An-Najah University Journal for Research — A

Natural Sciences

The Approximate Integrals By The Reproducing Kernel Method On
The Elliptical Region E,, In The Space R"

Hiba Aslan *!, Dr. Hamed Abbas 2

Accepted Manuscript, In press

Abstract: In this paper, we applied the reproducing kernel method on elliptical region, we establish the formulas of the reproducing kernel from
several degrees and generalized those formulas whatever the dimension of space, we obtained all surfaces, points, and their constants for compensation
in the cubature formula, tables are included to show our results and examples to show the approximation solution in this method.
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1. Introduction

The Reproducing Kernel Method was first discovered in 1968 by the
scientist Myscovskikh in order to calculate the double integrals in
regions that have a center of symmetry and that do not have a center
symmetry [[11], [12]], Bykova used the Reproducing Kernel Method to
form the cubature formula as the integral region is symmetric in R?[2],
The important development of the Reproducing Kernel Method was
obtained by Méller in 1973, where he was able to prove the theorems
and found the cubature formula with 2k + 1 algebraic precision in the
case of symmetric regions [7], and 2k in the case of asymmetric
regions[[8],[9]], In the 1990s, Myscovskikh contributed to the
development of the Reproducing Kernel Method and to finding the
minimum number of integrative points [[1], [15], [16]], and in 2001, The
cubature formula on the square with a weight function

1 1

(1 —x%)2(1 — y?)z was studied [4], in 2003, the formulas of cubature
formula was collected to approximate multiple integrals and to study the
cubature formula on the unite ball [[3],19]], in 2004, the cubature
formula was studied on the simplex area and the surface of the unite ball
[18], and in 2006 the cubature formula was studied on the cube [10], in
2008 the cubature formula was studied on the hexagon and the triangle
[20], in 2012, conditions were set for the existence of cubature formula
[6], in 2014, periodic functions were used to find the cubature formula
for the simplex [5], in 2020 the cubature formula was studied using the
Gaussian weight function [17].

The current research in this field revolves around the study of
properties of the Reproducing Kernel, the application of this method in
wider areas of integration , and study this method in Sobolev spaces, and
obtaining new generalized cubature formula that can be used to calculate
the approximate value of multiple integrals.

2. Material And Methods

Definition 2.1. Cubature Formula: (see [13],[14]) The cubature formula
is an approximation equality for calculating the approximate value of
the multiple integrals by specifying a number of points and finding a
number of constants, and it is given as:

1= [ w@ ez 66 @1
j=1

Where x/ = (x{,x},...,x3);j = 1,...,N are different points two by
two and they are called integration points or cubature formula nodes,
N the number of integral points, C; the constants corresponding to
those points (in this article C; € R), Q integrative area E,,, f(x) the
function to be integrated dx = dx;dx, .....dx, and w(x) the weight
function even, check:

Jo, 9)dx >0, 0(x) 20&x €0 = —x€Q &w(x) = w(-x)

We say (1-1) has an algebraic precision d , if it is transformed into a
true equality, when the degree of the integral polynomial f(x) does not
exceed d.

Theorem 2.1. Suppose that Q has internal points, we have two cases:
_if the cubature formula (1-1) has d = 2k algebraic precision, then the
number of nodes of cubature formula achieves the inequality:

NZ;{=M(n.m)=M ;m=[§] (2.2)

n!m!
_if the cubature formula (1-1) has d = 2k + 1 algebraic precision, and
if 6 is not among the nodes of cubature formula, then the number of
nodes of cubature formula achieves the inequality:
{2()( —v) ;m:odd number
N >
2v ; m: even number
d
m= [;]; x=Mmm)
and if 6 is among the nodes of cubature formula, then the number of
nodes of cubature formula achieves the inequality:
{2()( —v)—1 ;m:odd number
N =
2v+1 ; m: even number

(23)

(e))

Where v the number of uneven units of term which degree does not
exceed k with n variable.

