4): points and constants of the Cubature Formula (2.8), for 

�̃�𝟐(𝒖, 𝒙), 𝒅 = 𝟓, 𝒏 = 𝟐. 
The constants The points 

𝑎1𝑎2𝜋

20
  

𝑢1 = (𝑎1,0), 𝑢
2 = (−

𝑎1

√6
, √

5

6
𝑎2)  
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8√6−3

40√6
𝑎1𝑎2𝜋  𝑥1 = (−

𝑎1

√6
, −

𝑎2

√5
(1 +

1

√6
)) , 𝑥4 = (

𝑎1

√6
,
𝑎2

√5
(1 +

1

√6
))   

8√6+3

40√6
𝑎1𝑎2𝜋  𝑥2 = (−

𝑎1

√6
,
𝑎2

√5
(1 −

1

√6
)) , 𝑥3 = (

𝑎1

√6
,
𝑎2

√5
(−1 +

1

√6
))  

The number of integral points is equal to 8, and the minimum number 

of points according to (2.3) is 8, and we note that all points are located 
within the elliptic. 

Table (5): points and constants of the Cubature Formula (2.8), for 

�̃�𝟐(𝒖, 𝒙), 𝒅 = 𝟓, 𝒏 = 𝟑. 
The constants The points 

2𝑎1𝑎2𝑎3𝜋

45
  

𝑢1 = (𝑎1, 0,0), 𝑢
2 = (

𝑎1

√7
, √

6

7
𝑎2, 0)  

𝑢3 = (
𝑎1

√7
,
𝑎2

√6
𝜐,
𝑎3

√3
√2+

1

√7
)  

(3√7+9)𝑎1𝑎2𝑎3𝜋

90
  𝑥1 = (

𝑎1

√7
,
𝑎2

√6
𝜐,
𝑎3

√3
𝜉) , 𝑥8 =

(
−𝑎1

√7
,
−𝑎2

√6
𝜐,
−𝑎3

√3
𝜉)  

 
(−√7+9)𝑎1𝑎2𝑎3𝜋

90
  

𝑥2 = (
𝑎1

√7
,
𝑎2

√6
𝜐,
−𝑎3

√3

2+√7

√14−√7
) , 𝑥3 =

(
𝑎1

√7
,
−𝑎2

√6
𝜌, 𝛿𝑎3)  

𝑥4 = (
𝑎1

√7
,
−𝑎2

√6
𝜌,−𝛿𝑎3) , 𝑥

5 =

(
−𝑎1

√7
,
𝑎2

√6
𝜌,−𝛿𝑎3)  

𝑥6 = (−
𝑎1

√7
,
𝑎2

√6
𝜌, 𝛿𝑎3) , 𝑥

7 =

(
−𝑎1

√7
,
−𝑎2

√6
𝜐,
𝑎3

√3

2+√7

√14−√7
)  

where 𝜐 = (1 −
1

√7
) , 𝜌 = (1 +

1

√7
) , 𝜉 =

4−√7

√14−√7
, 𝜖 = √

3

14−√7
 

The number of integral points is equal to 14, and the minimum number 

of points according to (2.3) is 14, and we note that all points are located 
within the elliptic. 

Table (6): points and constants of the Cubature Formula (2.8), for 

�̃�𝟐(𝒖, 𝒙), 𝒅 = 𝟓, 𝒏 = 𝟒. 
constants The points 

 
1

84
𝑎1𝑎2𝑎3𝑎4𝜋

2 

𝑢1 = (𝑎1, 0,0,0) 
 𝑢2 = (−

𝑎1

√8
, √

7

8
𝑎2, 0,0)  

𝑢3 = (−
𝑎1

√8
,
−1−√8

√56
𝑎2, √

40−2√8

56
𝑎3, 0,0)  

𝑢3 = (−
𝑎1

√8
,
−1−√8

√56
𝑎2,

−16−9√8

𝛽
𝑎3, √

13−9√8

40−2√8
𝑎4)  

𝐴 𝑥1,2 = (±
𝑎1

√8
, ±

1+√8

√56
𝑎2, ±

16+9√8

𝛽
𝑎3, ±𝜀𝑎4)  

 
𝐵 

𝑥3,4 = (±
𝑎1

√8
, ±

1−√8

√56
𝑎2, ∓

√7

𝛾
𝑎3, ±𝜁𝑎4)  

