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Abstract: Many thermal sharpening applications are evaluated in temperate and subtropical climate regions, which are 
commonly characterized by the presence of the urban heat island (UHI) phenomenon. However, similar studies are 
rarely found in hot, arid, and semi-arid climate cities, where an urban cool island (UCI) phenomenon exists. Recent 
research shows that the spectral characteristics of land covers and their responses to LST are different based on their 
climatic type. Resultantly, spectral indices (SIs) show different evaluations to be successfully used in sharpening tech-
niques like the DisTrad, to sharpen LST over several land covers, especially in urban areas. The main objectives of this 
study are; 1)- to evaluate the spatial relationship between LST and a number of most commonly used urban's remote 
sensing SIs (21 SIs described in table 2) over the Gaza Strip in two land cover scenarios: all land covers "All" and the 
urban mask “urban”; 2)- to downscale aggregated low-resolution Landsat 8\LST image at 1000 m to a higher resolution 
of 100 m. Spectral indices and land surface temperature are calculated using the Landsat 8 image of summer 2017. 
Spatial regression analysis between SIs and LST within the "All" land cover class and at 1000 m resolutions show the 
best SIs that have the highest correlation (R2) with LST are DBSI (0.66) and ABEI (0.59). While in the "urban" class, the 
same indices shows also the highest correlation; BAEI (0.57) and DBSI (0.64). Moreover, statistical validation with LST 
observation at 100m resolution (Landsat 8\LST), DisTrad was found successful to downscale LST to 100 m resolution 
over UCI areas using the indices ABEI and DBSI with the highest correlation (R2) over the "All" class (0.77 and 0.73 
respectively) and over the "urban" mask using DBSI (0.59) and BAEI (0.58)..  

Keywords: DisTrad, Landsat 8, urban cool island (UCI), thermal sharpening, spectral indices (SIs), land surface temperature (LST). 

Introduction 

Several studies show the usefulness of land surface temper-
ature (LST) in characterizing and monitoring the urban heat is-
land (UHI) (Essa et al., 2013, 2012). UHI phenomenon is typi-
cally found in temperate climate zones, where cities are warmer 
than their surroundings (Voogt and Oke, 2003). Hundreds of UHI 
studies worldwide have been investigated in temperate and sub-
tropical climate areas (Sun and Pinker, 2003; Nichol, 1996), 
which helps produce many established techniques such as ther-
mal downscaling. Thermal downscaling of low-resolution satel-
lite imagery to higher spatial and temporal resolutions was es-
sential for enriching the UHI studies. However, in the last few 
years, several studies (Essa and Lhissou, 2021; Yang et al., 
2017; Rasul et al., 2017; Haashemi et al., 2016; Rasul et al., 
2016; Theeuwes et al., 2015; Rasul et al., 2015) have reported 
the inversion of the UHI phenomenon, called the cool urban is-
land (UCI). In UCI areas, the cities in hot climates (desert, arid 
and semi-arid) become cooler than their periphery. City periph-
eries are typically covered with natural land covers such as bare 
soil and sand found to play an essential role in reversing the ur-
ban cool island (UCI) phenomenon (Essa and Lhissou, 2021). 
The dry bare soil and sand emit higher LST within the urban sur-
roundings than in the urbanized area (Rasul et al., 2015). Essa 
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et al. (2021) review the UCI effect over different cities in dry or 
semi-arid regions with dry surroundings such as Dubai, Abu 
Dhabi, Beijing, Okayama, Chang-Zhu-Tan, Tehran, Isfahan, and 
Kuwait. Research on UCI is still in the preliminary stage, where 
in-depth research on quantifying and modeling the thermal envi-
ronment of arid and semi-arid is in slow progress (Rasul et al. 
2015, 2017., Li et al., 2011). 

Various spaceborne thermal sensors provide a free source 
of land cover information critical for advancing urban studies, 
scanning all world cities of different climate zones. However, for 
technical constraints (Table 1), only high spatial or high temporal 
resolution LST data are available from those sensors, sensors 
(Essa et al., 2013). The LST pattern at a 100 m scale is consid-
ered adequate for monitoring the complex intra-urban variations 
of LST (Essa et al., 2017; Nichol, 1996). Because of that, thermal 
downscaling to such a scale became fundamental, cost-effec-
tive, and available to provide LST data with higher spatial and 
temporal data at once.  
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Table (1): Technical characteristics of operational thermal satellite sensors. 

Sensor-Platform Reference Spatial Resolution (m) Spectral-Resolution (μm) 
Temporal-Resolution 

(day/minute/hour) 

INSAT 3A1 (INSAT 3A. 2020) 8000 VHRR/2 band: 10.5 - 12.5 23 min   

GEOS imager2 (Essa et al., 2017) 5000 
Band 4: 10.2–11.2  
Band 5: 11.5–12.5  

3 h 

Meteosat 8- MSG 
serviri3 

(Bechtel et al., 2012) 3300 TIR Band: 10.8 - 12  15 min 

AVHRR–NOAA4 (Tucker at al., 1996) 1100 
Band 4: 10.3–11.3,  
Band 5: 11.5–12.5 

0.5 d 

MODIS–Terra (Zhou et al., 2014) 1000 Band 31 - 36: 10.78–14.39 1 to 2 d 

AATSAR5–Envisat 
(Soria and Sobrino. 
2007) 

1000 Band 11, Band 12 35 d 

Sentinel-3A (Coppo et al., 2015) 1000 
Bands S7-S9: 3.74–12.00  
Level-2 LST product 

27 d  

TM–Landsat 5 (Sobrino et al., 2004) 120 Band 6: 10.4–12.5 16 d 

OLI & TIRS6–Land-
sat8 

(Tan et al., 2016) 100 
Band 10: 10.60–11.19  
Band 11: 11.50–12.51 

16 d 

ASTER7–Terra (Wang and Liang. 2009) 90 
Band 10 to band14: 8.125–
11.65 

16 d  

Landsat 7 - ETM+ (Rahman et al., 2017) 60 Band 6: 10.4–12.5 16 d 

1: “Indian National SATellite Very High-Resolution Radiometer”.  

2: “Geostationary Operational Environmental Satellites”.  

3: “Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager” 

4: “Advanced Very High-Resolution Radiometer-National Oceanic and Atmospheric Administration” 

5: “Advanced Along-Track Scanning Radiometer” 

6: “Operational Land Imager and Thermal Infrared Sensor” 

7: “Advanced Spaceborne Thermal Emission and Reflection Radiometer” 

Many researchers (Rasul et al., 2016; Essa et al., 2013, 
2012; Stathopoulou and Cartalis. 2009; Agam et al., 2007a, 
2007b; Kustas et al., 2003) reviewed the remote sensing thermal 
downscaling methods and grouped them into physical and sta-
tistical methods, namely depends on the type of relationship that 
exists between LST and ancillary data used in downscaling. The 
statistical models for downscaling LST are more valuable than 
physical models for their easy implementation and acceptable 
accuracy (Yang et al., 2017; Essa et al., 2013, 2012). Downscal-
ing methods are cost-efficient for producing sharpened images 
similar to high-resolution satellite imagery (Essa et al., 2017). 
Moreover, statistical downscaling models show strong potential 
and applicability because the same remote sensors allow the 
generation of many co-registered land surface information 
throughout the spectral and thermal bands. Various statistical 
downscaling techniques have been developed, during the last 10 
years for downscaling UHI\LST over urban areas including: “the 
disaggregation procedure for radiometric surface temperature – 
DisTrad” (Eswar et al., 2016; Essa et al., 2013, 2012; Kustas and 
Norman, 2003), “A nonlinear method of DisTrad – NL-DisTrad” 
(Bindhu et al., 2013), “improved DisTrad with residual error pa-
rameterization” (Essa et al., 2017), “temperature sharpening – 
TsHARP” (Agam et all., 2007a, 2007b, 2008), “pixel block inten-
sity modulation – PBIM” (Stathopoulou and Cartalis, 2009), 
“high-resolution urban thermal sharpener – HUTS” (Dominguez 
et al., 2011), “area-to-point regression kriging – ATPRK” 
(Granero-Belinchon et al., 2019), “adaptive area-to-point regres-
sion kriging –  AATPRK” (Granero-Belinchon et al., 2019), “mul-
tiple linear regressions – MLR” (Wicki and Parlow, 2017), “high-
resolution land cover-based emissivity data” (Agathangelidis & 
Cartalis, 2019), “a method that first performed principal compo-
nent analysis over their predictors and then applied linear regres-
sion to the principal components” (Zaksek and Ostir, 2012), “a 
method that used support vector machine regression to deter-
mine the relationship between LST and predictors” (Zhou et al., 
2011), “a method that proposed annual cycle parameters (ACP) 
from multi-temporal LST data as downscaling predictors” (Aga-
thangelidis & Cartalis, 2019; Bechtel et al., 2012; Bechtel, 2012), 
“multiple predictor variables” (Zaksek and Ostir, 2012), and “the 
adjusted stratified stepwise regression method – Stepwise” (Zhu 
et al., 2012). Although the potential utility of those techniques 

