

1
 An-Najah National University, Nablus, Palestine

An-Najah University Journal for Research – A

Natural Sciences

Penetration Testing and Attack Automation Simulation: Deep

Reinforcement Learning Approach

Ismael Jabr1, Yanal Salman1, Motasem Shqair1, Amjad Hawash1*

Accepted Manuscript, In press

Abstract: In this research, we propose a revolutionary deep reinforcement learning-

based methodology for automated penetration testing. The suggested method uses a deep

Q-learning network to develop attack sequences that effectively exploit weaknesses in a

target system. The method is tested in a virtual environment, and the findings indicate that

it can identify vulnerabilities that manual penetration testing is unable to. A variety of tools,

including Deep Q-learning network, MulVAL, Nmap, VirtualBox, Docker, National

Vulnerability Database (NVD), and Common Vulnerability Scoring System (CVSS), are

used in this work. The suggested method significantly outperforms current automated

penetration testing methods. Our proposed methodology can detect flaws that manual

penetration testing misses and can be modified (in terms of penalty values) to adapt to the

updates of the target system (network) changes. Additionally, it has the potential to greatly

enhance penetration testing's effectiveness and efficiency and could contribute to the

increased security of computer systems. Experimental tests conducted in this work reveal

the effectiveness of DQN automated penetration testing by utilizing the most effective

attack vectors in the attack automation process.

Keywords: Pentesters, Nmap, DQN, MulVAL, CVSS.

Introduction

The increasing reliance on Internet services has made

network security a critical concern due to a surge in security

incidents and cyber-attacks [1]. Issues include the abuse of user

account privileges, unidentified network assets, unpatched

vulnerabilities, and insufficient IT security management. To

enhance network security, actions such as packet monitoring,

timely patch upgrades, strong authentication, encryption,

network segmentation, and access controls are essential [2, 3].

Penetration testing, a popular solution, involves ethical simulated

cyber-attacks to assess network security levels. Ethical hackers,

or pentesters, use tools and undergo extensive training for

effective testing. While manual penetration testing is complex

and time-consuming, it follows stages like planning, information

gathering, and exploiting vulnerabilities [4]. Recently, attempts

have been made to integrate Artificial Intelligence (AI)

techniques into areas such as Vulnerability Assessment,

Exploitation, and Reporting in network security [5].

Attack modeling is a process where models of potential

attack trajectories are created to model security threats on the

topology of a particular system. It plays a vital role in

understanding the relationship between each potential attack

method to be used in penetration testing. There are three famous

1 Department of Information & Computer Science, Networks & Information Security Program.
Faculty of Engineering & Information Technology An-Najah National University, Nablus, Palestine, P.O. Box:7.
E-mail: ismael1@protonmail.com, Ynal.salman@gmail.com, chrismotasem11@gmail.com, amjd@najah.edu (Corresponding Author)

attack models: Attack Tree, Attack Graph, and Planning Domain

Definition Language (PDDL) [6]. To ensure that automated

penetration testing is as effective as human-led penetration

testing, attack graphs are a valuable tool. It enables pentesters

to better understand the relationship between each attack

method. The use of Reinforcement Learning (RL) is to analyze

attack graphs, which uses Q-learning to find attack paths.

However, it has a problem with the fact that the workspace and

sample area are very small. Meanwhile, the use of Deep

Reinforcement Learning (DRL) is a better and more appropriate

option especially when the samples or scenarios are small since

it combines deep learning with enhanced learning and adopts a

trial-and-error approach to find the optimal solution [7].

In this paper, we present a framework for simulating attack

automation and penetration testing, created and carried out to

determine the optimum attack path for a specific topology. Our

contribution to this work is related to maximizing the benefit of

penetration testing which is considered faster and more accurate

than manual testing considering the changes in each network

and does not rely on a fixed sample of networks [22]. Our effort

in this work is to emphasize the importance of automating

penetration testing and emerge the benefits of this automation to

mailto:ismael1@protonmail.com
mailto:Ynal.salman@gmail.com
mailto:chrismotasem11@gmail.com
mailto:amjd@najah.edu

2
 An-Najah National University, Nablus, Palestine

assure the problems of manual testing and how the automation

can list all possible attack paths to maximize the amount of

security for a given network.

Our research contribution entails conducting a simulation

study for penetration testing, which can be summarized by the

following steps:

1. Utilizing virtualization and containerization techniques

to construct testing network topologies for the

penetration testing process.

2. Employing Nmap to gather network data and utilizing

NVD as a comprehensive repository of known

vulnerabilities worldwide.