𝑥5,6 = (±
𝑎1

√8
, ±

1+√8

√56
𝑎2, ±

16−5√8

𝛽
𝑎3, ∓𝜁𝑎4)  

𝑥3,4 = (±
𝑎1

√8
, ±

1−√8

√56
𝑎2, ±

√7

𝛾
𝑎3, ∓𝜁𝑎4)  

 
𝐶 

𝑥9,10 = (±
𝑎1

√8
, ±

1−√8

√56
𝑎2, ∓

√7

𝛾
𝑎3, ∓𝛿𝑎4)  

𝑥11,12 = (±
𝑎1

√8
, ±

1−√8

√56
𝑎2, ±

√7

𝛾
𝑎3, ±𝛿𝑎4)  

𝑥13,14 = (±
𝑎1

√8
, ±

1+√8

√56
𝑎2, ±

16−5√8

𝛽
𝑎3, ±𝛿𝑎4)  

𝑥15,16 =

(±
𝑎1

√8
, ±

1+√8

√56
𝑎2, ±

16+9√8

𝛽
𝑎3, ±

88+25√8

𝜒
𝑎4)  

Where: 𝜒 = √8√40 − 2√8√13− 9√8, 𝜀 =
8+29√8

𝜒
, 𝜁 =

24−11√8

𝜒
  

𝛾 = √40 − 2√8, 𝛿 =
56+7√8

𝜒
, 𝛽 = √56𝛾, 𝐴 =

700+231√8

336(80+4√8)
𝑎1𝑎2𝑎3𝑎4𝜋

2  

𝐵 =
1148−217√8

336(80+4√8)
𝑎1𝑎2𝑎3𝑎4𝜋

2, 𝐶 =
324+173√8

336(80+4√8)
𝑎1𝑎2𝑎3𝑎4𝜋

2  

 The number of integral points is equal to 24, and the minimum number 

of points according to (2.3) is  22, and we note that all points are located 
within the elliptic. 
3.4. The formation of the cubature formula for the Reproducing 

Kernel  𝑲𝟑(𝒖,𝒙), �̃�𝟑(𝒖, 𝒙): 

  For 𝑲𝟑(𝒖, 𝒙): 
Table (7): points and constants of the Cubature Formula (2.7), for 

𝑲𝟑(𝒖, 𝒙), 𝒅 = 𝟔, 𝒏 = 𝟐. 
The points The constant 

𝑢1 = (𝑎1, 0), 𝑢
2 =

(
−381

500
𝑎1,

√104839

500
𝑎2)  

𝜋 𝑟2

30
  

𝑥1 = (
−381

500
𝑎1,

−295339

500√104839
𝑎2)  

−0.01467068687 𝜋 𝑟2  

𝑥2 = (
−381

500
𝑎1,

29661

500√104839
𝑎2)  

0.0961346475 𝜋 𝑟2  

𝑥3 = (
−381

500
𝑎1,

−143039

500√104839
𝑎2)  

0.074657325 𝜋 𝑟2  

 𝑥4 = (
269

500
𝑎1,

−88011

500√104839
𝑎2)  

0.1441217863 𝜋 𝑟2  

𝑥5 = (
269

500
𝑎1,

236989

500√104839
𝑎2)  

0.00326883097 𝜋 𝑟2  

𝑥6 = (
269

500
𝑎1,

64289

500√104839
𝑎2)  

0.1852513736 𝜋 𝑟2  

𝑥7 = (
−191

1250
𝑎1,

−549021

1250√104839
𝑎2)  

0.01281529675 𝜋 𝑟2  

𝑥8 = (
−191

1250
𝑎1,

263479

1250√104839
𝑎2)  

0.1845697863 𝜋 𝑟2  

𝑥9 = (
−191

1250
𝑎1,

−168271

1250√104839
𝑎2)  

0.2471840999 𝜋 𝑟2  

we note that the points 𝑥2, 𝑥4, 𝑥6, 𝑥8, 𝑥9  are located inside the elliptic, 
and the rest of the points are located outside it, The number of integral 

points is equal to 11, and the minimum number of points according to 

(2.2) is  10 

- where 𝑛 = 3: 𝑢1 = (𝑎1, 0,0), 𝑢
2 = (

−443

625
𝑎1,

√194376

625
𝑎2, 0) 

𝑢3 = (
−443

625
𝑎1,

−473124

625√194376
𝑎2, 1.565417474  𝑖 𝑎3), we note that we 

obtained complex values, and therefore it is impossible to obtain 

cubature formula with real points and that is for 𝑑 = 6, 𝑛 = 3. 