Definition 2.2. Reproducing Kernel: It is a polynomial with 2n a
variable used in cubature formula with even algebraic precision
d = 2k is given by the formula:

X
K 2) = ) FGOF() 25)
i=1
while the Reproducing Kernel for cubature formula with odd algebraic
precision d = 2k + 1 is given by the formula:
X
Re(w2) = ) F@F® 26)
i=1

Where  u = (uy, Uy, ..., Uy), X = (X1, %5, ..., Xp,), F;(x)Orthonormal
polynomials on E,, with n variable, the degree of F;(x) in (2.6) is
s < k (if kis an odd number then s = 1,3,5,.., k and if k is an even
number thens = 0,2,4,.., k ), the degree of F;(x) in (2.5)iss < k(s =
0,1,2,3,..,k)

To form the cubature formula, we use the following two theorems:
Theorem 2.2. (see [13],[14]) Assuming that ul,u?,....,u™ points
satisfy the condition K, (u’,u/) = b;6;;, and N}L, H; consist of points
x/;j=1,..,5;s =k™ where H;:=K,(u',u})=0;i=1,..,n, The
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exact cubature formula exists for polynomials whose degrees do not
contiguous 2k:

C1l. N :
de= ) —f! Cf(x! 2.7
J, weoreoa ;bif(uH;;f(X) @7)

The number of integral points: is the sum of the number of points x/
plus the number of points u'

Theorem 2.3. (see [13],[14]) Assuming that u',u?....,u"™ points
satisfy the condition K, (u’,u/) = b;8;;, and N, H; consists of
pointsx/;j = 1,..,s;s = k™ , then the cubature formula can be
formed which algebraic precision 2k + 1.

o1 . .
| of e = Z 25 (PG + F-u)

+Zij(xj) (2.8)

The number of integral points: is the sum of the number of points x/
plus the number of points u‘ and plus the number of points —u’.

3. Results And Discussion

E,elliptic in the spaceR™:

_ [ 2 x5\ 2 X\ 2
E, = {x €RY; (a—l) + (a—z) Foet (Z) <
integral P, = [x%dx on E, whereas a = (a, ..., ;) x =

(x4, ..., x,,) if one of the ; is an odd number, then P, = 0, butif &; an
even numbers, we can write them in the form a; = 2q;, then we find:

1}, Let's evaluate the

slal=a; + -+ a, (3.1)

n a+1
n ) e T
Pzz:l_[ a:tl+1 1= ( 2 )
i=1

(lal +n 1)

By the (3.1) we found the Orthonormal Polynomials (zero, first, second
and third degree with n varible) on E,, by Using schmidt's role:

Letitbe y = (n + 2)(n + 4)(n + 6), u(E,) = # we find:

1
Fg = (3.2)

Vu(E)

pre [PE2X g, (33)
ET JeEDa S ¢
([n+3-Dn+2)@m+a)|x? 1 (O o
IJ 2t 2—Du(Ey)  |a2 Tn+3—i Za?_l =
Ff,:{ =t (3.4)
| m+2)(n+4) xx; .
k aaiu(Ey)  a o’

(n+5-01 a? Lzl:xf 1 <
“’ \JZ(n+4 L)alaj,u(E) n+5—i _1a§ it<J

F3 (n+5-0Da [ 2 3af <Zx_‘z_1>]xi;i:j,k

”‘_\j()(n+2—l)au(E) +n+5—i 4
s

F = L 35)
nm+3-0D41 24 a? fo 1 P>
Fiy \jz(n+2—1)ala,u(E) n+3-i\La@ Xt >
=
2

Fije = | mma s
J aiaf aiu(E,)

3.1. Finding The Reproducing Kernel:
3.1.1. Finding The Reproducing Kernel Of The First Degree:

XXXy iEjEEK

n
n+2 U X

K (ux) = -
! u(E,) & a?
Jj=1

(3.6)

K. _R R 1 Tl+2 ] 3.7
A R AP

3.1.2. Finding The Reproducing Kernel Of The Second Degree:
The Reproducing Kernel is given by the formula:

Ky (u,x) = e T 2= VFFOFP ) + X FF(OF (W)
(3.8)
Substitute (3. 2) and (3.4) in (3.8), we get:
Ro(uwx) = = + N B 2 [U] )] + By FEGOF (W)
(3.9)
Whereas:
_ ) o uf 1 j-1ud
T U= a? + n+3-j (25=1 a? )
(3.10)

i jo1xd
X. aIZ' * n+3-j (ZS=1 a? )
Relationship (3 9) can be written as:

n+3-j [Ul] j= 1xs
Ralu, ) = s+ N EL 2L [y L vy, T i
U
N YT 1n[+ZJ]] + Niej FE (O FF (u)
Kz(u,x) _ M(E ) +Sz + 53) 4 2t (n+2)(n+4) lel XX jUUj