3. Constructing an attack graph to visualize potential

attack paths using the MulVAL tool.

4. Applying Deep Q-Learning Network (DQN) to analyze

the attack matrix and identify the optimal attack path

based on CVSS v3 and CVSS v2 scores.

5. Executing automated breakthroughs following the

paths we found.

6. Evaluating the success or failure of the hacking

process to show the effectiveness of DQN for

automated penetration testing.

The proposed approach is highly comprehensive in

detecting vulnerabilities across any environment. It scans for the

most common vulnerabilities, including both old and new ones.

The approach also includes automated steps to check for the

presence of exploitable vulnerabilities. Furthermore, the Deep Q-

learning algorithm learns from all information about the topology,

information assets, and vulnerabilities to optimize the detection

process for the optimal path and other possible paths that the

threat actor may use to compromise the environment.

The approach relies on the following steps:

1. Scanning for vulnerabilities based on topology and

asset information, which may not detect zero-day

vulnerabilities or new vulnerabilities without updating

the tool containing the scanner and exploit.

2. The Q-learning algorithm learns the optimal path and

other possible paths that threat actors may use to

compromise the environment based on the information

from the previous step.

3. Verifying the existence and exploitability of

vulnerabilities in the scanner results by performing

automated attacks on all paths identified in the previous

step to ensure that they are real and exploitable (no

false positives).

The rest of this paper is organized as follows: Previous

works are reviewed in Section II. Section III discusses the

methodology we followed to implement the work while Section

IV is related to the conducted experimental test. Finally, Section

V concludes this paper.

Related Works

Network penetration testing is very important and it is

considered a crucial frequent technique for most of today’s

establishments. It has a lot of noticeable advantages: increases

the personnel awareness regards networks’ break-ins from

malicious entities, provides solutions that help in detecting and

2https://nvd.nist.gov/

preventing attackers, measures the number of risks in networks,

and decreases the number of errors that might take place [8].

Although penetration testing can be executed internally or

externally, there are different techniques used in penetration

testing. Social engineering, web applications, physical

penetration, network services, and client-side, and wireless

security tests are all a set of examples [9].

According to the research described in [10], penetration

testing may be automated by employing rule trees, and each

chain of rule trees contains a complete assault process. The

authors of the article suggest that the security assessment

process should adhere to universal standards by leveraging the

results of penetration testing. The proposed method, according

to the authors, can increase security assessment accuracy and

efficacy by continuously expanding rule trees.

The work presented in [23] is related to reviewing the

empirical works of penetration testing and their findings. The

authors of the work identified several potential research

challenges and opportunities, such as scalability and the need

for real-time identification of exploitable vulnerabilities.

According to the work presented in [24], the authors of the

work propose a method aimed at automating the vulnerability

discovery and mitigation process typically performed by Red Hat

hackers. They exploit a toolchain of several well-known tools and

they evaluated the proposed method by exploiting the

Metaesploitable Linux distro, showing that the proposed method

can automatically mitigate vulnerabilities afflicting six

widespread services.

The work presented in [25] focuses on creating an

automated penetration testing framework for smart home-based

IoT devices. It examines common vulnerabilities and identifies

necessary tools for detection. The framework, written in Python

3.6, is then used to test the devices individually for known

vulnerabilities. The Tp-Link Smart Bulb and Tp-Link Smart

Camera were found to be the most vulnerable, while the Google

Home Mini was the most secure. The framework doesn't require

technical expertise and can be used by the public, improving IoT

security and ensuring a safe future for smart homes.

The work of [11] is related to presenting details of an

example to illustrate how the authors of the work specify and

analyze network attack models. They take sample models as

input to automate the generation of attack graphs to analyze the

vulnerability of some tested systems. Although the authors have

previously published work related to some algorithms of

penetration testing, this work is related to illustrative examples

and the usage of some toolkits.

In terms of carrying out automated penetration testing that is

based on deep reinforcement learning, the work presented in

[12] is very similar to ours. To provide guided learning for attack

training, the authors of the work constructed a testing framework

to be utilized as a component of cybersecurity training activities.

The framework was used to indicate potential attack techniques.

However, our contribution is different from this work in using API2

(National Vulnerability Database) to get CVSS (Common

Vulnerability Scoring System) version 3.0 values, CVSS v3.0 is

more accurate than CVSS v2.0 when evaluating the paths using

DRL 23 and to apply automated attack to get the best path to

follow in the process of searching for vulnerabilities. We used

Virtualization technology, which is a feature that allows you to

create additional virtual environments that run on physical

3If not found, code gets to version 2.0 values.

