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Abstract: In this research, we propose a revolutionary deep reinforcement learning-

based methodology for automated penetration testing. The suggested method uses a deep 

Q-learning network to develop attack sequences that effectively exploit weaknesses in a 

target system. The method is tested in a virtual environment, and the findings indicate that 

it can identify vulnerabilities that manual penetration testing is unable to. A variety of tools, 

including Deep Q-learning network, MulVAL, Nmap, VirtualBox, Docker, National 

Vulnerability Database (NVD), and Common Vulnerability Scoring System (CVSS), are 

used in this work. The suggested method significantly outperforms current automated 

penetration testing methods. Our proposed methodology can detect flaws that manual 

penetration testing misses and can be modified (in terms of penalty values) to adapt to the 

updates of the target system (network) changes. Additionally, it has the potential to greatly 

enhance penetration testing's effectiveness and efficiency and could contribute to the 

increased security of computer systems. Experimental tests conducted in this work reveal 

the effectiveness of DQN automated penetration testing by utilizing the most effective 

attack vectors in the attack automation process.  

Keywords: Pentesters, Nmap, DQN, MulVAL, CVSS. 

Introduction 

The increasing reliance on Internet services has made 

network security a critical concern due to a surge in security 

incidents and cyber-attacks [1]. Issues include the abuse of user 

account privileges, unidentified network assets, unpatched 

vulnerabilities, and insufficient IT security management. To 

enhance network security, actions such as packet monitoring, 

timely patch upgrades, strong authentication, encryption, 

network segmentation, and access controls are essential [2, 3]. 

Penetration testing, a popular solution, involves ethical simulated 

cyber-attacks to assess network security levels. Ethical hackers, 

or pentesters, use tools and undergo extensive training for 

effective testing. While manual penetration testing is complex 

and time-consuming, it follows stages like planning, information 

gathering, and exploiting vulnerabilities [4]. Recently, attempts 

have been made to integrate Artificial Intelligence (AI) 

techniques into areas such as Vulnerability Assessment, 

Exploitation, and Reporting in network security [5]. 

Attack modeling is a process where models of potential 

attack trajectories are created to model security threats on the 

topology of a particular system. It plays a vital role in 

understanding the relationship between each potential attack 

method to be used in penetration testing. There are three famous 
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attack models: Attack Tree, Attack Graph, and Planning Domain 

Definition Language (PDDL) [6]. To ensure that automated 

penetration testing is as effective as human-led penetration 

testing, attack graphs are a valuable tool. It enables pentesters 

to better understand the relationship between each attack 

method. The use of Reinforcement Learning (RL) is to analyze 

attack graphs, which uses Q-learning to find attack paths. 

However, it has a problem with the fact that the workspace and 

sample area are very small. Meanwhile, the use of Deep 

Reinforcement Learning (DRL) is a better and more appropriate 

option especially when the samples or scenarios are small since 

it combines deep learning with enhanced learning and adopts a 

trial-and-error approach to find the optimal solution [7]. 

In this paper, we present a framework for simulating attack 

automation and penetration testing, created and carried out to 

determine the optimum attack path for a specific topology. Our 

contribution to this work is related to maximizing the benefit of 

penetration testing which is considered faster and more accurate 

than manual testing considering the changes in each network 

and does not rely on a fixed sample of networks [22]. Our effort 

in this work is to emphasize the importance of automating 

penetration testing and emerge the benefits of this automation to 
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assure the problems of manual testing and how the automation 

can list all possible attack paths to maximize the amount of 

security for a given network. 

Our research contribution entails conducting a simulation 

study for penetration testing, which can be summarized by the 

following steps: 

1. Utilizing virtualization and containerization techniques 

to construct testing network topologies for the 

penetration testing process. 

2. Employing Nmap to gather network data and utilizing 

NVD as a comprehensive repository of known 

vulnerabilities worldwide. 