1(En) al-zajz-
(3.11)
Let's find S;,S,,S;:We take out the indexed sum n inS;, then we

replace each j with a s so we find:
)
$1 = g2 Uni + B3 o 5 WUs1 2
(3.12)

We make a substitution in the addition operation in S,, and we find:

S Uj
S, =St (3.13)
Adding (3.12) and (3.13), We get:
3 12§
S +S, = ﬂunx,% + 2;1112—354 (3.14)
Whereas:
Sy =Us+3n sm — (3.15)
Substituting (3. 10) into (3. 15) we get:
us s—1ud 1 n 1y
54 _as n+3- SZ aS n+3 -5 J=S n42— -ja ?+
j- 1“t 1
/ S (n+2— ])(n+3 /)2 ZJ =S (n+2—j)(n+3-j) (3.16)

We make a substitution in the order of the sum in fifth term, which we
will denote by the symbol Ss in (3.16), so we find:

u? u?
S. = ys-1k n—1Ut
s = Xi=1 22] =5 (n+3- ])(n+2 5] X azz/ 1 (43— ])(n+2 )]

The sum in (3.17) can be written in the form:
n 0t 1 1
J=S (n+3-j)(n+2—-j) 2 n+3-s
e = = — (3.18)
J=t+1 (ni3-j)(n+2—-j) 2 n+2-t )
Substituting (3.18) into (3.17), then substituting the result into (3.16)
and then grouping the terms, we find: S, = = + Z" “‘
substituting S, into (3.14), we find:

2
_yn X (us  lygn us _ 1
S1+5; =251 z(2+_ s=1,2 7 5
S

(3.17)

2 2

Let's find S5:
[uj] 1 j—1ué
-5, =57 I —yn ’ - —S —
S =1 p4o—j J=1p4p-j a + 2/ 1 (n+2- j)(n+3 /)Z

n 1
J=1 (n42-j)(n+3-))

_o —lyn ¥ __
S5 = 2 4s=1 2(n+2)
And therefore s =S, + 52 + S5 is:

_1 n X3u} s n  ud n  uj 5 _n_
5_5[225 +Zs 1 z s=1,2 s=1 z+Zs 1 z
'S

a 77.+2

Substitute in (3.11), we frnd

= +2 (n+2 XX uu +4
Ro(w,x) = 2002 4 (4 4) T e £ By

x2 u? s
L, (T T z)]}
Let's suppose that (uq,u,, ....,u,) belong to the elliptic surface, and
2
therefore Z?=1% = 1, we substitute in the last relationship, so we find

the final formula for K, (u, x)is:
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= _ (m+2)(n+4) n UsXs 1 n UsXs 1

Ky (u, x) = 2u(En) (Zs:l a? +\/m)( s=1 g2 \/m)
(3.19)
In the same way, we find K, (u, x):
Kz(u x) — (n+2)(n+4)( n o UsXs + 1+\/n+5)( n UsXs + 1—\/n+5)

2u(En) s=1 ag n+4 s=1 a? n+4

(3.20)
3.1.3. The Reproducing Kernel Of the third Order:
Following the same steps as section 3.1.2, we find:

_ 3
Ry x) = [(t)3 -t (3.21)

14
6u(E,)

[+ =7 - 23 e - (3:22)

~ 3
Ky(ux) = (E ) n+6 m]
t=yr 1“;);5, y=m+2)(n+4)(n+6)
3.2. The formation of the cubature formula for the Reproducing
Kernel K, (u,x),K;(u,x):

o For K;(u,x):

Let's find the cubature formula in order to algebraic precision d = 3, we

choose ul = (a,0,...,0), s0 —a; < a; < a4, substitute in (3.6),
we get:
n+2a;x;
1= =0
#(En) a,

2 2
From H;: x,; =0, substitute in —1+X—2<1 we get x, =a,

—a, < a, < ay, 0 u?=(0,a,0 0) substltute in (3.6), we get:
n + 2 A%,

2= =0

M(En) a;