has been tested for downscaling LST over UHI areas, their eval-
uation over UCI areas is not nonexistent. DisTrad (Kustas et al., 
2003) is the most used method (Bala et al., 2019). It is gaining 
attention due to its “simplicity, physical basis, and operational 
capability” (Bala et al., 2019; Essa et al., 2017; Eswar et al., 
2016). Also, DisTrad is the basic form for several other 
downscaling methods such as the TsHARP, HUTS, the NL-Dis-
Trad, and the improved DisTrad. DisTrad successfully adapted 
to downscale UHI\LST in urban areas based on the functional 
relationship between LST and different SIs indicators of different 
land covers (Essa et al., 2013, 2012; Sun and Pinker, 2003). The 
DisTrad framework considers the functional relationship be-
tween the high-resolution land covers (e.g., SIs) and the low-res-
olution LST as an input for the sharpening procedure. The origi-
nal DisTrad technique was developed for agricultural areas, 
based on the LST- Normalized Difference Vegetation Index 
(NDVI) relationship (Kustas et al., 2003), especially in temperate 
and subtropical climate regions, where vegetation cover is dom-
inant. NDVI index (Granero-Belinchon et al. 2019), the vegeta-
tion fraction index (Wicki and Parlow. 2017), and the impervious 
percentage index (Essa et al., 2012) are successfully integrated 
into DisTrad to sharpen LST in agricultural and urban areas of 
temperate climate areas. However, the behavior of the LST pat-
tern differs from different land covers (Bala et al., 2019) and cli-
mate zones. Until now, very little research has evaluated the util-
ity of spectral indices (SIs) over UCI areas of hot, arid, and semi-
arid areas for thermal sharpening purposes. 

The SIs-LST functional relationship is the fundamental base 
for the statistical sharpening methods, especially when it is a typ-
ical scale-independent relationship, then, a course LST image 
can be utilized at the higher resolution of the SIs. The successful 
implementation of downscaling methods over complex land 
cover surfaces is still limited by the selection of an appropriate 
environmental predictor, which is considered an important task 
(Govil et al., 2019; Bechtel et al., 2012). Regardless of the exact 
statistical downscaling method used, the accuracy of thermal 
downscaling relies on the robustness of the LST - sharpening 
predictors relationship (Feng et al., 2020). Spectral indices are 
commonly used as a robust LST sharpening predictor in different 
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land-cover types, which possess a robust representation of the 
land cover and a high correlation with LST for successful 
downscaling LST procedures. For example, Essa et al. (2012) 
investigated 16 different SIs and found that the impervious per-
centage index has the best correlation with LST in urban areas. 
Pan et al. (2018) indicated that "the normalized difference sand 
index (NDSI)" has the best correlation with LST in an arid oasis-
desert ecotone of Zhangye City, NDSI - LST higher correlation 
in the humid region (Nanjing City) but is less accurate in the arid 
region. However, the LST-NDVI relationship was found weak to 
sharpen LST in urban areas (Essa et al., 2013, 2012; Zaksek 
and Ostir, 2012; Stathopoulou and Cartalis, 2009). Moreover, in-
tegrating several SIs does not mean better downscaling; how-
ever, finding a good index combination to improve the downscal-
ing performance should be addressed in future research 
(Granero-Belinchon et al., 2019). The functional relationship be-
tween SIs and UCI\LST could also depend on the season and 
climatological parameters as well as the city's urban structure 
and urban material differences, land cover type, and its biophys-
ical bio-thermal properties (Essa et al., 2021). Resultantly, the 
robustness of such a relationship in heterogeneous urban areas 
of hot arid, and semi-arid climate areas is a critical issue for much 
upcoming research. 

In this study, DisTrad was selected for the LST sharpening 
procedure. Moreover, the study evaluates the sharpening proce-
dure of an image at 1000 m resolution comparable with the daily 
MODIS\LST product to target 100 m resolution (like Land-
sat8\LST). The land cover classification map used in this appli-
cation was calculated from the same Landsat 8 images for the 
best-case scenario, this means that SIs and LST pixels are per-
fectly geographically co-registered. Consequently, no error 
sources for SIs - LST statistical relationship. Hence, the aims of 
this study are; 

1. To evaluate the statistical relationship between a sum of fre-
quently used spectral indices (21 indices) and LSTs over the 

hot arid, and semi-arid climate area of the Gaza Strip. The 
full description of these SIs is mentioned in table 2. 

2. To evaluate the DisTrad method to downscale simulating 
MODIS\LST image (1000 m) using two land cover scenarios; 
the “All” classes scenario (urban, vegetation, bare soil, and 
sandy soil), and the urban mask “urban”. 

Data and Methods 

Study Area 

The Gaza Strip is bounded by longitudes 616140 and 
648576 East and latitudes 3455040 and 3496078 North, with an 
approximate area of 365 km2. It is one of the greatest densities 
of the population around the world (≈ 5770 p/km2) (Essa and 
Lhissou, 2021). Gaza Strip is bordered by the Mediterranean 
Sea from the East, with 40 km along the East. Moreover, Gaza 
Strip is surrounded by the Sinai desert from the South and the 
Negev desert from the East. Rainfall estimation is decreasing 
from the north (400 mm) to the south (200 mm), where most of 
the rainfall occurs from October to March, the rest of the year 
being dry (PHG, 2002). The main soil types in the Gaza Strip 
originate from the dune sands and loess soils (Dudeen, 2001). 
The Gaza Strip has a semi-arid climate, temperate winter, and 
hot summer. Gaza Strip represents a transition area between a 
temperate Mediterranean climate (West to North) and an arid de-
sert climate (East to South) (Adnan et al., 2010). The land-covers 
map (LC) of the Gaza Strip is available from Essa and Lhissou 
(2021). LC map (Figure. 2) shows the high variability of the urban 
landscape pattern and its heterogeneity covers an area of about 
~43.5 km2, with higher densities occurring in the urban core and 
lower densities in the periphery with bushes and trees. The wide 
range of LST values and varieties in LC classes within the Gaza 
Strip makes the area an adequate case for thermal downscaling 
application over the Gaza Strip. 

 

Figure (1): Study area of the “Gaza Strip” indicating the regional (A) and the local location (B) using composite color of L08\OLI. 

B A 
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Landsat 8 Derived Data 

A Landsat 8 image used in this application was acquired on 
June 16, 2017 (05.50 pm). The L8\multispectral bands (opera-
tional land imager-OLI) and L8\LST (band 10) images capture 
data at 30 m and 100 m respectively. However, both the multi-
spectral and thermal bands are geo-registered and delivered 
with a 30 m spatial resolution. The Landsat 8 data were atmos-
pherically corrected using FLAASH model.  