3. Constructing an attack graph to visualize potential 

attack paths using the MulVAL tool. 

4. Applying Deep Q-Learning Network (DQN) to analyze 

the attack matrix and identify the optimal attack path 

based on CVSS v3 and CVSS v2 scores. 

5. Executing automated breakthroughs following the 

paths we found. 

6. Evaluating the success or failure of the hacking 

process to show the effectiveness of DQN for 

automated penetration testing. 

The proposed approach is highly comprehensive in 

detecting vulnerabilities across any environment. It scans for the 

most common vulnerabilities, including both old and new ones. 

The approach also includes automated steps to check for the 

presence of exploitable vulnerabilities. Furthermore, the Deep Q-

learning algorithm learns from all information about the topology, 

information assets, and vulnerabilities to optimize the detection 

process for the optimal path and other possible paths that the 

threat actor may use to compromise the environment. 

The approach relies on the following steps: 

1. Scanning for vulnerabilities based on topology and 

asset information, which may not detect zero-day 

vulnerabilities or new vulnerabilities without updating 

the tool containing the scanner and exploit. 

2. The Q-learning algorithm learns the optimal path and 

other possible paths that threat actors may use to 

compromise the environment based on the information 

from the previous step. 

3. Verifying the existence and exploitability of 

vulnerabilities in the scanner results by performing 

automated attacks on all paths identified in the previous 

step to ensure that they are real and exploitable (no 

false positives). 

The rest of this paper is organized as follows: Previous 

works are reviewed in Section II. Section III discusses the 

methodology we followed to implement the work while Section 

IV is related to the conducted experimental test. Finally, Section 

V concludes this paper. 

Related Works 

Network penetration testing is very important and it is 

considered a crucial frequent technique for most of today’s 

establishments. It has a lot of noticeable advantages: increases 

the personnel awareness regards networks’ break-ins from 

malicious entities, provides solutions that help in detecting and 
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preventing attackers, measures the number of risks in networks, 

and decreases the number of errors that might take place [8]. 

Although penetration testing can be executed internally or 

externally, there are different techniques used in penetration 

testing. Social engineering, web applications, physical 

penetration, network services, and client-side, and wireless 

security tests are all a set of examples [9]. 

According to the research described in [10], penetration 

testing may be automated by employing rule trees, and each 

chain of rule trees contains a complete assault process. The 

authors of the article suggest that the security assessment 

process should adhere to universal standards by leveraging the 

results of penetration testing. The proposed method, according 

to the authors, can increase security assessment accuracy and 

efficacy by continuously expanding rule trees. 

The work presented in [23] is related to reviewing the 

empirical works of penetration testing and their findings. The 

authors of the work identified several potential research 

challenges and opportunities, such as scalability and the need 

for real-time identification of exploitable vulnerabilities. 

According to the work presented in [24], the authors of the 

work propose a method aimed at automating the vulnerability 

discovery and mitigation process typically performed by Red Hat 

hackers. They exploit a toolchain of several well-known tools and 

they evaluated the proposed method by exploiting the 

Metaesploitable Linux distro, showing that the proposed method 

can automatically mitigate vulnerabilities afflicting six 

widespread services. 

The work presented in [25] focuses on creating an 

automated penetration testing framework for smart home-based 

IoT devices. It examines common vulnerabilities and identifies 

necessary tools for detection. The framework, written in Python 

3.6, is then used to test the devices individually for known 

vulnerabilities. The Tp-Link Smart Bulb and Tp-Link Smart 

Camera were found to be the most vulnerable, while the Google 

Home Mini was the most secure. The framework doesn't require 

technical expertise and can be used by the public, improving IoT 

security and ensuring a safe future for smart homes. 

The work of [11] is related to presenting details of an 

example to illustrate how the authors of the work specify and 

analyze network attack models. They take sample models as 

input to automate the generation of attack graphs to analyze the 

vulnerability of some tested systems. Although the authors have 

previously published work related to some algorithms of 

penetration testing, this work is related to illustrative examples 

and the usage of some toolkits. 