3
 An-Najah National University, Nablus, Palestine

devices through specialized programs to run more than one

operating system on the same device at the same time [13].

In general, our work presented in this paper differs from the

mentioned works (the manual and the automated) in more than

one point. The work lacks penalties that steer the searching

process for the best attacking path, and some of these works are

related to some previously prepared examples and lack the

dynamicity that is an important feature of our work.

Background and Methodology

The methods, tools, and strategies employed in this study to

replicate automated attack and penetration testing are described

in this section. However, our work here is based on the work and

equations presented in [12] to automate the penetration testing

that is the core of our work.

A. Virtualization Technology

The use of virtualization technology is considered the best

approach for performing penetration testing research due to

several reasons, with ethical considerations being one of the

primary factors. Virtualization allows researchers to create

isolated and controlled environments for conducting security

assessments without risking harm to real-world systems or

violating ethical boundaries. By running penetration tests within

virtual machines, researchers can simulate various attack

scenarios, assess vulnerabilities, and test security controls in a

controlled setting.

By using a specialized program to run multiple operating

systems on the same hardware device simultaneously,

virtualization technology gives users the ability to build extra

virtual environments that function on their actual equipment. An

example of this technology is hypervisor technology [13]. It

allows multiple operating systems to work simultaneously on a

host. It is divided into two types in terms of interacting with the

machine hardware. One type interacts directly and the other

through the hosting operating system. We relied on virtualization

technology to create a real network topology scenario to test the

techniques we used to simulate penetration testing and complete

the attack on these virtual systems. We used Docker and Virtual-

Box to combine the two previously explained types of

Hypervisor.

B. Common Vulnerability Scoring System

As a free and open source industry standard for judging the

seriousness of computer system vulnerabilities, the Common

Vulnerability Scoring System (CVSS) [14]. The Forum for

Incident Response and Security Teams (FIRST), a non-profit

organization with more than 500 members worldwide, owns and

runs CVSS. Its goal is to support incident response teams for

computer security all over the world. The severity of the

information security vulnerability is represented numerically (0–

10) by this system. This system gives a numerical rating of the

seriousness of the information security vulnerability (0–10). The

National Vulnerability Database (NVD) is the American

government’s repository for vulnerability management data that

adheres to standards and is represented by the Security Content

Automation Protocol (SCAP). Nearly all known vulnerabilities are

given CVSS scores by NVD. Both CVSS v2.0 and v3.X

standards are supported (We rely on CVSS v3.0 values and if

they are not available for the vulnerability we bring CVSS v2.0

values through the API). By revealing the privileges necessary

to exploit the vulnerability and the ability of an attacker to spread

across systems (or “scope”) after doing so, CVSS v3.0 was

created to solve some of the flaws of its predecessor, v2. The

ratings between CVSS v2.0 and CVSS v3.0 are displayed in

Table I.

Table I: NVD Vulnerability Severity Ratings.

 Base Score Range

Severity CVSS V 2.0 CVSS V 4.0

None - 0.0

Low 0.0-3.9 0.1-3.9

Medium 4.0-6.9 4.0-6.9

High 7.0-10.0 7.0-8.9

Critical - 9.0-10.0

We used NVD in our work because it provides CVSS scores

for nearly all known vulnerabilities. We created a dynamic data

set using the Nist API associated with NVD so that it gives us the

degree of CVSS v3.1 for the vulnerability. We configured the

work to use v2.0 in the case v3.0 is not available [15].

C. Attack Graph

A cyber-attack graph shows all potential attack routes

against a cybersecurity system and shows the status after a

successful breach has been carried out by an attacker [16].

1. Attack Graph Model: The attack graph is a brief

representation of all possible avenues, paths, and

possible cases of attacks against the topology of the

absolute network. It can be considered as a way of

expressing the relationship between attack behavior

and attack steps to document the attack process. Each

node in the graph can represent a host, vulnerability, or

network device [17].

2. MulVAL: MulVAL: MulVAL is an open-source program

used to generate a real attack graph for a given network

architecture for network security risk assessment.

MulVAL relies on Datalog as an object modeling

language for analysis. MulVAL takes network topology

and security vulnerabilities extracted from the network

via Nmap as inputs by expressing its outputs in Datalog

and feeding them to our MulVAL reasoning engine.

Once inserted into MulVAL, it can analyze networks

with thousands of devices in seconds. In our

framework, we used MulVAL to find all possible paths

to attack our network topology. It builds a matrix

according to potential attack paths in the graph using a

depth search first (DFS) algorithm to make it more

suitable for use with the Deep Reinforcement Learning

(DRL) algorithm [18].