Choose u3 from E n(H1 N H,), we get x; = x, = 0 form H, and H,

substitute i |n = + + < 1,wefind u® = (0,,0, a3, 0, ...,0), then we

find H3,H4, Hn, nl:lHi is x! =(0,0,...,0), and the number of
integral points is 2n + 1, and the minimum number of points according

2
to (2.4) is 2n + 1, where (2b,)"! = ;B

2(n+2)azi2 '

For f(x) = 1 and according theorem (2.8)we find:
(n+2)al-z—n a?
€ = ucey) (2]

(n+2)ai2
e o for K, (u,x): Let's find the cubature formula in order to algebraic
precision d = 2k, as in the previous paragraph:

u! = (,00,...00,u% = (72,22 @+ D +3),0,...,)

n+2 n+2

O P / nn+3)
u = <n+2 "n+24n+1’ s (n+1)(n+2)’ 0,.. '0 )
ut = (—a1 —ay ’n_+3, J (n+3) J(n+3)(n—1)’0 ".'0>
n+2’ ' n+24 n+1 (n+1)(n+2)’ n(n+2)
i _ [ - (n+3) ) (n+3)(n—i+3)
w= <n+z""' i1 (n+4—(i—1))(n+3—(i—1))(n+2)'al\/(n+4—i)(n+2)'0'0>
S (h-1 — i iy]-1 — H(En)
And: (b)) = [Ky (d, u))]* = 222
—a; —a; |n+3 3(n+3)
n+2’ n+2n+1’ 20(n+2)‘ n 4(n+2)
the number of integral points is n + 1, and the minimum number of is
N >M(n1)=n+1, For f(x) = 1 substitute in (2.7), we find:
3
C=uE)
3.3. The formation of the cubature formula for the Reproducing
Kernel K,(u, x), K,(u,x):
o For K,(u,x):

Table (1): points and constants of the Cubature Formula (2.7), for
K,(u,x),d =4,n=2.

The points The constant
—1+v7 28427 Qdz
u = (a,,0),u? = ( PR Ua— az) "
ol = (—1+ﬁ -7-2J7 a )
6 V3/28+2y7 2
13—V7
3 _ (-1=V7 -7 a,a,T
x° = a, a, 56
6 28+2V7
x* = (_1_ﬁa 7, )
6 V.28+2y7 2
X2 = (—1+\/7a =7+4V7 a ) 9+3ﬁa T
6 1!3 28+2v7 2 56 142

The number of integral points is equal to 6, and the minimum number

of points according to (2.2) is 6, and we note that all points are located

within the elliptic.

Table (2): points and constants of the Cubature Formula (2.7), for
K,(u,x),d =4,n=3.

The points constant
— = aiazazm
ul = (ay,0,0),u? = (Qa 40+2\/_a 0) 15
ud = VE-1 9V8-16 104+64V8
T\ W Taoras 2 7(a0ezvE) B
1 (v’ 1 —8+9\/— ) i
X = Tal, a,,vas
2 (v§—1 —8+9\/— )
X° = Tal, a,,nas
V8-1 —8 s\F
= (a0  ay 0)
5 —/8-1 \/— w
= (25 eaas)
g_ (—V8-1 =2
0= (a4 —ga)
4 _ (\/5—1 —-8-5V2 )
Xt =\ A A, 00
x6 = (_ﬁ_la a,,—oa )
= 5 A1y Ay, 3 Q
7 _ —/8-1
x ( —— az,aa3)
Where: 7 = /2268 + 2422v/8,9 = 10 + v2,¢ = M
22+6V8 —58+2v8 —50+22V8 175v2+231
= N = )V = = a,a,asm
T T T 240+1200v2
_ 287W2-217 _ 81v2+173
03T, O = 120075 (10243

T 240+1200y2
The number of integral points is equal to 11, and the minimum number
of points according to (2.2) is 10 and we note that all points are located
within the elliptic.

Table (3): points and constants of the Cubature Formula (2.7), for
K,(u,x),d=4,n=4.