In terms of carrying out automated penetration testing that is 

based on deep reinforcement learning, the work presented in 

[12] is very similar to ours. To provide guided learning for attack 

training, the authors of the work constructed a testing framework 

to be utilized as a component of cybersecurity training activities. 

The framework was used to indicate potential attack techniques. 

However, our contribution is different from this work in using API2 

(National Vulnerability Database) to get CVSS (Common 

Vulnerability Scoring System) version 3.0 values, CVSS v3.0 is 

more accurate than CVSS v2.0 when evaluating the paths using 

DRL 23 and to apply automated attack to get the best path to 

follow in the process of searching for vulnerabilities. We used 

Virtualization technology, which is a feature that allows you to 

create additional virtual environments that run on physical 

3If not found, code gets to version 2.0 values. 
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devices through specialized programs to run more than one 

operating system on the same device at the same time [13]. 

In general, our work presented in this paper differs from the 

mentioned works (the manual and the automated) in more than 

one point. The work lacks penalties that steer the searching 

process for the best attacking path, and some of these works are 

related to some previously prepared examples and lack the 

dynamicity that is an important feature of our work.   

Background and Methodology 

The methods, tools, and strategies employed in this study to 

replicate automated attack and penetration testing are described 

in this section. However, our work here is based on the work and 

equations presented in [12] to automate the penetration testing 

that is the core of our work. 

 

A. Virtualization Technology 

The use of virtualization technology is considered the best 

approach for performing penetration testing research due to 

several reasons, with ethical considerations being one of the 

primary factors. Virtualization allows researchers to create 

isolated and controlled environments for conducting security 

assessments without risking harm to real-world systems or 

violating ethical boundaries. By running penetration tests within 

virtual machines, researchers can simulate various attack 

scenarios, assess vulnerabilities, and test security controls in a 

controlled setting. 

By using a specialized program to run multiple operating 

systems on the same hardware device simultaneously, 

virtualization technology gives users the ability to build extra 

virtual environments that function on their actual equipment. An 

example of this technology is hypervisor technology [13]. It 

allows multiple operating systems to work simultaneously on a 

host. It is divided into two types in terms of interacting with the 

machine hardware. One type interacts directly and the other 

through the hosting operating system. We relied on virtualization 

technology to create a real network topology scenario to test the 

techniques we used to simulate penetration testing and complete 

the attack on these virtual systems. We used Docker and Virtual-

Box to combine the two previously explained types of 

Hypervisor. 

B. Common Vulnerability Scoring System 

As a free and open source industry standard for judging the 

seriousness of computer system vulnerabilities, the Common 

Vulnerability Scoring System (CVSS) [14]. The Forum for 

Incident Response and Security Teams (FIRST), a non-profit 

organization with more than 500 members worldwide, owns and 

runs CVSS. Its goal is to support incident response teams for 

computer security all over the world. The severity of the 

information security vulnerability is represented numerically (0–

10) by this system. This system gives a numerical rating of the 

seriousness of the information security vulnerability (0–10). The 

National Vulnerability Database (NVD) is the American 

government’s repository for vulnerability management data that 

adheres to standards and is represented by the Security Content 

Automation Protocol (SCAP). Nearly all known vulnerabilities are 

given CVSS scores by NVD. Both CVSS v2.0 and v3.X 

standards are supported (We rely on CVSS v3.0 values and if 

they are not available for the vulnerability we bring CVSS v2.0 

values through the API). By revealing the privileges necessary 

to exploit the vulnerability and the ability of an attacker to spread 

across systems (or “scope”) after doing so, CVSS v3.0 was 

created to solve some of the flaws of its predecessor, v2. The 

ratings between CVSS v2.0 and CVSS v3.0 are displayed in 

Table I. 

 

Table I: NVD Vulnerability Severity Ratings. 