D. Reinforcement Learning

Reinforcement learning is an area of machine learning that

aims to learn the optimal policy and is responsible for increasing

or decreasing the expected cumulative reward based on the

reward or punishment of actions [19]. In general, reinforcement

learning is divided into the following aspects:

1. The algorithm’s or AI’s agent is in charge of choosing a

course of action.

2. The environment: consists of various circumstances

that the agent might encounter.

3. The reward signal: a signal that the environment sends

back based on the situation at hand.

4. The agent is moved from one state to another by each

action.

4
 An-Najah National University, Nablus, Palestine

5. The policy: a mapping of the agent’s behavior from

states to actions.

The projected cumulative reward for each condition under

the current policy is provided by the value function, also referred

to as the 𝑄 function, in the Reinforcement Learning (RL)

approach. In the sense that it provides an answer to the query:

What will be my anticipated reward if I start in state I and follow

my policy? The expected cumulative reward is discounted by

some factor 𝜆 ∈ (0, 1)4. The conflict between the urge to pick

the best-known choice and the need to attempt something new

to uncover alternative possibilities that could be even better is

one of the dilemmas inherent in the RL problem setting.

Exploitation refers to selecting the most well-known activity,

whereas exploration refers to selecting a novel action. Usually,

a little probability of exploration is incorporated into the method

to address this. The strategy might be, for instance, to choose

the best course of action with a probability of 0.95 and then

randomly choose another course of action with a probability of

0.5 (if the probability distribution is uniform across all remaining

courses of action, it is given by 0.5/(𝑛 − 1), where n is the

number of states). The interaction between the agent and

environment is seen in Figure 1.

Figure 1: Reinforcement Learning Process where a set of

rewards are given to the agent according to his activity with the

system.

At each time step 𝑡, the agent looks at the surroundings to

obtain the state St and then performs the action 𝐴𝑡. Markov

Decision Processes (MDP) can be used to represent such a

process. The environment generates the new state 𝑆𝑡 + 1 and

the reward 𝑅𝑡 depending on 𝐴𝑡.

A MDP consists of four tuples, (𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 is a set of

states known as the state space; 𝐴 represents the action set

known as the action space; 𝑃 (𝑠′ |𝑠, 𝑎) is the likelihood that taking

action in state 𝑠 at time 𝑡 will result in state 𝑠′ at time 𝑡 + 1; and

𝑅(𝑠, 𝑎) is the immediate reward (or expected immediate reward).

The strategy’s objective is to select a course of action at each

time step that maximizes future cumulative rewards, so the

future cumulative rewards of the current state may be used to

assess the quality of that state [12].

To determine the reward at any given time, reinforcement

learning introduces an equation known as a reward function 𝑡:

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3+. . . = ∑ 𝛾𝑟𝑡+1+𝑘
∞
𝑘=0 (1)

where γ is the discount coefficient. Because the reward value is

more uncertain the further away from the current state, it is

commonly used to account for this uncertainty. However, this

function accumulates and maximizes the amounts of future

4 A typical value of λ is 0.9.

rewards to compute the quality of the current state.

Reinforcement learning also introduces equation 2 that is called

a value function to represent the value of a given state, i.e. the

expectation of future cumulative rewards for that state [12]. In

other words, the value of 𝑉𝜋(𝑠) is computed by the expectation

of the future accumulative value applied in equation 1:

𝑉𝜋(𝑠) = 𝐸[∑ 𝛾𝑟𝑡+1+𝑘 ∣ 𝑠𝑡 = 𝑠]
∞

𝑘=0
 (2)

Equation 3, known as the action-state value function, is also

provided by reinforcement learning and is used to express future

cumulative rewards that are conditioned by both the state and

the action, also for the accumulative future reward for a given

state applied in equation 1:

𝑄𝜋(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑟𝑡+1+𝑘 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]
∞

𝑘=0
 (3)

E. Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning is a sub-field of machine

learning that combines two parts: Reinforcement Learning and

Deep Learning [19]. Deep Learning is evolved from a machine

learning method known as a perceptron or multilayer perceptron,

which has gained increasing interest in recent years because of

its effectiveness in a variety of sectors ranging from computer

vision to signal processing, medical diagnosis, and self-driving

automobiles. Deep learning encompasses a lot more than a

standard artificial neural network. However, neural networks and

perceptron networks used in machine learning have a significant

impact.

