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Abstract: Fog computing bridges the gap between IoT devices and cloud servers by providing low-latency computational resources 
closer to the network edge. Despite its potential, the rapid increase in IoT applications with diverse resource and quality-of-service 
(QoS) requirements presents significant challenges in application deployment and resource optimization. This paper addresses these 
challenges by introducing a comprehensive application placement framework designed to optimize execution time and energy 
consumption in a heterogeneous fog environment. The proposed framework consists of three phases. A pre-scheduling method is 
developed to efficiently allocate tasks by analyzing workflows to reduce computation delays and energy usage. Leveraging an Improved 
Memetic Algorithm (IMA), this strategy enables effective scheduling of parallel IoT workflows across fog and cloud servers, ensuring 
balanced resource utilization and enhanced scalability. A lightweight recovery method is incorporated to address runtime failures, 
ensuring the robustness and reliability of task execution. The performance of the proposed framework is evaluated using real and 
synthetic IoT workflows in the iFogSim environment. Experimental results demonstrate that the framework achieves a 65% reduction 
in the weighted cost and a 51% decrease in execution time compared to existing approaches. This makes it a promising solution for 
managing resource-intensive IoT applications in fog computing environments. 
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Introduction 

Human life has been greatly enhanced by the extensive use 

of Internet of Things (IoT) devices in a variety of fields, including 

intelligent transportation, smart healthcare, and industrial 

automation [1]. Due to the massive volumes of data produced by 

these devices, sophisticated and latency-sensitive Internet of 

Things applications have emerged, such as online gaming, video 

streaming, augmented reality, and virtual reality. By 2030, there 

will be roughly 3.5 billion connected devices, according to Cisco 

reports and other IoT research studies.[19] These IoT devices 

usually transfer data processing tasks to more powerful 

computing layers because of their limited computational and 

energy resources. Using a pay-as-you-go model, cloud 

computing provides scalable solutions for networking, storage, 

computation, and management. However, maintaining stringent 

Quality of Service (QoS) requirements is still difficult because of 

the enormous volume of data produced by IoT devices and the 

considerable physical distance between users and cloud data 

centers. Traditional cloud-based models are inappropriate for IoT 

deployments because latency-sensitive applications require 

ultra-low response times, high availability, security, and 

guaranteed QoS. 

To overcome these restrictions, the Open Fog Consortium 

unveiled Fog Computing, a framework intended to reduce the 

latency, storage inefficiencies, and bandwidth restrictions that 

come with cloud computing. To improve real-time capabilities, 

this paradigm emphasizes data processing and intelligence near 

the data production location. Fog Computing is an extension of 

cloud computing that was founded in 2015 by prominent 

technology companies like ARM, Cisco, Dell, Intel, Microsoft, 

and Princeton. It integrates various network layers while 

maintaining important advantages like virtualization, 

orchestration, and efficiency. However, putting a fog network into 

practice necessitates carefully weighing several variables, such 

as CPU, RAM, and network capacity, as well as computational, 

communication, and storage demands. [21,22] Before 

implementing a fog service model, other factors like anticipated 

IoT service requests, service types, execution environments, and 

mobility need to be determined. Smart gateways, routers, and 

base stations are important networking elements of the fog 

infrastructure that offer virtualized computer resources to satisfy 

real-time responsiveness demands [17]. 

All of the benefits of cloud computing are combined with 

extra features like mobility management and context-aware 

services in the three-layer Fog Computing (FC) architecture. For 

mobile-based IoT applications like the Internet of Vehicles and 

vehicular IoT systems, this architecture is especially helpful 

[19,20,24]. Fog computing dramatically lowers network 

propagation delays by positioning computing resources close to 

IoT devices. IoT applications are software as a service that, 

when they receive IoT data, perform a variety of tasks. For 

subsequent tasks like pre-processing decision analysis, these 

IoT data must be calculated in real-time. Every Internet of Things 

application consists of a collection of modules, tasks, or services 

that need different configurations of computing resources to 

operate. Finding the services' availability is a very difficult task 

for the service provider because of the diverse and dynamic 

behavior of these IoT applications that estimate precise 

computing resources. In addition to IoT applications' diversity 

and dynamic nature, different IoT applications have different 

needs for real-time responsiveness depending on the situation. 