 Base Score Range 

Severity CVSS V 2.0 CVSS V 4.0 

None - 0.0 

Low 0.0-3.9 0.1-3.9 

Medium 4.0-6.9 4.0-6.9 

High 7.0-10.0 7.0-8.9 

Critical - 9.0-10.0 

 

We used NVD in our work because it provides CVSS scores 

for nearly all known vulnerabilities. We created a dynamic data 

set using the Nist API associated with NVD so that it gives us the 

degree of CVSS v3.1 for the vulnerability. We configured the 

work to use v2.0 in the case v3.0 is not available [15]. 

 

C. Attack Graph 

A cyber-attack graph shows all potential attack routes 

against a cybersecurity system and shows the status after a 

successful breach has been carried out by an attacker [16]. 

1. Attack Graph Model: The attack graph is a brief 

representation of all possible avenues, paths, and 

possible cases of attacks against the topology of the 

absolute network. It can be considered as a way of 

expressing the relationship between attack behavior 

and attack steps to document the attack process. Each 

node in the graph can represent a host, vulnerability, or 

network device [17]. 

2. MulVAL: MulVAL: MulVAL is an open-source program 

used to generate a real attack graph for a given network 

architecture for network security risk assessment. 

MulVAL relies on Datalog as an object modeling 

language for analysis. MulVAL takes network topology 

and security vulnerabilities extracted from the network 

via Nmap as inputs by expressing its outputs in Datalog 

and feeding them to our MulVAL reasoning engine. 

Once inserted into MulVAL, it can analyze networks 

with thousands of devices in seconds. In our 

framework, we used MulVAL to find all possible paths 

to attack our network topology. It builds a matrix 

according to potential attack paths in the graph using a 

depth search first (DFS) algorithm to make it more 

suitable for use with the Deep Reinforcement Learning 

(DRL) algorithm [18]. 

D. Reinforcement Learning 

Reinforcement learning is an area of machine learning that 

aims to learn the optimal policy and is responsible for increasing 

or decreasing the expected cumulative reward based on the 

reward or punishment of actions [19]. In general, reinforcement 

learning is divided into the following aspects: 

1. The algorithm’s or AI’s agent is in charge of choosing a 

course of action. 

2. The environment: consists of various circumstances 

that the agent might encounter. 

3. The reward signal: a signal that the environment sends 

back based on the situation at hand. 

4. The agent is moved from one state to another by each 

action. 
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5. The policy: a mapping of the agent’s behavior from 

states to actions. 

The projected cumulative reward for each condition under 

the current policy is provided by the value function, also referred 

to as the 𝑄 function, in the Reinforcement Learning (RL) 

approach. In the sense that it provides an answer to the query: 

What will be my anticipated reward if I start in state I and follow 

my policy? The expected cumulative reward is discounted by 

some factor 𝜆 ∈  (0, 1)4. The conflict between the urge to pick 

the best-known choice and the need to attempt something new 

to uncover alternative possibilities that could be even better is 

one of the dilemmas inherent in the RL problem setting. 

Exploitation refers to selecting the most well-known activity, 

whereas exploration refers to selecting a novel action. Usually, 

a little probability of exploration is incorporated into the method 

to address this. The strategy might be, for instance, to choose 

the best course of action with a probability of 0.95 and then 

randomly choose another course of action with a probability of 

0.5 (if the probability distribution is uniform across all remaining 

courses of action, it is given by 0.5/(𝑛 −  1), where n is the 

number of states). The interaction between the agent and 

environment is seen in Figure 1. 

 

Figure 1: Reinforcement Learning Process where a set of 

rewards are given to the agent according to his activity with the 

system. 

At each time step 𝑡, the agent looks at the surroundings to 

obtain the state St and then performs the action 𝐴𝑡. Markov 

Decision Processes (MDP) can be used to represent such a 

process. The environment generates the new state 𝑆𝑡 +  1 and 

the reward 𝑅𝑡 depending on 𝐴𝑡. 