DRL is a general learning technique where the agent

receives status information from the environment, chooses the

appropriate actions based on his or her strategies, changes the

state of the environment, and then receives a reward that,

depending on the new environment’s state, determines the

effectiveness of the agent’s actions. DRL algorithms can process

very big inputs and decide what steps should be taken to

advance the target. When DRL is applied to penetration testing,

the agent takes on the role of a pentester and selects the best

(most effective) route to maximize reward. Value-based

operations, search strategies based on strategy, and model-

based procedures make up the three fundamental categories of

DRL algorithms.

We applied the Deep Q-Learning Network (DQN) algorithm,

a crucial subset of the value-based DRL algorithm, as the DRL

algorithm [19]. DQN combines the Convolution Neural Network

(CNN) with the Q-Learning algorithm in traditional enhanced

learning to create the new DQN model. DQN model input is a

simplified matrix coming out of MulVAL. The use of DQN was to

experience all possible paths of attack and to extract the best

paths from them (optimal paths) through the continuous training

of the DQN model based on reward for paths where the path with

the highest reward is the optimal path and then that follows and

so on.

The reward associated with exploiting each vulnerability

used in the DQN model is determined by a vulnerability score

that we developed based on components of the Common

Vulnerability Scoring System (CVSS):

𝑆𝑐𝑜𝑟𝑒𝑣𝑢𝑙 = 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ×
𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒

10
 (4)

5
 An-Najah National University, Nablus, Palestine

The 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 in CVSS measures the severity of the

vulnerability, whereas the 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 shows the ease

with which the vulnerability may be exploited. In order to balance

the importance of the base score when considering the viability

of exploiting a specific vulnerability, we used the exploitability

score, which has a maximum value of 10. In Figure 2, we

introduce the DQN training method, which improves on the

standard Q-learning technique to solve difficulties like instability

in the non-linear network’s representation function. DQN, for

example, processes transfer samples using experience replay

[12]. The transfer samples obtained by the agent interacting with

the environment at each time step 𝑡 are stored in the replay

buffer unit. During the training process, a small batch of transfer

samples is chosen at random and the network parameter 𝛩 is

updated using the Stochastic Gradient Descent (SGD) algorithm.

Figure 2: DQN training process where replies of agents

interact with the testing environment.

DQN also alters the method of calculating the 𝑄 value.

𝑄 (𝑠, 𝑎 | 𝛩𝑖) is the output of the current value network in DQN,

and it is used to assess the value function of the current state

action. The output of the target value network is 𝑄 (𝑠, 𝑎 | Θ𝑖
−),

and the goal 𝑄 value is given by equation 5, where 𝑌𝑖 is generally

adopted as the target of maximizing 𝑄 value [12].

𝑌𝑖 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′ ∣ Θ𝑖
−) (5)

The current value network’s parameter 𝛩 is updated in real-

time. The parameters of the current value network are replicated

into the target value network after every 𝑁 round of iteration. The

network parameters are then updated by reducing the mean

square error between the current 𝑄 value and the target 𝑄 value.

The error function is as follows:

𝐿(𝜃𝑖) = 𝐸𝑠,𝑎,𝑟,𝑠′[(𝑌𝑖 − 𝑄(𝑠, , 𝑎, ∣ 𝜃𝑖))2] (6)

and the gradients are computed as follows:

∇𝜃𝑖
𝐿(𝜃𝑖) = 𝐸𝑠,𝑎,𝑟,𝑠′[(𝑌𝑖 − 𝑄(𝑠, 𝑎 ∣ 𝜃𝑖))∇𝜃𝑖

𝑄(𝑠, 𝑎 ∣ 𝜃𝑖)] (7)

Equation 6 computes the average squared difference

between the estimated values and the actual one since it

measures the quality of estimation process. The amounts of

gradients in computing the amounts of errors are given by

equation 7 in order to estimate the change of error values during

the whole process of finding the best path of ethical attack.

F. Attack Automation

The attack automation method, which makes up the majority

of the automated penetration testing procedure, is at the center

of our efforts. Therefore, for our automated penetration testing

framework to be used to conduct attacks against real systems, it

must be able to communicate with real network environments by

issuing commands and finding security flaws [20].

Instead of creating our tools, we chose to use a well-known

framework in the penetration testing community: Metasploit

Framework. It includes manual brute forcing, manual

exploitation, third-party import, and a command line interface.

This free version of the Metasploit project also comes with a

Ruby compiler since that is the language used to create this

version of Metasploit [21]. We wrote a bash script to automate

attacks and view the final result.