The method for retrieving the LST was carried out using the 
“Semi-Automatic Classification Plugin (SCP)” (Congedo et al., 
2016), which allows the use of the “free-open-source software 
QGIS” as remote sensing software. With this plugin, tempera-
tures are retrieved automatically from the metadata of the image 
acquired by the Landsat-8 satellite sensor. Mallick et al. (2012) 
provide the emissivity (𝑒) values of various land cover types.  

The multispectral bands of Landsat 8 (L8\OLI) image used 
for calculating 21 SIs are mentioned in Table. 2 (adapted from 
Essa, W. (2022)). The SIs that integrate LST data are not used 
in this application because it is not scientifically correct in draw-
ing a correlation between LST images and indices that have the 
same LST data. It is also supposed that thermal data are not 
present. Because of that, only the spectral band’s-based indices 
are considered for this application to be evaluated. The SIs indi-
cated in previous studies are based on their use to map; urban, 
vegetation, and bare soil land covers. L8/LST and SIs were ag-
gregated through the spatial averaging to images to 100 m and 
1000 m resolution. The functional relationships between those 
SIs and LST were found in the literature to be a useful basis for 
LST sharpening methods (Essa et al., 2013, 2012; Agam et al., 
2007a; Kustas et al., 2003). 

Table (2): 21 remote sensing spectral indices (SIs) used for statistical correlation with the Landsat 8\land surface temperature (LST) 
including symbol, name, description, and reference (adapted from Essa, W. (2022)). 

Index ID Index Name Description 

ABEI “Automated Built-Up Extraction Index”  0.312 𝜌𝐶𝑜𝑠𝑡𝑎𝑙 +  0.513 𝜌𝐵𝑙𝑢𝑒 −  0.086 𝜌𝐺𝑟𝑒𝑒𝑛 −  0.441 𝜌𝑅𝑒𝑑 
+  0.052 𝜌𝑁𝐼𝑅 −  0.198 𝜌𝑆𝑊𝐼𝑅1 
+  0.278 𝜌𝑆𝑊𝐼𝑅 

BAEI "Built-up Area 
Extraction 
Index” 

 𝜌𝑅𝐸𝐷 + 0.3

𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑆𝑊𝐼𝑅1
 

BI “Bare Soil Index”  𝐵𝐼 =   𝜌𝑅𝐸𝐷 +   𝜌𝑆𝑊𝐼𝑅1 −   𝜌𝑁𝐼𝑅 

BRBA “Band Ratio for Built-Up Area”   𝜌𝑅𝐸𝐷

 𝜌𝑆𝑊𝐼𝑅1
 

BSI “Bare Soil Index” (𝜌𝑆𝑊𝐼𝑅1 +  𝜌𝑅𝐸𝐷) − (𝜌𝑁𝐼𝑅 +  𝜌𝐵𝐿𝑈𝐸)

 (𝜌𝑆𝑊𝐼𝑅1 +  𝜌𝑅𝐸𝐷) + (𝜌𝑁𝐼𝑅 +  𝜌𝐵𝐿𝑈𝐸)
 

BUI “Built-Up Index”  𝑁𝐷𝐵𝐼 − 𝑁𝐷𝑉𝐼 

DBSI “Dry Bare-Soil Index”   𝜌𝑆𝑊𝐼𝑅1− 𝜌𝐺𝑟𝑒𝑒𝑛

𝜌𝑆𝑊𝐼𝑅1+ 𝜌𝐺𝑟𝑒𝑒𝑛
 - NDVI 

ENBI “Enhancement Built-Up Index” 𝑁𝐷𝑊𝐼 − 𝐹𝑉𝐶 

IBI “Index-Based Built-Up Index “   (𝑁𝐷𝐵𝐼 − (𝑆𝐴𝑉𝐼 + 𝑀𝑁𝐷𝑊𝐼))/2

 (𝑁𝐷𝐵𝐼 + (𝑆𝐴𝑉𝐼 + 𝑀𝑁𝐷𝑊𝐼))/2
 

P_Imp “Impervious Fraction” 𝑃_𝑖𝑚𝑝 =  1 − 𝑃𝑣 

𝑃𝑣 =
(𝑁𝐷𝑉𝐼) − (𝑁𝐷𝑉𝐼)ₒ

(𝑁𝐷𝑉𝐼)𝑠 + (𝑁𝐷𝑉𝐼)ₒ

 

MSAVI2 “Modified Soil-Adjusted Vegetation 
Index”  

2 × 𝜌𝑁𝐼𝑅 + 1 −  √(2 × 𝜌𝑁𝐼𝑅 + 1)2 − 8(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)

2
 

NBI “New Built-Up Index”   𝜌𝑅𝐸𝐷 𝑥 𝜌𝑆𝑊𝐼𝑅1

 𝜌𝑁𝐼𝑅
 

NBUI “New Built-Up Index”  𝐸𝐵𝐵𝐼 − 𝑆𝐴𝑉𝐼 − 𝑀𝑁𝐷𝑊𝐼 

NDBI “Normalized Difference Built-Up Index”    𝜌𝑆𝑊𝐼𝑅 −  𝜌𝑁𝐼𝑅

  𝜌𝑆𝑊𝐼𝑅 +  𝜌𝑁𝐼𝑅
 

NDSI “Normalized Difference Soil Index”  𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

   𝜌𝑁𝐼𝑅 +  𝜌𝑅𝐸𝐷
 

 

NDVI “Normalized Difference Vegetation 
Index” 

  𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

  𝜌𝑁𝐼𝑅 +  𝜌𝑅𝐸𝐷
 

SAVI “Soil Adjusted VI” (𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷)

  (𝜌𝑁𝐼𝑅 +  𝜌𝑅𝐸𝐷 +  1)
× 1 

 UI “Urban Index”   [𝜌𝑆𝑊𝐼𝑅2 − 𝜌𝑁𝐼𝑅] 

[𝜌𝑆𝑊𝐼𝑅2 − 𝜌𝑁𝐼𝑅]
 

VgNIR-BI “Visible Based Indices”  𝜌𝐺𝑟𝑒𝑒𝑛 −  𝜌𝑁𝐼𝑅

 𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑁𝐼𝑅
 

VIBI “Vegetation Index Built-Up Index” (
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷
𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷

)

(
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷
𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷

) + (
𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝑁𝐼𝑅
𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅

)
 

VrNIR-BI  “Visible Based Indices”  𝜌𝑅𝐸𝐷 −  𝜌𝑁𝐼𝑅

 𝜌𝑅𝐸𝐷 +  𝜌𝑁𝐼𝑅
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The land cover map of the Gaza Strip (Figure. 2) was derived 
from the same L8\OLI image bands to eight land covers using 
the support vector machine (SVM) method. The land covers in-
clude built-up, sand dunes, bare soil, crops, trees, shrubs, green-
houses, and wastewater. The SVM is a supervised classification 
method based on an artificial neural network analysis developed 
by Kohonen. (2001). "The advantage of using the SVM method 
approach is that mixed pixels, which occur in medium-resolution 
satellite data of urban areas, can be more easily identified and 
assigned to a separate class". (Kohonen. 2001). This is neces-
sary to resolve the mixed-pixels problem such as bare soil with 
impervious surfaces. In this study, we used "a non-linear SVM 
classification with the kernel of the radial base function (RBF), 
which is widely used and outperforms the other kernels (linear, 

polynomial, or Gaussian) in several applications including land 
use and land cover" (DeWitt et al., 2017; Mugiraneza et al., 2019; 
Ngo et al., 2020). The SVM penalty parameter selected value is 
high and equal to 100 to increase the cost of misclassifying pix-
els, while the inverse of the number of bands is used for the 
gamma term in the RBF kernel. The SVM classifier was trained 
and validated (with an overall accuracy of 92.50% and kappa co-
efficient of 0.89) by in-field GPS class samples, whose polygons 
were verified on the very high spatial resolution Google Earth 
imagery of the same period of the OLI image. Later, the land 
cover classes were grouped into two land cover scenarios for 
this study: 1) the urban mask “urban” and the “ALL” class (all 
classes without the wastewater). 