- where 𝑛 = 4: : 𝑢1 = (𝑎1, 0,0,0), 𝑢
2 = (

−6656

10000
𝑎1,

√55657719

10000
𝑎2, 0,0) 

𝑢3 = (
−6656

10000
𝑎1,

−110932281

10000√55657719
𝑎2, 1.286247125 𝑖 𝑎3, 0)  

𝑢4 =

(
−6656

10000
𝑎1,

−110932281

10000√55657719
𝑎2, 1.545995034 𝑖 𝑎3, 2.011102263 𝑖 𝑎4)  

it is impossible to obtain cubature formula in the method of  the 

reproducing kernel with real points and that is for 𝑑 = 6, 𝑛 = 4, 
therefore it is impossible to obtain cubature formula with real points 

and that is for 𝑑 = 6, 𝑛 ≥ 3. 

  For �̃�𝟑(𝒖, 𝒙): 
Table (7): points and constants of the Cubature Formula (2.8), for 

�̃�𝟑(𝒖, 𝒙), 𝒅 = 𝟕, 𝒏 = 𝟐. 
The constants The points 

𝑎1𝑎2𝜋

40
  𝑢1 = (

𝑎1

2
,
√3

2
𝑎2) , 𝑢

2 = (
−√3

2
𝑎1,

1

2
𝑎2)  

7𝑎1𝑎2𝜋

54
   𝑥1 = (0,0)  

 
16𝑎1𝑎2𝜋

135
  

𝑥2 = (
−3

4√2
𝑎1,

√3

4√2
𝑎2) , 𝑥

3 = (
3

4√2
𝑎1,

−√3

4√2
𝑎2)  

 𝑥4 = (
−3

4√2
𝑎1,

−√3

4√2
𝑎2) , 𝑥

7 = (
3

4√2
𝑎1,

√3

4√2
𝑎2) 

 
2𝑎1𝑎2𝜋

27
  

𝑥5 = (
−3−√3

4√2
𝑎1,

√3−3

4√2
𝑎2)  

 𝑥6 = (
3−√3

4√2
𝑎1,

−√3−3

4√2
𝑎2)  

𝑥8 = (
−3+√3

4√2
𝑎1,

√3+3

4√2
𝑎2)  

 𝑥9 = (
3+√3

4√2
𝑎1,

−√3+3

4√2
𝑎2)  

The number of integral points is equal to 13, and the minimum number 

of points according to (2.4) is 13, and we note that all points are located 
within the elliptic. 

Table (8): points and constants of the Cubature Formula (2.8), for 

�̃�𝟑(𝒖, 𝒙), 𝒅 = 𝟕, 𝒏 = 𝟑. 
constant The points 
2𝑎1𝑎2𝑎3𝜋

105
  𝑢1 = (𝑎1, 0,0) 

𝑢2 = (0, 𝑎2, 0) 
𝑢3 = (0,0, 𝑎3) 

8𝑎1𝑎2𝑎3𝜋

105
  𝑥1 = (0,0,0) 

2𝑎1𝑎2𝑎3𝜋

35
  𝑥2,3 = (±

1

√3
𝑎1, 0,0), 

𝑥4,5 = (0,±
1

√3
𝑎2, 0) 
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𝑥6,7 = (0,0 ±
1

√3
𝑎3) 

 
2𝑎1𝑎2𝑎3𝜋

35
  

𝑥8,9 = (±
1

√3
𝑎1, ±

1

√3
𝑎2, 0) 

 𝑥10,11 = (±
1

√3
𝑎1, 0,±

1

√3
𝑎3)  

𝑥12,13 = (0,
±1

√3
𝑎2,
±1

√3
𝑎3) 

, 𝑥14,15 = (±
1

√3
𝑎1, ∓

1

√3
𝑎2, 0) 

𝑥16,17 = (
±1

√3
𝑎1, 0,

∓1

√3
𝑎3), 

𝑥18,19 = (0,±
1

√3
𝑎2, ∓

1

√3
𝑎3) 

𝑎1𝑎2𝑎3𝜋

70
  

𝑥20,21 = (
∓1

√3
𝑎1,
∓1

√3
𝑎2,

∓1

√3
𝑎3), 

𝑥22,23 = (
±1

√3
𝑎1,
∓1

√3
𝑎2,

∓1

√3
𝑎3) 

 
The number of integral points is equal to 33, and the minimum number 

of points according to (2.4) is 27, and we note that all points are located 
within the elliptic. 