 Our work is built on exploiting the DQN trainer model’s

output to give commands to penetration tools, which will carry

out the steps on our target systems. We worked on fixing

threshold values to focus on the dangerous vulnerabilities and

neglecting the weak ones by conducting the attack process to

ensure their authenticity. This leads to a quick report that

includes the serious vulnerabilities and submits it to the

responsible party to work on closing/fixing them as soon as

possible. As for the rest of the other gaps, another report will be

made containing tips and suggestions to raise the level of

security, for example, adding an anti-virus, sandboxes, firewall,

… etc. Figure 3 concludes the implemented steps in our

proposed methodology. Please be notified that our proposed

methodology works now for real networks and not logical ones.

We included the logical network in the figure just to mention that

our methodology works for both logical and real.

Figure 3: The whole proposed methodology steps.

Experimental Test

To perform actual penetration testing and assess the

framework’s suitability under actual conditions, we built a virtual

machine environment.

For every node in the attack path, we have formulated the

following connection rules:

 The initial point of entry for the attacker into the Web

Server node, is through the Internet node, utilizing the

HTTP and HTTPS protocols.

 The File Transfer Protocol (FTP) establishes a

connection between the file server and web server

nodes (The reason we chose the FTP protocol is that

its attack scores are the highest in the CVSS file which

means they are one the most important attacks that

have to be considered carefully).

 The File Transfer Protocol (FTP) establishes a

connection between the workstation and file server

nodes.

 The Server Message Block (SMB) protocol establishes

a connection between the workstation and web server

nodes.

Virtual Machine Configuration and Tooling Setup in

Research Environment

 Attacker VM: Utilized VirtualBox for installing the

operating system and Docker for managing tool

dependencies.

 Victim 0 VM: Deployed VirtualBox to install the

operating system and Docker for setting up the

vulnerable service.

 Victim 1 VM: Employed VirtualBox for installing

the operating system.

 Victim 2 VM: Utilized VirtualBox for installing the

operating system.

6
 An-Najah National University, Nablus, Palestine

This list provides information about the virtual machines

used in the research setup, highlighting the specific virtualization

tools (VirtualBox) utilized for operating system installations. It

also mentions the use of Docker for managing tool dependencies

and setting up vulnerable services in the Attacker and Victim 0

VMs.

The executed penetration testing steps are shown as

follows:

1. Nmap is used to find out each machine’s vulnerability in

a network setting.

2. By integrating the results of Nmap scanning with the

configuration file’s knowledge about the network

architecture, MulVAL creates an attack graph.

3. The DQN Decision Engine receives an attack tree that

has been converted into a matrix.

4. In order to carry out an attack using Metasploit, DQN

Decision Engine computes and selects the best attack

path before sending it to a bash script.

To construct the transfer matrix required by the DQN

algorithm, each node must be assigned a reward score, which is

done as follows:

 The start node reward value (node 26 in our example)

is 0.01, and the goal node reward score (node 1 in our

example) is 100.

 As the reward score for each node that exploits a

vulnerability, we use the Scorevul value defined in

equation 4

 We define a reward score of 1.5 for each node that

executes code or accesses files, as such actions are

critical during the penetration testing process (target

node 1 is excluded from this rule).

 For any other node in the tree, we assign a score of 0,

and if there is no path between two nodes, we assign a

score of -1.

 Figure 4 shows the procedures of the framework (scanning

hosts using Nmap, building an attack graph using MulVAL,

invoking CVSS data from API to create a matrix, and computing

optimal attack paths using DQN). The bottom of the image

contains a list of possible attack paths each of which indicates

the list of nodes involved in the path.

Table II reflects the values computed by the DQN algorithm

where the first entry of the ordered pairs represents the current

node number and the second represents the node number to be

attacked next. Table II shows the transfer matrix required by the

DQN algorithm. The transfer matrix is a table that maps from one

state to another. Each path should be considered in the process

of penetration testing taking into account the reward values for

each path.

The DQN algorithm uses the transfer matrix to learn how to

generate attack sequences that successfully exploit

vulnerabilities in a target system. The DQN algorithm starts in a

random state, and it then tries to move to a state with a higher

reward value. The DQN algorithm learns to move to states with

higher reward values by trial and error. The red path in Table II

represents the attack sequences with the highest reward values.

This path is the most among the others with the higher probability

of being attacked and should be considered in the penetration

testing.