  

Figure (2): Land-use/Land-cover classification map of the Gaza Strip (June 2017) indicating eight land covers, using the support vector 
machine (SVM) method (adapted from Essa and Lhissou, 2021). 

DisTrad downscaling method. 

The first DisTrad sharpening method was developed by 
Kustas et al. (2003) to estimate LST in vegetated areas using 
NDVI. SIs are derived from the multispectral high resolutions 
bands to estimate a higher resolution of LST patterns like SIs 
resolutions. However, DisTrad was adapted to estimate LST in 
different land covers like the urban areas (Essa et al., 2017, 
2013, 2012). The regression function between SIs and LST at 
the lower resolution is used as an estimator of LST at the higher 
resolutions of SIs. "It is assumed that the regression equation is 
resolution-independent" (Essa et al., 2013, 2012; Kustas et al., 
2003). SIs information, 100 m resolution in this application, is 
used to derive an LST pattern that is 10 times finer than the 
MODIS\LST band (1000 m), t which is agreed on by different re-
searchers, that thermal sharpening can be applied to target 4–
16 times of thermal band resolutions. (Essa et al., 2017; Agam 
et al., 2007b). For statistical downscaling methods like DisTrad, 
a wide data range of values of SIs and LST are crucial for devel-
oping robust regression models. (Essa et al., 2017; Agam et al., 
2007b; Kustas et al., 2003). Resultantly, a wide data range of 
heterogeneous land covers (SIs) and sunny conditions (LSTs) 

can be more effective in the DisTrad thermal sharpening tech-
nique (Essa et al., 2017; Agam et al., 2007b). We argue that arid 
and semi-arid climates are the typical environment for thermal 
sharpening. In this study, a coarse resolution of LST (1000 m 
simulating MODIS\LST image) is sharpened to target 100 m res-
olution, over different land cover scenarios of the Gaza Strip. For 
a detailed review of the DisTrad procedure, the reader is referred 
to Kustas et al. (2003) and Essa et al. (2012). 

Downscaling Experiment 

Typically, DisTrad sharpened LST higher-resolution (HR) 
products need to be evaluated with observed HR LST data ac-
quired at the same moment and on the same image. However, 
when using observed (HR) from different sensors, "it differs in 
acquisition time and date, data level, processing algorithms, tem-
poral integration, geometric accuracy, etc." (Essa et al., 2017). 
Therefore, in our study, the thermal and multispectral bands of 
the Landsat\8 image were aggregated by spatial averaging to a 
lower resolution (LR) image of 1000 m (simulating MODIS sen-
sor). In this method, DisTrad was used to sharpen LR LST data 
(1000 m) to target HR image (100 m), "the performance of Dis-

Sand 
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Trad can be optimized and verified in a best-case scenario, in-
dependent of errors introduced by differences between sensors" 
(Essa et al., 2017). Simulation of LST (LR) at 1000 m resolution 
was crucial because real LST images have sensor registration 
noise. SIs images (HR), land cover classification map (HR), and 
LST (LR) images are all from the same sensor and same image 
(Landsat\8). The sharpened LST products (100 m) are validated 
by comparing them with the observed Landsat\LST image at the 
HR (100 m). The 21 SIs and the Landsat 8\LST (band10) were 
aggregated to simulate the observed data by using spatial aver-
aging to LR images (1000 m). Several studies used the spatial 
averaging procedure to simulate observed remote sensing data. 
For Example, Dominguez et al. (2011) simulated ASTER LST LR 

data (90 m) from HR albedo, NDVI, and LST (10 m) to evaluate 
the HUTS thermal sharpening method. Agam et al. (2007b) sim-
ulated ASTER LST LR data (90 m) from HR NDVI and LST (10 
m) to evaluate the TsHARP method (Agam et al., 2007a, 2007b). 
Essa et al. (2017) simulated MODIS daily LST (960 m) from HR 
Impervious percentage index and NDVI (30 m) to evaluate the 
DisTrad method (Kustas et al., 2003). In this study, the Landsat 
8 HR data including 21 SIs (30 m) and LST data (100 m) aggre-
gated to LR 1000 m images to simulate MODIS daily LR LST 
(960 m). Consequently, the DisTrad method was used to 
sharpen the LR images to target the HR LST image (100 m), for 
evaluation of DisTrad at the HR (100 m). The downscaled and 
observed images were compared (Figure. 3). 

 

Figure (3): The flowchart showing the procedure and the methodology for evaluating 21 spectral indices for downscaling land surface 
temperature. The flowchart includes the procedure of regression analysis and the spatial correlation.. 

Results and discussion 

Spectral indices (SIs) vs. L8 LST at 100 m and 1000 m reso-
lutions 

The regression analysis between LSTs and SIs was 
investigated and evaluated in two class-based scenarios 
including the urban mask (table. 3+4), and All classes (table. 
5+6). Moreover, the scale dependency was also evaluated at two 
scales; 1) at 100 m, which corresponds to middle-resolution 
(MR) sensors such as Landsat sensors series, and 2) at 1000 m 

resolution, which corresponds to low-resolution (LR) sensors. 
Table (3) shows the correlation analysis between SIs and LST 
for the “urban” class at the LR scale. The robustness of SIs for 
estimating LSTs shows a higher correlation (R2) with a lower 
RMSE error, as it is described in table (3) to follow the SIs order; 
Dry Bare-Soil Index - DBSI (0.64; 1.18), Built-up Area Extraction 
Index - BAEI (0.57; 1.28), Bare Soil Index - BSI (0.56; 1.30), 
Normalized Difference Built-Up Index - NDBI (0.46; 1.43), etc., 
respectively. Although other SIs show a lower correlation with 
LST, they still possess valuable information for un-mixing urban 
LST. Integration of SIs using multiple linear regression may lead 
to a better estimation of urban LSTs within the land cover class. 
The SIs equations in the table (2) reveal the robustness of the 
impervious cover (ABEI, NDBI, BAEI, etc.) and bare soil (DBSI, 
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BSI, etc.) for characterizing the thermal environment. Those 
indices were found most representative at the LR scale because 
of built-up and bare soil covers in arid and semi-arid regions that 
have similar spectral signatures and thermal properties. The 
equations of SIs (table 2) reveal the importance of spectral 
bands such as the green band (GREEN), the red band (RED), 

the near-infrared band (NIR), and the short-wave infrared 
(SWIR1) for characterizing LST in arid and semi-arid 
environments. The SIs can successfully characterize the 
spectral response of built-up cover and the corresponding LSTs 
at the LR scale. 

Table )3(. Correlation coefficients and goodness of fit for the correlation between observed land surface temperature (LST) and the 21 
spectral indices (SIs) calculated for “urban” class at 1000 m resolution.