It is essential to map the set of services to the available 

computing resources to meet at least one of the goals, which will 

simplify the challenges of IoT applications and optimize the QoS 

index of different IoT application use cases [18,23,26]. Finding 

the best computing resources for diverse IoT services is the goal 

of the IoT service placement problem (SPFC). Making the best 

choice for service placement addresses several problems, such 

as meeting deadlines, maximizing the deployment of IoT 

applications by optimizing resource usage, and effectively 

balancing loads to prevent overload and underload, among 

others. On the other hand, determining the best mapping choice 

for heterogeneous services is a well-known NP-complete 

problem [21]. As a result, the majority of authors made decisions 

that were almost ideal for their work [15-18] In addition to 

determining the best way to map different services in fog-cloud 

infrastructure, determining whether the objectives are single- or 

multi-objective increases SPFC's complexity. As a single 

objective optimization problem, the majority of authors 

developed SPFC using various models, such as linear 

programming (LP), integer linear programming (ILP), mixed 

integer linear programming (MILP), mixed integer non-linear 

programming (MINLP), etc. [21, 14-19,2]. A single objective 

optimization centered on either network usage, QoS 

maximization, cost minimization, or energy consumption 

minimization is the foundation of the majority of recent SPFC 

works [19, 20]. Nonetheless, there are numerous instances in 

which an IoT user aims to maximize multiple goals. 

A single objective optimization appears unrealistic and 

unfeasible in these situations. In the literature, many authors 

have formulated SPFC as a biobjective or multiobjective 

optimization problem [16,25,27]. With multiple optimization 

objectives, the Multi-objective SPFC seeks to determine the best 

mapping between the collection of IoT application services and 

computing resources. These goals, which typically conflict and 

come from the perspective of the IoT user or service provider, 

include maximizing performance, maximizing reliability, 

minimizing energy consumption from the service provider's 

perspective, and minimizing costs from the user's perspective. 

Consequently, it appears feasible to formulate SPFC as a 

multiobjective, and it is crucial to optimize each objective function 

at an acceptance level without letting another solution dominate. 

Finding the best placement strategy for diverse heterogeneous 

IoT applications made up of separate services is the main focus 

of this paper. To solve the problem, a hybrid algorithm based on 

meta-heuristics is suggested. Finding a good trade-off between 

makespan, energy, and cost for a set of IoT tasks in the fog cloud 

system is the main goal of the hybrid meta-heuristic approach. 

Furthermore, the weighted sum multi-objective optimization can 

be readily converted to aggregated objective functions for 

multiple objectives, giving the user the freedom to select the 

objective functions' priority by selecting the appropriate weight. 

Literature Survey 

This section discusses relevant studies for application 

placement techniques in fog computing environments, where 

cloud and fog servers collaborate to meet the needs of IoT 

applications. Based on the dependency model of their IoT 

application's constituent pieces, they are categorized into 

independent and dependent categories (e.g., tasks). Each IoT 

application can be thought of as a collection of tasks that are 

either independent or dependent. The dependent one refers to 

programs that are made up of numerous dependent tasks, each 

of which runs only when its previous tasks have been completed. 

The tasks of the programs in the independent one, on the other 

hand, do not have such execution limits. 

Independent Tasks 

In Mobile Edge Computing networks, the computing tasks of 

many wireless devices are offloaded to multiple edge servers 

and one cloud server. Taking into account various real-time 

compute tasks at various wireless devices, each task is 
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determined whether it should be performed locally at the wireless 

device and should be processed either in edge servers or the 

cloud server. Low-complexity computation offloading rules are 

used to ensure mobile edge computing network quality of service 

while reducing wireless device energy usage. For mobile edge 

computing networks, both a linear programming relaxation-

based (LR-based) and a distributed deep learning-based 

offloading (DDLO) technique are found separately. In 

comparison to DDLO, heterogeneous DDLO can help achieve 

greater convergence performance. The DDLO methods offer 

greater performance than the LR-based algorithm, according to 

extensive numerical studies. Furthermore, the DDLO algorithm 

generates an offloading decision in less than 1 millisecond, 

which is multiple times faster than traditional algorithms. The LR-

based algorithm is orders of magnitude faster [2]. 

Offloading with consideration for latency and power 

consumption is a promising subject in the realm of mobile cloud 

computing nowadays. The cloudlet concept has evolved to allow 

latency-aware offloading. Offloading an application to the most 

appropriate cloudlet, on the other hand, remains a significant 

difficulty. Cloudlets can handle a variety of applications. The type 

of application is checked when a request for task offloading 

arrives from a mobile device. The most appropriate cloudlet is 

chosen from a pool of cloudlets near the mobile device based on 

the type of application. The energy consumption of mobile 

terminals can be decreased using an application-aware cloudlet 

selection method. By dispersing the processes to be offloaded in 

various cloudlets, an application-aware cloudlet selection 

approach for multi-cloudlets can balance the load on the system. 

As a result, the chance of putting all loads on a single cloudlet 

for load balancing can be calculated [3]. Managing the 

transmission power of mobile devices and the assigned server 

computation while preserving their latency threshold reduces 

their energy consumption and computational cost in a 

multilayered Mobile Edge Computing system [4]. 