A MDP consists of four tuples, (𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 is a set of 

states known as the state space; 𝐴 represents the action set 

known as the action space; 𝑃 (𝑠′ |𝑠, 𝑎) is the likelihood that taking 

action in state 𝑠 at time 𝑡 will result in state 𝑠′ at time 𝑡 + 1; and 

𝑅(𝑠, 𝑎) is the immediate reward (or expected immediate reward). 

The strategy’s objective is to select a course of action at each 

time step that maximizes future cumulative rewards, so the 

future cumulative rewards of the current state may be used to 

assess the quality of that state [12].  

To determine the reward at any given time, reinforcement 

learning introduces an equation known as a reward function 𝑡: 

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3+. . . = ∑ 𝛾𝑟𝑡+1+𝑘
∞
𝑘=0   (1) 

where γ is the discount coefficient. Because the reward value is 

more uncertain the further away from the current state, it is 

commonly used to account for this uncertainty. However, this 

function accumulates and maximizes the amounts of future 
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rewards to compute the quality of the current state. 

Reinforcement learning also introduces equation 2 that is called 

a value function to represent the value of a given state, i.e. the 

expectation of future cumulative rewards for that state [12]. In 

other words, the value of 𝑉𝜋(𝑠) is computed by the expectation 

of the future accumulative value applied in equation 1: 

𝑉𝜋(𝑠) = 𝐸[∑ 𝛾𝑟𝑡+1+𝑘 ∣ 𝑠𝑡 = 𝑠]
∞

𝑘=0
  (2) 

Equation 3, known as the action-state value function, is also 

provided by reinforcement learning and is used to express future 

cumulative rewards that are conditioned by both the state and 

the action, also for the accumulative future reward for a given 

state applied in equation 1: 

𝑄𝜋(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑟𝑡+1+𝑘 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]
∞

𝑘=0
  (3) 

E. Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning is a sub-field of machine 

learning that combines two parts: Reinforcement Learning and 

Deep Learning [19]. Deep Learning is evolved from a machine 

learning method known as a perceptron or multilayer perceptron, 

which has gained increasing interest in recent years because of 

its effectiveness in a variety of sectors ranging from computer 

vision to signal processing, medical diagnosis, and self-driving 

automobiles. Deep learning encompasses a lot more than a 

standard artificial neural network. However, neural networks and 

perceptron networks used in machine learning have a significant 

impact. 

DRL is a general learning technique where the agent 

receives status information from the environment, chooses the 

appropriate actions based on his or her strategies, changes the 

state of the environment, and then receives a reward that, 

depending on the new environment’s state, determines the 

effectiveness of the agent’s actions. DRL algorithms can process 

very big inputs and decide what steps should be taken to 

advance the target. When DRL is applied to penetration testing, 

the agent takes on the role of a pentester and selects the best 

(most effective) route to maximize reward. Value-based 

operations, search strategies based on strategy, and model-

based procedures make up the three fundamental categories of 

DRL algorithms. 

We applied the Deep Q-Learning Network (DQN) algorithm, 

a crucial subset of the value-based DRL algorithm, as the DRL 

algorithm [19]. DQN combines the Convolution Neural Network 

(CNN) with the Q-Learning algorithm in traditional enhanced 

learning to create the new DQN model. DQN model input is a 

simplified matrix coming out of MulVAL. The use of DQN was to 

experience all possible paths of attack and to extract the best 

paths from them (optimal paths) through the continuous training 

of the DQN model based on reward for paths where the path with 

the highest reward is the optimal path and then that follows and 

so on.  