To evaluate our procedure in terms of effectiveness

concerning discovering the list of paths that have the most

probability of being attacked, we compared our approach with

manual testing by 5 users. We provided the users with the

necessary information about the network under test and asked

them to write down the possible attack paths. Moreover, to test

the speed of our approach compared with the manual one, we

computed the time spent by the users to discover the possible

attack paths. By comparing the results of our approach depicted

in Figure 4 and Table II, we found that the users were able to

discover (on average) 5 possible paths within 2 hours. However,

our approach takes around 1 minute to discover the list of paths

depicted in Figure 4 and Table II including those discovered by

the users.

Conclusion

In this paper, we presented a Deep Q-Learning Network-

based system for simulating penetration testing (DQN). Our

method collected actual host and vulnerability data by utilizing

API (NVD) to merge the Nmap scanner with all vulnerability

information. The attack information for each of the training

scenarios was subsequently generated using the attack graph

methodology. The DQN model determined the most likely attack

path for a specific network scenario based on reward ratings

allocated to each node, primarily relying on CVSS score

information. The effectiveness of DQN automated penetration

testing was demonstrated by utilizing the most effective attack

vectors in the attack automation process.

Moreover, complementarity with more Penetration testing

tools that include Penetration testing for Network, Web, and

Phone applications (Android and iOS) as well as Penetration

testing for IoT and ICS/SCADA Devices…etc.

There are a lot of tools that can be used (including free and

paid) such as Nessus and Cobalt Strike, as well as the possibility

of using tools such as Vuls.io that scan apps and packages on

the operating system for any vulnerabilities in the versions

installed on the device.

Our future work will focus on improving attack automation to

encompass all CVEs, exploring faster methods to identify attack

paths in large-scale network topology models, and integrating

two machine learning models for the MITRE attack framework

and predicting zero-day vulnerabilities.

Forthcoming research endeavors will prioritize enhancing

attack automation capabilities to encompass the entirety of

CVEs. Additionally, efforts will be directed toward investigating

expeditious techniques to discern attack paths within extensive

network topology models. Furthermore, there will be a concerted

focus on integrating two distinct machine learning models, one

about the MITRE attack framework and the other concerning the

prediction of zero-day vulnerabilities. These future undertakings

aim to advance the field of cybersecurity by bolstering the

efficacy of attack strategies and fortifying preemptive measures

against emerging threats.

7
 An-Najah National University, Nablus, Palestine

Figure 4: Framework Procedures Output. A list of possible attack paths appears at the bottom of the image.

Table II: Transfer matrix required by DQN Algorithm where the first number represents the node number and the second is

for the reward value.

24,22 22,15 15,14 14,13 13,33 33,30 30,29 29,28 28,71 71,70 70,69 69,1

24,22 22,15 15,14 14,13 13,33 33,30 30,29 29,28 28, 53 53, 52 52, 51 51, 6 6, 4 4, 3 3, 2 2,1

24,22 22,15 15,14 14,13 13,33 33,30 30, 50 50, 6 6, 40 40, 28 28, 71 71, 70 70, 69 69, 1

24,22 22,15 15,14 14,13 13,33 33,30 30, 50 50,6 6, 4 4, 3 3, 2 2, 1

24,22 22,15 15,14 14,13 13,33 33,30 30, 67 67,66 66, 65 65, 1

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 31 31, 30 30, 29 29, 28 28, 71 71, 70 70, 69 69, 1

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 31 31, 30 30, 67 67, 66 66, 65 65, 1

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 40 40, 28 28, 71 71, 70 70, 69 69, 1

24,22 22,15 15,14 14,13 13,11 11,8 8,7 7,6 6, 4 4, 3 3, 2 2, 1

24,22 22,15 15,14 14,13 13,59 59,3 3,2 2,1

Ethics approval and consent to participate

Not Applicable

Consent for publication

All authors listed have read and approved the final version

of the manuscript and consent to its publication.

Availability of data and materials

The raw data required to reproduce these findings are avail-

able in the body and illustrations of this manuscript.

Author's contribution

The authors confirm their contribution to the paper as follows:

study conception and design: Amjad Hawash, Ismael Jabr,

theoretical modeling: Ismael Jabr, Moatasem Shqair; preparing

testing cases, Yanal Salman. draft manuscript preparation:

Amjad Hawash, Ismail Jabr. All authors reviewed the results

and approved the final version of the manuscript.

 Conflicts of interest

The authors declare that there is no conflict of interest

regarding the publication of this article

References

[1] Jang-Jaccard J, Nepal S. A survey of emerging threats in

cybersecurity. J Comput Syst Sci. 2014;80(5):973-993.