Fog Computing seeks to process data at the network's edge. 

Transmission delay, monetary cost, and application loss caused 

by Cloud Computing can all be decreased with Fog Computing. 

Because fog nodes have lower processing capacity than cloud 

platforms, running all apps on these nodes may cause some 

QoS requirements to be breached. As a result, crucial decisions 

must be made about where to execute each program to develop 

a cost-effective solution that meets all application requirements. 

The unit-slot optimization is a quantified near-optimal solution for 

balancing the three-way tradeoff between average response 

time, average cost, and an average number of application 

failures.  

In a three-tier Cloud of Things system, the unit-slot 

optimization technique can provide cost-effective processing 

while ensuring average response time and average application 

loss [5]. Fog computing attempts to provide Cloud-like services 

at the network edge to enable the Internet of Things (IoT) 

applications that demand fast responses. Application 

deployment in Fog is difficult due to the hierarchical, dispersed, 

and heterogeneous nature of computing instances. The 

application placement challenge is exacerbated by differing user 

expectations and diverse functionalities of IoT devices. The 

placement of apps to compatible Fog instances based on user 

expectations can improve the system's Quality of Experience 

(QoE).  

A QoE-aware application placement policy prioritizes distinct 

application placement requests based on user expectations and 

assesses Fog instances' capabilities based on their present 

status. It also makes it easier to arrange applications on 

appropriate Fog instances in the Fog computing environment, 

ensuring that user QoE is maximized in terms of utility access, 

resource usage, and service delivery. The policy reduces data 

processing time, network congestion, resource affordability, and 

service quality dramatically [6]. Consider a multi-user mobile 

cloud computing system with a computing access point (CAP), 

in which each mobile user has numerous independent tasks that 

can be completed locally, at the CAP, or on a remote cloud 

server. For mobile users, the CAP serves as a network access 

gateway as well as a computing service provider.  

To minimize the overall cost of energy, computation, the 

offloading decisions of all users' jobs as well as the allocation of 

computer and communication resources. Semi-definite 

relaxation (SDR), alternating optimization (AO), and sequential 

tuning (ST) are efficient three-step algorithms that always 

calculate a locally optimal solution and yield approximately 

optimal performance under a wide range of parameter values. 

Evaluating SDR-AO-ST’s performance against a lower bound on 

the least cost, purely local processing, purely cloud processing, 

and hybrid local-cloud processing without the use of the CAP [7]. 

The goal of minimizing each task's computation time and energy 

consumption in the Industrial Internet of Things–edge–cloud 

computing architecture is to formulate the joint problem in which 

the Industrial Internet of Things (IIoT) devices select their 

computation-offloading methods. A finite improvement path to 

Nash equilibrium can be ensured using a free–bound method. 

The Nash equilibrium can be achieved with the help of a multi-

hop cooperative messaging method and two QoS-aware 

distributed algorithms [8]. 

Dependent Tasks 

A partitioning technique that transfers computation-intensive 

workloads from a single mobile device to a single edge or cloud 

server. The mobile device's placement engine is installed to 

discover a group of jobs to offload and lower the mobile 

application's execution time and energy consumption [9][10]. To 

reduce the time needed for IoT applications to run in an 

environment where multiple fog servers and a cloud server are 

readily accessible for application placement, which only 

evaluates one mobile device in their offloading system model 

and reduces mobile device power consumption by offloading 

some computation to the cloud server [11]. To execute multi-user 

jobs at the cloud server with low communication overhead and 

tasks at the edge layer with larger communication overhead [26].  

The communication cost of transferring data from the IoT 

layer's sensors and devices to the fog layer during the scheduling 

process [12]. To ensure the quality of service (QoS) of 

application in a fog environment, which meets service delivery 

deadlines and maximizes resource utilization. A latency-aware 

application deployment policy was suggested in a system with 

numerous fog servers and a single cloud server [13]. To compute 

a task, we need both the user task data and the program that 

processes it as input. The use of caching at the Mobile Edge 

Computing (MEC) system to dynamically store program and/or 

task data has lately been acknowledged as a cost-effective 

approach to reducing compute time, energy usage, and 

bandwidth cost. It provides a strategy for joint optimization of 

service caching placement and computation offloading, even 

though the above-mentioned techniques focus on task 

placement as their primary goal [14].[15] suggested a batch job 

placement based on a Genetic Algorithm (GA), in which 

numerous users' mobile applications are forwarded to a single 

central edge server for placement decisions. The scheduling of 

various workflows using metaheuristics algorithms is discussed 

in [13]-[15]. The application placement in fog computing sussing 

opposition-based memetic algorithm was discussed in [16]-[18]. 