Regression Statistics   Correlation LST and SIs 

Index ID Mean Std. Dev. Median   a bx cx2 R2 RMSE 

DBSI 35.13 1.57 34.68   35.828 -50.358 280.09 0.64 1.18 

BAEI 35.13 1.49 34.76   98.651 -95.487 34.763 0.57 1.28 

BSI 35.13 1.47 34.74   37.626 -97.097 611.67 0.56 1.30 

NDBI 35.13 1.34 34.77   35.273 54.642 518.65 0.46 1.43 

BI 35.13 1.18 34.92   32.244 2.7683 51.243 0.36 1.56 

 UI 35.13 1.18 34.84   45.318 23.057 11.692 0.36 1.56 

NBI 35.13 1.17 34.94   27.752 37.701 -14.375 0.35 1.57 

VIBI 35.15 1.16 35.11   46.955 -15.482 4.1604 0.35 1.56 

IBI 35.13 1.15 34.93   34.859 117.18 2793 0.34 1.59 

ABEI 37.86 0.86 37.87   24.653 -822.45 -11186 0.30 1.31 

BRBA 35.13 0.92 35.18   58.425 -52.598 27.245 0.22 1.73 

NDSI 35.19 0.91 34.99   35.241 23.761 112.31 0.22 1.72 

MSAVI2 35.13 0.88 35.55   -50.448 170.07 -83.866 0.20 1.75 

ENBI 35.13 0.88 35.48   35.6 0.5688 -0.2085 0.20 1.75 

P_Imp 35.13 0.88 35.47   33.721 1.4858 -0.2501 0.20 1.75 

NBUI 35.13 0.82 34.94   68.056 190.31 267.18 0.17 1.78 

SAVI 35.13 0.72 35.44   28.038 209.88 -1432.7 0.13 1.82 

VgNIR-BI 35.13 0.60 35.41   20.513 -75.687 -94.95 0.09 1.86 

NDVI 35.13 0.58 35.39   29.251 61.967 -150.24 0.09 1.87 

VrNIR-BI 35.13 0.58 35.39   29.251 -61.967 -150.24 0.09 1.87 

BUI 35.13 0.48 35.35   34.784 -8.9841 -29.701 0.06 1.90 

Table )4): Correlation coefficients and goodness of fit for the correlation between observed land surface temperature (LST) and the 21 
spectral indices (SIs) calculated for “urban” class at 100 m resolution. 

Regression Statistics   Correlation LST and SIs 

Index ID Mean Std. Dev. Median   a bx cx2 R2 RMSE 

MSAVI2 35.27 1.68 35.67   -18.891 108.45 -53.541 0.50 1.68 

P_Imp 35.27 1.54 35.71   26.25 4.3977 -0.4936 0.42 1.81 

BAEI 35.31 1.16 35.27   56.248 -24.743 5.7215 0.33 1.65 

NBI 35.26 1.37 35.60   21.49 104.86 -181.82 0.33 1.95 

ABEI 35.33 1.01 35.02   34.652 -68.465 2984 0.31 1.50 

BSI 35.28 1.09 35.33   32.895 4.1236 134.38 0.23 1.99 

IBI 35.26 1.09 35.46   29.469 -177.94 -947.62 0.21 2.11 

DBSI 35.26 1.09 35.14   33.712 -6.93 108.29 0.21 2.12 

NDSI 35.26 0.88 35.04   35.53 41.243 377.29 0.14 2.21 

NDBI 94.21 25.31 35.47   35.272 0.83 35.26 0.12 2.23 

 UI 35.26 0.77 35.31   39.142 7.1801 2.2602 0.10 2.25 

ENBI 35.26 0.72 35.58   33.11 1.8125 -0.3044 0.09 2.27 

BI 35.26 0.69 35.20   45.939 -20.322 7.6878 0.08 2.28 

SAVI 35.33 0.52 35.53   32.618 81.447 -519.96 0.08 1.73 

BRBA 35.26 0.66 35.22   43.338 -13.465 3.2237 0.08 2.28 

VgNIR-BI 35.32 0.54 35.52   27.118 -44.098 -55.835 0.08 1.87 

NDVI 35.33 0.44 35.48   33.087 24.198 -55.765 0.06 1.76 

VrNIR-BI 35.33 0.44 35.48   33.087 -24.198 -55.765 0.06 1.76 

NBUI 35.26 0.53 35.15   46.133 55.197 65.793 0.05 2.32 

BUI 35.33 0.33 35.45   35.273 -2.9624 -10.45 0.03 1.78 

VIBI 35.27 0.26 35.29   35.652 -0.328 -0.0114 0.01 2.37 
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Table (4) shows the correlation analysis between SIs and 
LST for the “urban” mask at the MR scale (100 m). The best SIs 
with higher correlation (R2) and a lower RMSE error is to follow 
the SIs order; Modified Soil-Adjusted Vegetation Index - MSAVI2 
(0.50; 1.68), Impervious Fraction - P_imp (0.42; 1.81), Built-up 
Area Extraction Index - BAEI (0.33; 1.65), New Built-Up Index - 
NBI (0.33; 1.95), etc., respectively. The SIs were found to be 
successfully characterizing the LST at the MR scale. MSAVI2 
shows to have the highest correlation because bare soil in arid 
and semi-arid areas is the most dominant land cover and has the 
greatest contribution to the thermal budget.  

Even though SIs such as DBSI, BAEI, BSI, and NDBI have 
the highest correlation at LR scales (table 3), they are shifted 
backward in correlation (table 4) behind MSAVI2 and P_imp at 
the MR scale (100 m). Moreover, both indices MSAVI2 and 
P_imp show the highest correlation at the MR scale; however, 
they possess a lower correlation (R2=0.20) at the LR scale.  

Table (5) shows the correlation analysis between SIs and 
LST for the “All” class at the LR scale (1000 m). The most robust 
SIs for estimating LSTs shows a higher correlation (R2) with a 
lower RMSE error described to follow the order; DBSI (0.66; 
1.22), ABEI 0.59; 1.35), BSI (0.56; 1.40), BAEI (0.47; 1.54), 
NDBI (0.43; 1.59), etc., respectively. The equations of those SIs 
are indicated in the table (2) revealing the robustness of the 

spectral bands used to calculate the impervious cover (ABEI, 
NDBI, BAEI) and bare soil cover (DBSI, BSI) for controlling the 
thermal environment in the mixed land cover environment at low 
resolution (1000 m), in arid and semi-arid climate areas like the 
Gaza Strip.  

Table (6) shows the correlation analysis between SIs and 
LST for the “All” class at the MR scale (100 m). The best SIs for 
estimating LSTs with a higher correlation (R2) and a lower RMSE 
error described to follow the SIs order; DBSI (0.58; 1.57), ABEI 
(0.52; 1.69), BSI (0.49; 1.73), BAEI (0.44; 1.83), NDBI (0.40; 
1.89), etc., respectively. Those SIs revealed the robustness of 
impervious cover (ABEI, NDBI, BAEI) and bare soil cover (DBSI, 
BSI) for controlling the thermal environment in the mixed land 
cover environment at 100 m resolution, in areas with the arid and 
semi-arid climate like the Gaza Strip. Those SIs with higher cor-
relation has maintained the highest correlation and the lowest 
RMSE errors among other indices at the two analyzed scales 
(1000 m and 100 m). However, the correlation (R2) and RMSE 
error slightly enhanced at the LR scale (Table 5) than the MR 
scale (Table 6), which reveals the scale independence relation-
ship between those indices and land surface temperature. Scale 
independence is critical for better performance of thermal 
downscaling techniques such as DisTrad to produce higher-
quality and higher-resolution LST patterns. 

Table (5(. Correlation coefficients and goodness of fit for the correlation between observed land surface temperature (LST) and the 21 
spectral indices (SIs) calculated for all classes “All” at 1000 m resolution. 