The reward associated with exploiting each vulnerability 

used in the DQN model is determined by a vulnerability score 

that we developed based on components of the Common 

Vulnerability Scoring System (CVSS): 

𝑆𝑐𝑜𝑟𝑒𝑣𝑢𝑙 = 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ×
𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒

10
  (4) 
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The 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 in CVSS measures the severity of the 

vulnerability, whereas the 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 shows the ease 

with which the vulnerability may be exploited. In order to balance 

the importance of the base score when considering the viability 

of exploiting a specific vulnerability, we used the exploitability 

score, which has a maximum value of 10. In Figure 2, we 

introduce the DQN training method, which improves on the 

standard Q-learning technique to solve difficulties like instability 

in the non-linear network’s representation function. DQN, for 

example, processes transfer samples using experience replay 

[12]. The transfer samples obtained by the agent interacting with 

the environment at each time step 𝑡 are stored in the replay 

buffer unit. During the training process, a small batch of transfer 

samples is chosen at random and the network parameter 𝛩 is 

updated using the Stochastic Gradient Descent (SGD) algorithm. 

Figure 2: DQN training process where replies of agents 

interact with the testing environment. 

DQN also alters the method of calculating the 𝑄 value. 

𝑄 (𝑠, 𝑎 | 𝛩𝑖) is the output of the current value network in DQN, 

and it is used to assess the value function of the current state 

action. The output of the target value network is 𝑄 (𝑠, 𝑎 | Θ𝑖
− ), 

and the goal 𝑄 value is given by equation 5, where 𝑌𝑖 is generally 

adopted as the target of maximizing 𝑄 value [12]. 

𝑌𝑖 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′ ∣ Θ𝑖
−)  (5) 

The current value network’s parameter 𝛩 is updated in real-

time. The parameters of the current value network are replicated 

into the target value network after every 𝑁 round of iteration. The 

network parameters are then updated by reducing the mean 

square error between the current 𝑄 value and the target 𝑄 value. 

The error function is as follows: 

𝐿(𝜃𝑖) = 𝐸𝑠,𝑎,𝑟,𝑠′[(𝑌𝑖 − 𝑄(𝑠, , 𝑎, ∣ 𝜃𝑖))2]  (6) 

and the gradients are computed as follows: 

∇𝜃𝑖
𝐿(𝜃𝑖) = 𝐸𝑠,𝑎,𝑟,𝑠′[(𝑌𝑖 − 𝑄(𝑠, 𝑎 ∣ 𝜃𝑖))∇𝜃𝑖

𝑄(𝑠, 𝑎 ∣ 𝜃𝑖)]  (7) 

Equation 6 computes the average squared difference 

between the estimated values and the actual one since it 

measures the quality of estimation process.  The amounts of 

gradients in computing the amounts of errors are given by 

equation 7 in order to estimate the change of error values during 

the whole process of finding the best path of ethical attack. 

F. Attack Automation 

The attack automation method, which makes up the majority 

of the automated penetration testing procedure, is at the center 

of our efforts. Therefore, for our automated penetration testing 

framework to be used to conduct attacks against real systems, it 

must be able to communicate with real network environments by 

issuing commands and finding security flaws [20]. 

Instead of creating our tools, we chose to use a well-known 

framework in the penetration testing community: Metasploit 

Framework. It includes manual brute forcing, manual 

exploitation, third-party import, and a command line interface. 

This free version of the Metasploit project also comes with a 

Ruby compiler since that is the language used to create this 

version of Metasploit [21]. We wrote a bash script to automate 

attacks and view the final result. 

 Our work is built on exploiting the DQN trainer model’s 

output to give commands to penetration tools, which will carry 

out the steps on our target systems. We worked on fixing 

threshold values to focus on the dangerous vulnerabilities and 

neglecting the weak ones by conducting the attack process to 

ensure their authenticity. This leads to a quick report that 

includes the serious vulnerabilities and submits it to the 

responsible party to work on closing/fixing them as soon as 

possible. As for the rest of the other gaps, another report will be 

made containing tips and suggestions to raise the level of 

security, for example, adding an anti-virus, sandboxes, firewall, 

… etc. Figure 3 concludes the implemented steps in our 

proposed methodology. Please be notified that our proposed 

methodology works now for real networks and not logical ones. 