3.5. Generalization of the reproducing kernel formula: 

 For 𝑲𝒌(𝒖, 𝒙): 
1- The method (1): 

Let's put 𝐸𝑚(𝑢, 𝑥) = 𝐾𝑚(𝑢, 𝑥) − 𝐾𝑚−1(𝑢, 𝑥)  and suppose that  

𝑡 = ∑
𝑢𝑗𝑥𝑗

𝑎𝑗
2

𝑛
𝑗=1  we get: 

                                   𝐸1(𝑡) =
𝑛+2

𝜇(𝐸𝑛)
𝑡 

                              𝐸2(𝑡) =
(𝑛+2)(𝑛+4)

2𝜇(𝐸𝑛)
(𝑡2 −

1

𝑛+2
)  

                          𝐸3(𝑡) =
(𝑛+2)(𝑛+4)(𝑛+6)

6𝜇(𝐸𝑛)
(𝑡3 −

3

𝑛+4
𝑡)  

and in general:     𝐸𝑚 =
(𝑛+2𝑚)!!

𝑛!!𝑚! 𝜇(𝐸𝑛)
𝑃𝑚00…0(𝑡)           

Where 𝑃𝑚00…0(𝑡) are basic polynomials on 𝐵𝑛
(1)

 (a ball of radius 1 in 

ℝ𝑛) (see p172 in [13]), and we can write it by the next formula: 

𝑃𝑚00…0(𝑡) = 𝑡
𝑚 +

∑ (−1)𝑘
𝑚!

2𝑘𝑘! (𝑚−2𝑘)!

[𝑛+2(𝑚−𝑘−1)]!!

[𝑛+2(𝑚−1)]!!
𝑡𝑚−2𝑘

[
𝑚

2
]

𝑘=1
       ;𝑚 ≥ 2  

 then we find: 

𝐾𝑚(𝑡) = 𝐸𝑚(𝑡) + 𝐾𝑚−1(𝑡) 

𝐾𝑚(𝑡) =
(𝑛 + 2𝑚)‼

𝑛‼𝑚!  𝜇(𝐸𝑛)
𝑃𝑚00…0(𝑡) + 𝐸𝑚−1(𝑡) + 𝐾𝑚−2(𝑡) 

𝐾𝑚(𝑡) =
(𝑛+2𝑚)‼

𝑛‼𝑚! 𝜇(𝐸𝑛)
𝑃𝑚00…0(𝑡) +

(𝑛+2𝑚−2)‼

𝑛‼(𝑚−1)! 𝜇(𝐸𝑛)
𝑃𝑚−100…0(𝑡)+. . +𝐾0(𝑡)  

𝐾𝑚(𝑡) =∑
(𝑛 + 2𝑗)!!

𝑛!! 𝑗! 𝜇(𝐸𝑛)

𝑚

𝑗=0

𝑃𝑚00…0(𝑡) 

2- The method (2): 

Let's put 𝑛 = 2 in 𝐾1(𝑢, 𝑥), 𝐾2(𝑢, 𝑥), 𝐾3(𝑢, 𝑥), and let's assume that: 

             𝜗 = (
𝑢1𝑥1

𝑎1
2 +

𝑢2𝑥2

𝑎2
2 ) , 𝜆 = 2  

we find that the relations of 𝐾1(𝑢, 𝑥), 𝐾2(𝑢, 𝑥), 𝐾3(𝑢, 𝑥)  are written in 
the form:  

𝐾1(𝑢, 𝑥) =
1

𝑎1𝑎2𝜋
[2𝜆𝜗 + 1]   

𝐾2(𝑢, 𝑥) =
1

𝑎1𝑎2𝜋
[2𝜆(1 + 𝜆)𝜗2 + 2𝜆𝜗 − 𝜆] 

𝐾3(𝑢, 𝑥) =
1

𝑎1𝑎2𝜋
[
4

3
𝜆(1 + 𝜆)(2 + 𝜆)𝜗3 + 2𝜆(1 + 𝜆)𝜗2 − 2𝜆(1 +

𝜆)𝜗 − 𝜆]  