Regression Statistics   Correlation LST and SIs 

Index ID Mean Std. Dev. Median   a bx cx2 R2 RMSE 

DBSI 36.15 1.72 35.83   33.32 -5.2191 126.94 0.66 1.22 

ABEI 36.15 1.62 36.04   33.931 -58.125 4127.3 0.59 1.35 

BSI 36.15 1.58 35.87   34.614 -22.831 274.54 0.56 1.40 

BAEI 36.15 1.45 36.07   72.299 -50.052 15.677 0.47 1.54 

NDBI 36.15 1.39 35.94   36.402 40.158 209.4 0.43 1.59 

BI 36.15 1.24 36.05   32.09 16.513 12.789 0.34 1.71 

NBI 36.15 1.23 36.09   28.066 46.507 -41.036 0.34 1.72 

IBI 36.15 1.22 36.06   33.184 -22.102 1062.8 0.33 1.72 

 UI 36.15 1.18 35.95   42.605 13.093 5.4214 0.31 1.75 

BRBA 36.15 0.97 36.54   28.725 37.765 -40.03 0.21 1.87 

NBUI 36.15 0.97 36.38   48.493 50.632 25.691 0.21 1.88 

MSAVI2 36.16 0.94 36.55   -90.689 249.32 -122.05 0.20 1.89 

NDSI 36.21 0.94 36.12   36.282 17.776 51.639 0.20 1.88 

ENBI 36.15 0.91 36.52   34.446 2.0473 -0.4904 0.19 1.90 

P_Imp 36.15 0.91 36.51   29.21 4.1238 -0.5771 0.19 1.90 

SAVI 36.15 0.86 36.51   26.566 259.82 -1661.7 0.16 1.93 

VgNIR-BI 36.15 0.77 36.46   11.713 -121.89 -148.75 0.13 1.96 

BUI 36.15 0.75 36.28   37.605 3.6822 -8.2808 0.13 1.97 

VIBI 36.15 0.75 36.23   38.198 -1.5097 -0.304 0.12 1.97 

NDVI 36.15 0.73 36.43   29.527 66.463 -154.61 0.12 1.98 

VrNIR-BI 36.15 0.73 36.43   29.527 -66.463 -154.61 0.12 1.98 

Table (6): Correlation coefficients and goodness of fit for the correlation between observed land surface temperature (LST) and the 21 
spectral indices (SIs) calculated for all classes “All” at 100 m resolution. 

Regression Statistics   Correlation LST and SIs 

Index ID Mean Std. Dev. Median   a bx cx2 R2 RMSE 

DBSI 36.83 1.85 36.61   33.535 9.747 51.116 0.58 1.57 

ABEI 36.83 1.75 36.67   34.627 -75.408 2444.4 0.52 1.69 

BSI 36.83 2.42 36.69   33.75 15.18 70.625 0.49 1.73 

BAEI 36.83 1.60 36.81   64.486 -36.876 10.669 0.44 1.83 
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Regression Statistics   Correlation LST and SIs 

Index ID Mean Std. Dev. Median   a bx cx2 R2 RMSE 

NDBI 36.83 1.54 36.89   37.029 26.998 52.258 0.40 1.89 

NDSI 36.83 1.50 36.64   37.029 26.998 52.258 0.38 1.91 

NBI 36.83 1.34 36.96   30.421 39.249 -40.979 0.31 2.03 

IBI 36.83 1.34 36.86   33.778 -54.432 369.06 0.31 2.03 

 UI 36.83 1.29 37.01   39.709 4.2676 0.485 0.28 2.07 

NBUI 36.83 1.10 36.97   45.913 38.986 24.217 0.21 2.17 

VgNIR-BI 36.83 1.03 37.26   21.044 
-
267.987 

-94.51 0.18 2.20 

BUI 36.83 0.97 37.05   38.489 6.9931 0.7465 0.16 2.23 

ENBI 36.83 0.89 37.19   35.936 1.2654 0.2978 0.15 2.25 

P_Imp 36.83 0.93 37.19   32.879 2.4558 -0.3427 0.15 2.25 

BI 36.83 0.87 37.00   45.38 -15.224 3.2162 0.13 2.27 

BRBA 36.83 0.87 37.00   45.37 -15.205 3.2086 0.13 2.27 

MSAVI2 36.83 0.73 37.11   -4.8562 78.327 -36.374 0.12 2.29 

NDVI 36.83 0.81 37.09   35.069 20.186 -47.365 0.11 2.29 

VrNIR-BI 36.83 0.81 37.09   35.071 -20.182 -47.365 0.11 2.29 

SAVI 36.83 0.72 37.03   34.701 58.904 -356.29 0.09 2.33 

VIBI 36.83 0.28 36.84   37.005 -0.1569 -0.0004 0.01 2.42 

Best SIs – LST relationship in Urban and “All” classes 

For the urban class, the scatterplots of SIs have the highest 
correlation with LST shown at the LR scale (Fig. 4) and MR scale 
(Fig. 5). The statistical fitting shows that second-order polyno-
mial fit best describes the SIs-LST relationships and proves to 
have a better R2 than other statistical fits like the linear regres-
sions because of that polynomial fit was selected for our analy-
sis.  

Figure (4) shows the scatterplots for the SIs at the LR scale 
(1000 m) for the “Urban” class. At the lower-middle DBSI values 
(Fig. 4a), bare soil and built-up areas are mixed because of the 
low resolution, which results in a wide LST range due to the cool-
ing and moderating effect of shading effects of high built-up con-
structions within the urban area (cities center). While DBSI in-
creases, especially at the city peripheries where a smaller frac-
tion of the building covering the pixels exists at LR scale (1000 
m), the LST range decreases but increases in value because of 
the warming effects of pure bare soil pixels due to its thermal 
physical properties. The contribution of bare soil is nearly equal 
to the built-up contribution (Rasul et al., 2015). BSI index shows 
a similar scatter with the DBSI index (Fig. 4c). However, for the 
BAEI index (Fig. 4b), LST has a wide range along the fitting line 
due to the shading effects of built-up areas in general. When the 

BAEI increases (e.g., the central part of the cities), the LST value 
decreases because of the cooling effects of built-up areas by the 
shading effect. NDVI does not correlate with LST in the Gaza 
Strip, the scatterplot (Fig. 4d) shows a wide range of LST values 
and dominates most of the middle part of the NDVI because veg-
etated area (described as a shrubs, trees, and crops) exists in 
bare land areas and rarely exist in the urban area, urban areas 
of the Gaza Strip are charactered by the higher intensity of ur-
banization and the low green spaces.  

Figure (5) shows the scatterplots of SIs at the MR scale (100 
m) for the “Urban” class. MSAVI2 (Fig. 5a) showed a wide range 
of LST values, from both tails of the scatterplot towards the mid-
dle part of index values (around 1). Variability in LST values is 
due to the different shading rates, the physical-thermal proper-
ties of the built-up forming materials, and the percentage of bare 
soil, vegetation, and wetness. Values ranged increases by the 
higher pixel resolution at ML scale (100 m). The LST narrow 
range and low values at the lower tails of MSAVI2 values are due 
to the high cooling and moderating effect of shading (cities Cen-
ter). The LST wide range and high values in the middle part of 
MSAVI2 values (around 1) are due to the higher percentage of 
bare soil, especially in the peripheries. P_imp index (Fig.5b) 
shows a similar scatterplot as MSAVI2. Similar P_imp pixel val-
ues have different LST value because of their various physical 
and thermal properties and the cooling effects of built-up areas 
by the shading. 
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Figure )4(: Scatterplots of spectral indices vs observed Landsat 8\land surface temperature for the “urban” class at LR scale (1000 m), 
using the second order polynomial fitting model.  

 

Figure (5): Scatterplots of spectral indices vs observed Landsat 8\land surface temperature for the “urban” class at MR scale (100 m), 
using the second order polynomial fitting model.  
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Own et al. (1998) suggested a new approach based on sat-
ellite remote sensing data. If a triangular-shaped envelope of pix-
els is formed in urban areas (like MSAVI2 and P_imp indices) 
when bare soil experiences a wide variation in LST than densely 
vegetated locations (referred to as the "triangle method"). Then, 
“the surface radiant temperature response along the abscissa is 
a function of varying vegetation cover and surface soil water con-
tent” (Own et al., 1998). BAEI index (Fig. 5c) shows a negative 
relationship with LST, the low BAEI index values are found in 
urban peripheries, while the high BAEI index values indicate the 
urban centers. Comparing the NDVI scatterplot (Fig. 5d), NDVI 
shows no correlation at the MR scale, however, the trend line 
indicated a shorter and lower LST range at the highest part of 
the NDVI, which is related to vegetated areas existing in bare 
soil pockets or urban farming spaces within the urban mask.   