We included the logical network in the figure just to mention that 

our methodology works for both logical and real. 

Figure 3: The whole proposed methodology steps. 

Experimental Test 

To perform actual penetration testing and assess the 

framework’s suitability under actual conditions, we built a virtual 

machine environment. 

For every node in the attack path, we have formulated the 

following connection rules: 

 The initial point of entry for the attacker into the Web 

Server node, is through the Internet node, utilizing the 

HTTP and HTTPS protocols. 

 The File Transfer Protocol (FTP) establishes a 

connection between the file server and web server 

nodes (The reason we chose the FTP protocol is that 

its attack scores are the highest in the CVSS file which 

means they are one the most important attacks that 

have to be considered carefully). 

 The File Transfer Protocol (FTP) establishes a 

connection between the workstation and file server 

nodes. 

 The Server Message Block (SMB) protocol establishes 

a connection between the workstation and web server 

nodes. 

Virtual Machine Configuration and Tooling Setup in 

Research Environment 

 Attacker VM: Utilized VirtualBox for installing the 

operating system and Docker for managing tool 

dependencies. 

 Victim 0 VM: Deployed VirtualBox to install the 

operating system and Docker for setting up the 

vulnerable service. 

 Victim 1 VM: Employed VirtualBox for installing 

the operating system. 

 Victim 2 VM: Utilized VirtualBox for installing the 

operating system. 
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This list provides information about the virtual machines 

used in the research setup, highlighting the specific virtualization 

tools (VirtualBox) utilized for operating system installations. It 

also mentions the use of Docker for managing tool dependencies 

and setting up vulnerable services in the Attacker and Victim 0 

VMs. 

The executed penetration testing steps are shown as 

follows: 

1. Nmap is used to find out each machine’s vulnerability in 

a network setting. 

2. By integrating the results of Nmap scanning with the 

configuration file’s knowledge about the network 

architecture, MulVAL creates an attack graph. 

3. The DQN Decision Engine receives an attack tree that 

has been converted into a matrix. 

4. In order to carry out an attack using Metasploit, DQN 

Decision Engine computes and selects the best attack 

path before sending it to a bash script. 

To construct the transfer matrix required by the DQN 

algorithm, each node must be assigned a reward score, which is 

done as follows: 

 The start node reward value (node 26 in our example) 

is 0.01, and the goal node reward score (node 1 in our 

example) is 100. 

 As the reward score for each node that exploits a 

vulnerability, we use the Scorevul value defined in 

equation 4 

 We define a reward score of 1.5 for each node that 

executes code or accesses files, as such actions are 

critical during the penetration testing process (target 

node 1 is excluded from this rule). 

 For any other node in the tree, we assign a score of 0, 

and if there is no path between two nodes, we assign a 

score of -1. 

 Figure 4 shows the procedures of the framework (scanning 

hosts using Nmap, building an attack graph using MulVAL, 

invoking CVSS data from API to create a matrix, and computing 

optimal attack paths using DQN). The bottom of the image 

contains a list of possible attack paths each of which indicates 

the list of nodes involved in the path.   

Table II reflects the values computed by the DQN algorithm 

where the first entry of the ordered pairs represents the current 

node number and the second represents the node number to be 

attacked next. Table II shows the transfer matrix required by the 

DQN algorithm. The transfer matrix is a table that maps from one 

state to another. Each path should be considered in the process 

of penetration testing taking into account the reward values for 

each path. 

The DQN algorithm uses the transfer matrix to learn how to 

generate attack sequences that successfully exploit 

vulnerabilities in a target system. The DQN algorithm starts in a 

random state, and it then tries to move to a state with a higher 

reward value. The DQN algorithm learns to move to states with 

higher reward values by trial and error. The red path in Table II 

represents the attack sequences with the highest reward values. 

This path is the most among the others with the higher probability 

of being attacked and should be considered in the penetration 

testing. 