The polynomials in the right side are Gegenbauer polynomials, and in 

general for    𝜗 = ∑
𝑢𝑖𝑥𝑖

𝑎𝑖
2

𝑛
𝑖=1   and 𝑛 = 2,3,4,…,we find: 

     𝐾𝑘(𝑢, 𝑥) =
1

𝜇(𝐸𝑛)
[𝐶
𝑘

𝑛+2

2 (𝜗) + 𝐶
𝑘−1

𝑛+2

2 (𝜗)]  ; 𝑘 = 1,2, … 

  For  �̃�𝒌(𝒖, 𝒙): 
In the same way as before, we find:  

                           𝐾𝑘(𝑢, 𝑥) =
1

𝜇(𝐸𝑛)
𝐶
𝑘

𝑛+2

2 (𝜗)  ; 𝑘 = 1,2, … 
 
4. Examples: 
 

Table (9): Examples 
 

Exact 

solution 

Approximation 

solution 

Integral 

0.5𝜋 
 
 

𝑑 = 5 
 𝐼1 = 0.59930582𝜋 

𝑑 = 7 
 𝐼1
= 0.5111610834𝜋 

𝐼1 = ∬  𝑙𝑛(√𝑥2 + 𝑦2 +
𝐸2

1)𝑑𝑥𝑑𝑦  
𝑎1 = 𝑎2 = 1 

12.96996705𝜋 
 

𝑑 = 5 
 𝐼2
= 14.90205909𝜋 

𝑑 = 7 
 𝐼2
= 13.23574473𝜋 

𝐼2 =∬𝑒𝑥
2+𝑦2𝑑𝑥𝑑𝑦

Ω

 

Ω is the quarter of the episode 

Ω = {𝑥, 𝑦;
1

4
≤

𝑥2

4
+
𝑦2

4
≤ 1}  

12.8 𝜋 
 

𝑑 = 5 
 𝐼3
= 11.08275398𝜋 

𝑑 = 7 
 𝐼3
= 12.84212162𝜋 

 

𝐼3 =∬(𝑥2 + 𝑦2)
3
2⁄ 𝑑𝑥𝑑𝑦

𝐸2

 

𝑎1 = 𝑎2 = 2 

5. Conclusions 
       The reproducing kernel method is distinguished from other 
methods in that it can be applied regardless of the dimension of space 

and whatever the shape of the studied area, and  Through the above, we 

find that it is useful to increase the degree of polynomials to obtain a 
cubature formula with higher algebraic precision, and the formula of 

reproducing kernel can be generalized for any degree of the polynomial 

to obtain it without conclusion, we have been able through what we 
previously concluded, that cubature formulas (2.7) and (2.8) can be 

written in the form:  

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅ ∑
1

𝑏𝑖
𝑓(𝑢𝑖) + ∑ 𝐶𝑗𝑓(𝑥

𝑗)𝑠
𝑗=1

𝑛
𝑖=1Ω

  

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅ ∑
𝜇(Ω)

𝐶
𝑓(𝑢𝑖) + ∑ 𝜇(Ω) ℎ𝑖𝑓(𝑥

𝑗)𝑠
𝑗=1

𝑛
𝑖=1Ω

  

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅ 𝜇(Ω) (∑
1

𝐶
𝑓(𝑢𝑖) + ∑  ℎ𝑖𝑓(𝑥

𝑗)𝑠
𝑗=1

𝑛
𝑖=1 )

Ω
  

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅ 𝑚𝑒𝑠𝑠(Ω) (∑
1

𝐶
𝑓(𝑢𝑖) + ∑  ℎ𝑖𝑓(𝑥

𝑗)𝑠
𝑗=1

𝑛
𝑖=1 )

Ω
  

1

𝑚𝑒𝑠𝑠(Ω)
∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅ ∑

1

𝐶
𝑓(𝑢𝑖) + ∑  ℎ𝑖𝑓(𝑥

𝑗)𝑠
𝑗=1

𝑛
𝑖=1Ω

  

And in this way: 

 
1

𝑚𝑒𝑠𝑠(Ω)
∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 ≅ ∑

1

2𝐶
(𝑓(𝑢𝑖) + 𝑓(−𝑢𝑖)) +𝑛

𝑖=1Ω

∑  ℎ𝑖𝑓(𝑥
𝑗)𝑠

𝑗=1  

𝑚𝑒𝑠𝑠(Ω): area size 
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