Figure (6) shows the scatterplots for the SIs at the LR scale 
(1000 m) for the “All” class. Both indices DBSI (Fig. 6a) and BSI 
(Fig. 6c) show similar scatters as the "urban" class (Fig. 4), the 
middle part of the SIs, LST has a wide range due to the cooling 
and moderating effect of built-up shading effects. When, DBSI 
and BSI increase in value because of integrating the bare soil 
and dune within the regression space, especially the terminal 
part of urban blocks pixels, LST increases because of the warm-
ing effects of the bare soil and dunes' thermal and physical prop-
erties. The BAEI index (Fig. 6b) shows similar results as in the 
"urban" class, LST has a wide range along the fitting line due to 
the shading effects of built-up areas. When the BAEI increases, 
the LST value decreases because of the cooling effects of built-
up areas by the shading effect. NDVI scatterplot (Fig. 6d) still has 

a lower R2 (0.12), however, the R2 is significantly increased from 
the "urban" class (0.08) due to integrating other vegetation clas-
ses such as trees, crops, greenhouses, and shrubs within the 
regression analysis. 

Figure (7) shows the scatterplots for the SIs at the MR scale 
(100 m) for the “All” class. Both SIs, the DBSI (Fig. 7a) and the 
BSI (Fig. 7c) show a similar scatter like in Figure 6. The lower tail 
of the plot shows low index values in regression space due to 
adding the vegetation classes in the regression analysis, causing 
a decrease in the LST value due to the cooling and moderating 
effect of vegetation classes. DBSI and BSI increase in value be-
cause of integrating the pure bare soil and dune classes within 
the regression analysis, which increases the LST values. The 
ABEI index (Fig. 7b) shows a similar result to Figure (6b). Ac-
cording to the ABEI (Firozjaei et al., 2019b), “pixels with a value 
greater than zero are built-up areas, and pixels with values less 
than zero are non-built-up areas”. Built-up areas showed lower 
LST values and a narrow value range than the non-built-up area 
due to the shading effects. In ABEI, vegetation (NDVI > 0.5) is 
classified into the non-built-up class. The scattered pixels, with 
ABEI, are greater than ≈0.03 and belong to the vegetation class, 
averaged LST values are due to vegetation cooling. Negative 
BAEI values show higher LST values decrease because of the 
warming effects of bare soil and dunes. Moreover, the NDVI 
scatterplot (Fig. 7d) shows a similar correlation (R2=0.11) as in 
Figure (6.d) (R2 = 0.12) by integrating vegetation classes into the 
regression analysis. 

 

Figure (6): Scatterplots of spectral indices vs observed Landsat 8\land surface temperature for the “All” class at LR scale (1000 m), using 
the second order polynomial fitting model. 
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Figure (7): Scatterplots of spectral indices vs observed Landsat 8\land surface temperature for the “All” class at MR scale (100 m), using 
the second order polynomial fitting model. 

DisTrad Thermal Sharpening Results  

Based on the correlation coefficient and the scatterplots of 
each SIs at the LR scale (1000), the SIs; DBSI, ABEI, BSI, BAEI, 
and NDBI are selected for the thermal sharpening in the “All” 
classes as in Eq. (1-5) respectively, and the SIs; DBSI, BAEI, 
BSI and NDBI in the “Urban" class as in the Eq. (6-9) respec-
tively. DisTrad thermal sharpening technique applied for 
downscaling a simulated MODIS\LST image (aggregated Land-
sat 8 TIR image to 1000 m) to 100 m resolution using the regres-
sion models (Eq. 1-9) within “All” classes and “Urban” class.   

LST𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =126.94 (DBSI)2 - 5.2191(DBSI)+ 33.32  

Equation 1 

LST𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4127.3 (ABEI)2 – 58.125(ABEI)+ 33.931 

Equation 2 

LST𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =274.54 (BSI)2 - 22.831(BSI)+ 34.614 

Equation 3 

LST𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =15.677(BAEI)2 - 50.052 (BAEI) + 72.299 

Equation 4 

LST𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 209.4(NDBI)2 + 40.158 (𝑁𝐷𝐵𝐼) + 36.402 

Equation 5 

LST𝑈𝑟𝑏𝑎𝑛 = 280.09 (DBSI)2 – 50.358(DBSI)+ 35.828 

Equation 6   

LST𝑈𝑟𝑏𝑎𝑛 = 34.763(BAEI)2 - 95.487 (BAEI) + 98.651 

Equation 7 

LST𝑈𝑟𝑏𝑎𝑛 = 611.67 (BSI)2 – 97.097(BSI)+ 37.626 

Equation 8 

LST𝑈𝑟𝑏𝑎𝑛 = 518.65(NDBI)2 + 54.642 (𝑁𝐷𝐵𝐼) + 35.273 

Equation 9 

The statistics and spatial correlation coefficients between the 
estimated and observed LST for the "ALL" classes are summa-
rized (Table. 7). Correlation (R2) and RMSE show better perfor-
mance when using; Automated Built-Up Extraction Index (ABEI) 
model (Eq.2), Dry Bare-Soil Index (DBSI) model (Eq.1), and 
Built-up Area Extraction Index (BAEI) model (Eq.4) show the 
highest correlation (R2 = 0.77, 0.73, and 0.70 respectively) with 
lowest RMSE errors (1.24, 1.47, and 1.43 respectively). ABEI 
demonstrated its effectiveness to extract built-up areas from 
other land covers such as bare soil and sandy soil areas where 
other indices experience significant challenges (Firozjaei et al., 
2019b). This study confirms that ABEI successfully can also 
characterize LST when mixed LULC-like bare and sandy soils 
with the built-up areas better than other indices (DBSI, BAEI, 
NDBI, and BSI) in arid and semi-arid climate regions. The ABEI 
shows to perform better than other SIs of two-band indices or 
single-band thresholding (Firozjaei et al., 2019b). The "dry bare-
soil index (DBSI)" is a newly proposed index by Rasul et al. 
(2018) to map built-up and bare areas in a dry climate from Land-
sat 8 in the city of Erbil, Iraq. "DBSI can be used reliably for dif-
ferentiating constructed and bare land from other land use clas-
ses in arid and semi-arid climates" (Rasul et al., 2018). In this 
study, DBSI shows a high correlation with LST and robust sur-
face parameters for thermal downscaling methods. "Built-up 
Area Extraction Index (BAEI)" is proposed by Bouzekri et al. 
(2015) for highlighting built-up areas in the Landsat-8 image, 
BAEI is characterized by not only using spectral bands but also 
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introduces arithmetic constant (0.3) to facilitate the extraction of 
the built-up area. "Visual analysis of extracted spectral indices 
shows that BAEI gives significant results better than NDBI for 
highlighting built-up areas in the image" (Bramhe et al., 2018).  

“The Normalized Difference Built-up Index (NDBI)” was pro-
posed in 2003 for Nanjing City (Zha et al., 2003), as a method to 
map built-up areas automatically. The index was also applied by 
Firozjaei et al. (2019b) in Iranian and European cities. NDBI in-
dex was successful to distinguish between built-up and vege-
tated or green and wet surroundings for Nanjing City. However, 

"NDBI was not successful in distinguishing between built-up and 
other land covers such as bare and dry soil that surround Nanjing 
City, due to the overlapping spectral reflectance for these land 
cover types" (Firozjaei et al., 2019a; He et al., 2010). Generally, 
"NDBI is more efficient in places where the NDVI value is greater 
than 0" (Zha et al., 2003). Although the NDBI show weaknesses 
in land cover classification for cities located in dry climates, how-
ever, it shows a higher correlation with LST in arid and semi-arid 
climate areas. 