To evaluate our procedure in terms of effectiveness 

concerning discovering the list of paths that have the most 

probability of being attacked, we compared our approach with 

manual testing by 5 users. We provided the users with the 

necessary information about the network under test and asked 

them to write down the possible attack paths. Moreover, to test 

the speed of our approach compared with the manual one, we 

computed the time spent by the users to discover the possible 

attack paths. By comparing the results of our approach depicted 

in Figure 4 and Table II, we found that the users were able to 

discover (on average) 5 possible paths within 2 hours. However, 

our approach takes around 1 minute to discover the list of paths 

depicted in Figure 4 and Table II including those discovered by 

the users. 

Conclusion 

In this paper, we presented a Deep Q-Learning Network- 

based system for simulating penetration testing (DQN). Our 

method collected actual host and vulnerability data by utilizing 

API (NVD) to merge the Nmap scanner with all vulnerability 

information. The attack information for each of the training 

scenarios was subsequently generated using the attack graph 

methodology. The DQN model determined the most likely attack 

path for a specific network scenario based on reward ratings 

allocated to each node, primarily relying on CVSS score 

information. The effectiveness of DQN automated penetration 

testing was demonstrated by utilizing the most effective attack 

vectors in the attack automation process. 

Moreover, complementarity with more Penetration testing 

tools that include Penetration testing for Network, Web, and 

Phone applications (Android and iOS) as well as Penetration 

testing for IoT and ICS/SCADA Devices…etc. 

There are a lot of tools that can be used (including free and 

paid) such as Nessus and Cobalt Strike, as well as the possibility 

of using tools such as Vuls.io that scan apps and packages on 

the operating system for any vulnerabilities in the versions 

installed on the device. 

Our future work will focus on improving attack automation to 

encompass all CVEs, exploring faster methods to identify attack 

paths in large-scale network topology models, and integrating 

two machine learning models for the MITRE attack framework 

and predicting zero-day vulnerabilities. 

Forthcoming research endeavors will prioritize enhancing 

attack automation capabilities to encompass the entirety of 

CVEs. Additionally, efforts will be directed toward investigating 

expeditious techniques to discern attack paths within extensive 

network topology models. Furthermore, there will be a concerted 

focus on integrating two distinct machine learning models, one 

about the MITRE attack framework and the other concerning the 

prediction of zero-day vulnerabilities. These future undertakings 

aim to advance the field of cybersecurity by bolstering the 

efficacy of attack strategies and fortifying preemptive measures 

against emerging threats. 



 

7 
  An-Najah National University, Nablus, Palestine 

Figure 4: Framework Procedures Output. A list of possible attack paths appears at the bottom of the image. 

 
Table II: Transfer matrix required by DQN Algorithm where the first number represents the node number and the second is 

for the reward value. 
 

24,22 22,15 15,14 14,13 13,33 33,30 30,29 29,28 28,71 71,70 70,69 69,1     

24,22 22,15 15,14 14,13 13,33 33,30 30,29 29,28 28, 53 53, 52 52, 51 51, 6 6, 4 4, 3 3, 2 2,1 

24,22 22,15 15,14 14,13 13,33 33,30 30, 50 50, 6 6, 40 40, 28 28, 71 71, 70 70, 69 69, 1   

24,22 22,15 15,14 14,13 13,33 33,30 30, 50 50,6 6, 4 4, 3 3, 2 2, 1     

24,22 22,15 15,14 14,13 13,33 33,30 30, 67 67,66 66, 65 65, 1       

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 31 31, 30 30, 29 29, 28 28, 71 71, 70 70, 69 69, 1 

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 31 31, 30 30, 67 67, 66 66, 65 65, 1   

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 40 40, 28 28, 71 71, 70 70, 69 69, 1   

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 4 4, 3 3, 2 2, 1     

24,22 22,15 15,14 14,13 13,59 59,3 3,2 2,1           
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