[2] Kumari L, Debbarma S, Shyam R. Security problems in

campus network and its solutions. Int J Adv Eng Appl. 2011

Jan;Volume-1:98-101.

[3] Bacudio A, Yuan X, Chu B, Jones M. An overview of

penetration testing. Int J Netw Secur Its Appl. 2011 Nov;3:19-38.

[4] Bertoglio D, Zorzo A. Overview and open issues on

penetration test. J Braz Comput Soc. 2017 Dec;23.

[5] Sarraute C. Using ai techniques to improve pentesting

automation. 2010 Apr.

[6] Moore A, Ellison R, Linger R. Attack modeling for

information security and survivability. 2001 Jun.

[7] Arulkumaran K, Deisenroth M, Brundage M, Bharath A. A

brief survey of deep reinforcement learning. IEEE Signal Process

Mag. 2017 Aug;34.

[8] Shebli HMZA, Beheshti BD. A study on penetration testing

process and tools. In: 2018 IEEE Long Island Systems,

Applications and Technology Conference (LISAT); 2018. pp. 1–7.

[9] Reza SS, Hasan W, Reza SS, Chakraborty S. A comparative

overview on penetration testing. In: Proc. of The Fourth Intl.

8
 An-Najah National University, Nablus, Palestine

Conf. On Advances in Computing, Electronics and Electrical

Technology–CEET; 2015. pp. 25–28.

[10] Zhao J, Shang W, Wan M, Zeng P. Penetration testing

automation assessment method based on rule tree. In: 2015

IEEE International Conference on Cyber Technology in

Automation, Control, and Intelligent Systems (CYBER); IEEE;

2015. pp. 1829–1833.

[11] Sheyner O, Wing J. Tools for generating and analyzing

attack graphs. In: International symposium on formal methods

for components and objects. Springer; 2003. pp. 344–371.

[12] Hu Z, Beuran R, Tan Y. Automated penetration testing

using deep reinforcement learning. In: 2020 IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW);

IEEE; 2020. pp. 2–10.

[13] Hay B, Dodge R, Nance K. Using virtualization to create and

deploy computer security lab exercises. In: IFIP International

Information Security Conference. Springer; 2008. pp. 621–635.

[14] Mell P, Scarfone K, Romanosky S. Common vulnerability

scoring system. IEEE Secur Privacy. 2006;4(6):85–89.

[15] Franklin J, Wergin C, Booth H, et al. Cvss implementation

guidance. National Institute of Standards and Technology,

NISTIR-7946. 2014.

[16] Jin W, Li Y, Xu H, Wang Y, Ji S, Aggarwal C, Tang J.

Adversarial attacks and defenses on graphs: A review, a tool

and empirical studies. 2020.

[17] Liu C, Singhal A, Wijesekera D. Using attack graphs in

forensic examinations. In: 2012 Seventh International

Conference on Availability, Reliability and Security. IEEE; 2012.

pp. 596–603.

[18] Ou X, Govindavajhala S, Appel AW, et al. Mulval: A logic-

based network security analyzer. In: USENIX security

symposium. vol. 8. Baltimore, MD; 2005. pp. 113–128.

[19] Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. A

brief survey of deep reinforcement learning. arXiv preprint

arXiv:1708.05866. 2017.

[20] Enoch SY, Huang Z, Moon CY, Lee D, Ahn MK, Kim DS.

Harmer: Cyber-attacks automation and evaluation. IEEE Access.

2020;8:129397–129414.

[21] Kennedy D, O’gorman J, Kearns D, Aharoni M. Metasploit:

the penetration tester’s guide. No Starch Press; 2011.

[22] Stefinko Y, Piskozub A, Banakh R. Manual and automated

penetration testing. Benefits and drawbacks. Modern tendency.

2016. pp. 488-491. 10.1109/TCSET.2016.7452095.

[23] McKinnel DR, Dargahi T, Dehghantanha A, Choo KKR. A

systematic literature review and meta-analysis on artificial

intelligence in penetration testing and vulnerability assessment.

Comput Electr Eng. 2019;75:175-188.

doi:10.1016/j.compeleceng.2019.02.022.

[24] Filiol E, Mercaldo F, Santone A. A Method for Automatic

Penetration Testing and Mitigation: A Red Hat Approach.

Procedia Comput Sci. 2021;192:2039-2046.

doi:10.1016/j.procs.2021.08.210.

[25] Akhilesh R, Bills O, Chilamkurti N, Chowdhury MJM.

Automated Penetration Testing Framework for Smart-Home-

Based IoT Devices. Future Internet. 2022;14:276.

doi:10.3390/fi14100276.