Table (7): Statistical characteristics and correlation analysis (𝑅2 𝑎𝑛𝑑 𝑅MSE) between observed Landsat 8\LST and sharpened LST products 
based on the different indices calculated within the “All” classes (urban, vegetation, and sandy and bare soil).  

Spectral Index 
Statistics  Corr. LST and index 

Mean Std. Dev. Median  𝑹𝟐 RMSE 

ABEI 36.79 2.53 36.43 
 0.77 1.24 

DBSI 36.77 2.84 36.30 
 0.73 1.47 

BAEI 36.74 2.55 36.61 
 0.70 1.43 

NDBI 36.77 2.83 36.41 
 0.54 1.94 

BSI 36.73 3.12 36.19 
 0.51 2.18 

The statistics and spatial correlation coefficients between the 
estimated and observed LST for the "urban" class are summa-
rized (Table. 8).  

The high correlation (R2) and lowest error (RMSE) values 
prove when using; Dry Bare-Soil Index (DBSI) (Eq.6) and Built-
up Area Extraction Index (BAEI) (Eq.7), the best results are 
shown with the highest correlation (R2 = 0.59, and 0.58 respec-
tively) with lowest RMSE errors (1.28 and 1.44 respectively). 

Table (8): Statistical characteristics and correlation analysis (𝑅2 𝑎𝑛𝑑 𝑅MSE) between observed Landsat 8\LST and sharpened LST products 

based on the different indices calculated within the “Urban” class.  

Spectral Index 
Statistics  Corr. LST and index 

Mean Std. Dev. Median  𝑹𝟐 RMSE 

DBSI 35.07 1.90 34.77 
 0.59 1.28 

BAEI 35.24 2.23 34.83 
 0.58 1.44 

BSI 35.00 2.14 34.74 
 0.46 1.65 

NDBI 35.01 2.39 34.71 
 0.40 1.90 

Descriptive analysis 

The performance of the DisTrad sharpening technique is in-
vestigated visually for all the sharpened image products using 
the models (Equations 2 to 9) for the "All" class and the "urban" 
class, as shown in figure (8) and figure (9) respectively. Figure 
(8a) shows the original image of Landsat 8\LST image at 100 m 
resolution, while Figure (8b) shows the aggregated values of 
Landsat 8\LST using the average to 1000 m resolution to simu-
late MODIS LST imagery. Figures (8c-g) are the sharpened 
products using the indices; NDBI, DBSI, BSI, BAEI, and ABEI, 
respectively. The absolute error differences of 2°C were calcu-
lated (observed image minus sharpened image), using the 

above indices. The greatest sum of pixels (in percentage) of the 
downscaled products with the smallest Absolute Error difference 
(<=2°C) is used as an indicator for downscaling quality. For ex-
ample, figure (8g) shows the smallest absolute error differences 
(the green color pixels) for the ABEI model. The best-
downscaled products with the smallest absolute error differences 
(<=2°C) are when using the SIs in order; ABEI (90.9%), BAEI 
(90.7%), DBSI (85.6%), NDBI (85.3%), and BSI (84.2%). The 
Large error differences (red pixels in Fig. 8g) are caused by 
mixed pixels located at the urban class boundary with water bod-
ies, such as beaches and sewage treatment ponds, along the 
coastal edge, because of that, urban coastal edge pixels need to 
be masked out. The internal large error differences are caused 
by the extreme outliers of the original SIs index values. 
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Figure (8): Observed Landsat8\LST-100m (a) and simulated LST-1000m (b) versus the sharpened LST at 100m resolution for the “All” 
class, based on the indices; NDBI(c), DBSI(d), BSI(e), BAEI(f), and ABEI (g). Absolute error difference calculated by = Observed LST – 
Sharpened LST using ABEI (h).     

Figure (9a) and figure (9b) show the original image of Landsat 8\LST image at 100 m resolution and the simulated MODIS LST image 

at 1000 m respectively. Figure (9c-f) is the absolute error differences within the "urban" class. The best-downscaled products with the 

smallest absolute error differences (<=2°C) are shown when using the SIs in order; DBSI (90%), BAEI (86.5%), BSI (86.5%), and NDBI 

(81.4%). The Large error differences are caused by mixed pixels located at the urban class boundary with other classes, such as bare soil, 

water bodies, mixed pixels, and land cover misclassification. The mixed pixels are caused by similar spectral characteristics such as the 

bare soil, sandy areas, and low vegetated areas. Most of these misclassified pixels are seen to be the same pixels in all calculated indices. 

The large error in estimating LST is because of downscaling applied to SIs indices and its spectral properties. An additional source of 

downscaling error might be the anthropogenic heat in various forms, which are explicitly incorporated into the energy balance (e.g. heat 

from transportation, industry, households, etc.). Those pixels with the higher estimating errors were found randomly distributed along with 

the transportation systems or industrial clusters outside the cities. 
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Figure (9): Observed Landsat8\LST-100m (a) and simulated LST-1000m (b) versus the sharpened LST at 100m resolution for the “urban” 
class, based on the indices; DBSI(c), BAEI(d), BSI(e), and NDBI (g).   

Conclusion 

The Gaza Strip is located in an arid and semi-arid climate 

where the urban peripheries are mostly dominated by bare soil 

that absorbs more heat than the urban area itself, bare soil does 

not have large evaporation and transpiration effects to mitigate 

the temperature of the soil. In such a climate, the LST pattern 

can be generally described as an urban cool island (UCI).  

In the urban areas of the Gaza Strip, the spatial distribution 

of LST shows an inverse relationship between the built-up indi-

ces and LST because of the cooling effects of built-up areas 

shading. However, in the peripheries, LST increases because of 

the warming effects of the bare soil and dunes' thermal and phys-

ical properties.  

This research is limited to the spatial variation of the LST in 

the daytime during the dry season of an arid and semi-arid cli-

mate area. Other temporal variations including seasonal, and di-

urnal might be useful for the validation of SIs - LST relationships 

within areas that have similar climate types.  

The distribution of downscaled LST matched the distribution 

of urban cool island (UCI) producing a good spatial correlation 

(R2) and lower RMSE error with the observed Landsat\LST im-

age. Moreover, the best-downscaled products have been pro-

duced in the "All" class when using the following SIs in order; 

ABEI (90.9%), BAEI (90.7%), DBSI (85.6%), NDBI (85.3%), and 

BSI (84.2%), and in "urban" class when using the following SIs 

in order; DBSI (90%), BAEI (86.5%), BSI (86.5%), and NDBI 

(81.4%).  

The correlation analysis between the SIs and LST at the two 

scales (100 m and 1000 m) reveals the spatial scale dependency 

for some SIs. In the "urban" class, although both indices 

(MSAVI2 and P_imp) have the highest correlation at the MR 

scale (0.50 and 0.42 respectively), they have shown a lower cor-

relation (R2 =0.20) at the LR scale. Resultantly, MSAVI2 and 

P_imp are scale-dependent and may not be useful for downscal-

ing LST from 1000 m resolution. They are more suitable to 

downscale LST from 100 m to higher resolutions (e.g., Landsat 

7 ETM+ 60 m resolution). Opposite to MR (100 m), the SIs in-

cluding DBSI, BSI, BAEI, and NDBI show a higher correlation in 

the "urban" class at LR (1000 m). That SIs reveals to be scale-

dependent parameters. However, they might be useful for 

downscaling LST to closer resolutions to 1000 m (e.g., 500 m), 

and further scale dependency analysis might be investigated in 

different applications.  

The best SIs for estimating LSTs for the class "All", which 

have a higher correlation (R2) and a lower RMSE error, are in 

order; DBSI, ABEI, BSI, BAEI, and NDBI. Those indices contrib-

ute significantly to the thermal environment of a mixed land cover 

type. The SIs maintained the highest correlation among other in-

dices at the two analyzed resolutions (100 m and 1000 m), which 

means those indices are scale independent and perform well in 

downscaling LST. 
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