The points The constant

u! = (ay,0,0,0),u? = Gal,gaz,0,0)

3 (la Ea 24 0)
20 "2 v10 ¥
u4_(1 \/ﬁ L, x/ﬁa)
B 2V10 3'2J_o 4

L a,a,a5a,m?
541234

1 1 \/ﬁ 1 ) ia o QalLa T2
xl=(=a 10,0304
(4 150 2370 3'F s 18
xz _( a \/ﬁ 1 as —5\/_a )
150 %2575 % 4\/»
X3 = ( a Vis - -2 )
- 1750 %2 75 3'\/_
-3V15 1 i511512113,‘147'[2
o T T5a a 27
(4 A0 Y2 G 3’J_ 4)

56 — [ Z1 1
X —(7‘11;"', az'_\/—a& ﬁaz})

x7 = (2,4, 2a Za
4 V20 PT0  4f7 4

8 =(1qg —3\/Ea t z,
T\aTV 20 T2yi0 Y 704

910 _ (1. -3Vis -3 3 )
x7P =(-a a,,——az;, t——a
(4 L0 "ay10 YT 2v1a 4

11,12 — (1 3 2

x = (7011,1 /5012, Fa3,+\ﬁa4
1314 _ (-1 3

x (2 al'\ 20a2’2Fa3’ 2\/7 >

x1516 —

L q,a,a;a,7?
54 142434

Za,- Pa,t—ta,,t——a
2 V20 7 T 2yT0 Y T 2yTa 4

The number of integral points is equal to 20, and the minimum number
of points according to (2.2) is 15 and we note that all points are located
within the elliptic.
e o For K, (u,x):
Table (4): points and constants of the Cubature Formula (2.8), for
K,(u,x),d =5n=2.
The points The constants

a 0,1
1_ 2 _ ay 5
ul = (ag0)u? = (_ﬁ’\ﬁ%) 20
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The number of integral points is equal to 8, and the minimum number

of points according to (2.3) is 8, and we note that all points are located

within the elliptic.

Table (5): points and constants of the Cubature Formula (2.8), for
K,(u,x),d=5mn=3.

The points The constants
1_ 2_f[a e 201a2a3m
u —(a1:0.0);u =\ 7az,0 45
w= (2202 2+2)
1_ (% 92,9 8 — (3V7+9)aazazm
x —(\/_ N ) x T
4 ~4, 43
( 7' V6 )
2 _ (% 82, 203 207\ 3 _
x _( 7' V6 3,/14_\/7) X = 5
(ﬂ —ay sa ) (=V7+9)aiazasm
V7' e PR 90
4= (% 2%, _ 5 _
x _(7'\/gp' 6!13),)(' =
—-a; az
(e —0as
6 — (% 22 7 —
x —( ﬁ,\/gp.Sag),x
(_al —az as Z+f)
\/—w/14 V7

Wherev=(1—77),!)2(14'%)'5:%'6: ’14:/7

The number of integral points is equal to 14, and the minimum number

of points according to (2.3) is 14, and we note that all points are located

within the elliptic.

Table (6): points and constants of the Cubature Formula (2.8), for
K,(u,x),d=5n=4.

The points constants
ut = (a4,0,0,0)
2 _[_a |7 1
ut= ( @,\/;az,o,o) 84a1a2a3a4n
3 _[_a1 -1-V8 40— zf
u’ = N a,, as, 0, O)
Y O e —16—9\/§a 13—9\/§a
T\ B VB 7 g ¥y a0-2v3 *
12 _ a; , 1+V8 16+9V8 A
X = (i@,i—ﬁ Azt —— ag,irsa4)
34 _ a; , 1-V8 V7
Xt = (i@’i—% a + y ag,i-(a4) 5
56 _ (191 4 148 16-5vV8  —
x —(i B‘i__56 a + 3 a3;+5a4)
34 _ (L0 4 1-V8 V7o
x>t = (i\@,i‘ = az y a3;+(a4)
910 _ (48 4 1-V8 V7 -
x710 = (i—\/g,i- N a,,+ ” a3,+8a4) c
11,12 _ ay 1-V8 v7
X —(i S'i = az,iya3:i5a4)
1314 _ a; , 1+/8 16-5V8
K314 = (£, £ 58, + ; a5, +8a, )
x1516 —
a, 1+\/— 16+9\/— 88+25V8
(£ £ 0y, £ 2200, 1 20, )
Where: y = V840 — 2v/8v/13 — 98, ¢ =8+ZX—”§,{ =%§
_ _ _56+7VB , _ _ 700+231V8 2
Yy =v40—-28,6 = =B =56y,A= Tra(a0rays) 102 0aT
B = 1148—217\/§a aaa,? C = 324+173v8 P
" 336(80+4v8) 1 273 4T " 336(80+4v8) 1 23 4T

The number of integral points is equal to 24, and the minimum number
of points according to (2.3) is 22, and we note that all points are located
within the elliptic.

3.4. The formation of the cubature formula for the Reproducing
Kernel K;(u,x), K;(u,x):

e For K;3(u,x):
Table (7): points and constants of the Cubature Formula (2.7), for
Ki;(u,x),d =6,n=2.

The points The constant
ul = (ay, O)IUZ = mr?
(—381 V104839 30
500 V" 500 2)
2
1 (381 —295339 —0.01467068687 T r
* = (500 % Soovinass az)
2 _ (381 29661 0.0961346475 m r?
= ( s00 M 500\/104839‘12)
X3 = (*331(1 —143039 ) 0.074657325  r?
500 ~1'500/T04835 2

4 _ (269 a —88011 _-sso1 ) 0.1441217863 m r?
500 1’ 500704839 2
2
x5 = (269 q,, 2% 236989 az) 0.00326883097 it r
500 1’ 500104839
X0 = (a2 _g,) 0.1852513736 7 12
500 1’500,/104839
x7 = ( “19i8 —549021 L ) 0.01281529675 r r?
1250 1’ 1250104839 2
X0 = (g, 2o Y 0.1845697863 7 12
1250 1’ 1250704839 2

0.2471840999 7 r2

9 _ (191 -168271
X' =\, =0,
1250 1"1250 104339

we note that the points x2, x*, x° x8 x° are located inside the elliptic,
and the rest of the points are located outside it, The number of integral
points is equal to 11, and the minimum number of points according to

(2.2)is 10
-wheren = 3: u' = (a,,0,0),u? = (%al, 1::276 az,O)

3 _ 443 —473124 .
u? = (625 a1,625ma2,1.565417474 la3), we note that we

obtained complex values, and therefore it is impossible to obtain
cubature formula with real points and thatis for d = 6,n = 3.

A 5 _ (—6656 V55657719
-wheren=4::ul = (al,0,0,0),u = (10000 1,W 2,0,0
= (—6656 -110932281

10000 1 1000055657715 2 1.286247125 i a,, )

ut =
6656 —110932281
(e, R 0,,1.545995034 i a;,2.011102263 { a,)

it is impossible to obtain cubature formula in the method of the

reproducing kernel with real points and that is for d = 6,n = 4,

therefore it is impossible to obtain cubature formula with real points

and that is for d = 6,n = 3.

e o For K;(u,x):

Table (7): points and constants of the Cubature Formula (2.8), for
Ki(ux),d=7n=2.

The points The constants
1 (a3 2o (2B, 1 e
u _(2’2a2)'u _(2 al’zaz) 40
xl — (0'0) 7a;t:2n
2 (B B 3o (B 2B
x _(4\/; 1'4\f ) x (4ﬁa1’4“ga2) 16aia,m
4 RER
x (w— 1'4\/" ) (‘/_a ‘4 2a2) 135
5 _ f V3-3
x ( R az) S
6 = (3 \/_ 33, ) —_—
wz M B 27
8 _( 3+\Fa V3+3 )
e e @
X9 = (3+\/§ —\/§+3a )
“\az TV 4z 2

The number of integral points is equal to 13, and the minimum number

of points according to (2.4) is 13, and we note that all points are located

within the elliptic.

Table (8): points and constants of the Cubature Formula (2.8), for
K;(u,x),d=7n=3.

The points constant
ul — (a1,0,0) 2ajaza3m
u? = (0,a,,0) 108
U = (0,0, a3)
xl — (0,0,0) 8ajazasm
105
x%3 = +ia 0,0 Zatatan
= _\/g 1, Y,V |, 35
1
x* = (O,i—a ,0)
\/§ 2
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Table (9): Examples

1
x67 = (0,0 i—a3)
3
1 1
89 = (+—a, +— ,0)
x (_ﬁal_ 30.2 2a,aa3m
K1011 — (i%al.o.i%% 35
+1 +1
x1213 = 01—_a21__a3>
A
R
3 3
+1 F1
1617 — (—_allo‘_ag)'
3 3
1 1
x1819=(0,i—a ,1—(1)
32T 5%
- - T 10,037
22021 — +—1¢11.+—1az,+—1a3 ‘ ftnn
3 3 3
+1  F1 +1
xzzz3_<—_a'_a' a>
V3 "3 Yy3

The number of integral points is equal to 33, and the minimum number
of points according to (2.4) is 27, and we note that all points are located
within the elliptic.
3.5. Generalization of the reproducing kernel formula:
e For K, (u,x):

1-  The method (1):
Let's put E,,,(u, x) = K,,,(u, x) — K,,_, (v, x) and suppose that

—_yn W
P
j

n+2

E (t) =
1(() o) t
_ (n+2)(n+4 2 _ 1
E,(6) = 2u(En) (t n+2)
(n+2)(n+4)(n+6) 3
Es() = 6u(En) (t n+4 t)
R n
and in general:  E,, = —~r2mt ®

Tt (B Pnoo..o
Where P00 _o(t) are basic polynomials on B,EU (a ball of radius 1 in
R") (see p172 in [13]), and we can write it by the next formula:

Proo.. o(t) =t"+

[m] e om [nkamek=DI ook
h ( 1f) czjkk!(m—zk)! [n+2(m—1)]! sm =2
then we find:
Kn(t) = E(m(t) + 1§m_1(t)
n+2m)!
Kn() = meoomo(f) + Epn-1(6) + Kin—2(8)
_ (n+2m)t (n+2m-2)!!
@® = W Proo..o(t) F DRy 'm=100..0(t)+.. +Ko (t)
(n+ 2!
K, (t) = TN t
m( ) < n”] #(E ) mOO 0( )

2- The method (2):
Let's putn = 2 in K; (u, x), K, (u, x), K5 (u, x), and let's assume that:

9= (”a—" + %),1 =2
we find that the relations of K; (u, x), K, (u, x), K5 (u, x) are written in
the form:

1
Kl(u, X) = m[zlﬁ + 1]
142

1
Kz(u, x) = ——[24(1 + 2)0% + 229 - 1]

Ks(u,x) =

Do — A]
The polynomials in the right side are Gegenbauer polynomials, and in

general for 9 = Z?=1u;f and n = 2,3,4, ...,we find:

i

[ A1+ A)(Z F 9%+ 2A(1 + D)9% — 22(1 +

K, (u,x) =

oo For K, (u,x):
In the same way as before, we find:

n+2
Rwx) = —=C7 @) sk =12,..

1 n+2 ’".+2
H(E)[c ®) +C, (19)] k=12,

4. Examples:

Integral Approximation Exact
solution solution
I, = n(/x2 +y2 + d=5 0.57
1= Mg, i Y I, = 0.599305821
l)dxdy d=7
a,=a, =1 I
= 0.5111610834n
d=5 12.969967051
I, = J’f eV dxdy I
o = 14902059091
is the quarter of the eplsode.Q a=7
I
<X 4Y < 2
o=l =t} | B
d=5 1287
I3 = f (x? + yz)a/zdxdy 13
7 = 11.0837539871
a,=a, =2 d=7
I3
=12.84212162n

5.. Conclusions

The reproducing kernel method is distinguished from other
methods in that it can be applied regardless of the dimension of space
and whatever the shape of the studied area, and Through the above, we
find that it is useful to increase the degree of polynomials to obtain a
cubature formula with higher algebraic precision, and the formula of
reproducing kernel can be generalized for any degree of the polynomial
to obtain it without conclusion, we have been able through what we
previously concluded, that cubature formulas (2.7) and (2.8) can be
written in the form:

Jo @GOfG)dx = X, - =) + X5 Gf ()
Jy @G f()dx = Z{Ll@f(u‘) + T3ey () hif ()
[y @COFCOdx = p(Q) (s @) + 352, hif ()
J, o) f()dx = mess(Q)( o f(ul) +Xi hl-f(xj))
mf w(Of ()dx = Ty ¢ f @) + Tioy hif ()
And in this way:
mess(n)f w(x)f(x)dx - L 1%¢ (f(ul) +f( ul))
]=1 h f(x )

mess((): area size
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