Several benefits have been found by current research on IoT 

service placement, such as effective offloading strategies, where 

low-complexity algorithms and deep learning-based frameworks 

have successfully decreased execution time and energy 

consumption in mobile edge computing environments. By 

allocating tasks according to application requirements, cloudlet 

selection and load-balancing techniques have improved system 

performance and energy efficiency. Additionally, by using 

strategies like latency-aware placement and QoE-aware 

policies, QoS and QoE optimization techniques have enhanced 

resource utilization and latency-sensitive task handling. 

Cooperative offloading and Nash equilibrium-based solutions 

are useful for optimizing shared resource usage in multi-user and 

multi-task scenarios. Additionally, flexible and dynamic 

application deployment has been made possible by hybrid 

approaches that integrate edge, fog, and cloud computing, 

guaranteeing performance gains under various 

circumstances.[25] 

Existing work, however, also poses several difficulties. 

Inefficient task placement under high loads is a result of many 

approaches' limited scalability, which makes it difficult to manage 

large-scale IoT environments with a large number of devices and 

resource-intensive workflows.[27] High computational 

complexity is also an issue because, despite their effectiveness, 

optimization methods like genetic algorithms frequently result in 

excessive computational overhead and decision times, which 

makes them inappropriate for real-time applications. The 

reliability of IoT deployments may also be jeopardized by 

insufficient failure recovery, as only a small number of studies 

have addressed runtime failures during task execution. 

Furthermore, despite real-world restrictions like limited virtual 

machine capacities and variable bandwidth, some models 

assume infinite resources in edge or fog servers, ignoring 

resource constraints. Lastly, there are still issues with task 

dependencies because many studies overlook the intricate 

relationships between IoT application tasks, which results in 

inefficient task placement and execution order. These pros and 

cons highlight the contributions and gaps in prior research, 

forming the basis for the improvements proposed in the paper. 

The main contributions of this paper are as follows: 

– We propose a novel weighted cost model that 

simultaneously minimizes execution time and energy 

consumption for IoT applications in a hybrid fog-cloud 

environment. This model accounts for the limited 

computational resources of fog servers while ensuring 

efficient application deployment. 

–  A pre-scheduling approach is developed to efficiently 

organize and prioritize tasks based on their dependencies 

and workflows. This technique reduces computation delays 

and energy usage, enhancing the performance of resource-

constrained IoT devices. 

– A new batch application placement strategy is introduced, 

leveraging the Improved Memetic Algorithm (IMA) to 

optimize the placement of parallel IoT workflows. The 

algorithm incorporates local search techniques and diversity 

factors to avoid local optima and improve convergence 

speed. 

– To enhance system reliability, we design a lightweight failure 

recovery mechanism that efficiently reallocates failed tasks 

to alternative servers, minimizing disruption and ensuring 

robust execution. 

– The proposed framework is evaluated using real and 

synthetic workflows in the iFogSim simulator. Experimental 

results demonstrate up to a 65% reduction in weighted cost 

and a 51% improvement in execution time compared to 

state-of-the-art approaches. 

Materials and Methods 

System Model 

We consider a framework that includes various IoT devices, 

fog servers, cloud servers, and brokers, in which IoT devices 

execute their workflows (i.e., DAGs) locally or offload them 

entirely or partially to cloud and/or fog servers. Our system model 

is shown in Figure 1 at a high level. Each broker in this system 

framework has the means to support up to N IoT devices in its 

immediate area. In this work, Directed Acyclic Graphs (DAGs) 

are used to model IoT application workflows. Each node in the 

DAG represents a specific computational task, and the directed 

edges represent dependencies between tasks, indicating the 

execution order. This representation enables efficient 

scheduling, task placement, and optimization in a fog-cloud 

environment while respecting the constraints imposed by task 

dependencies and resource availability. 

Problem Formulation 

The task placement problem is formulated as an optimization 

problem to minimize the overall execution time of IoT 

applications as well as IoT energy consumption. The available 

servers are represented as N1 with |N1|=Q because there are 

multiple servers available to run the jobs Vn, i. The term an 

identifies the type of server, and the N1
a,b denotes one server. 

Then a=0 is an IoT device, a=1 is a fog server, a=2 is a cloud 

server, and b is the server index, Tn signifies the offloading 

configuration for each task, while 𝑡𝑛,𝑖 denotes the workflow 

configuration for the nth IoT device. It is calculated using 

equation 1. 

 

Figure (1): Overview of the Proposed System. 
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Here, 𝑡𝑛,𝑖 =0 denotes that the task is assigned to the nth IoT 

device for local execution, 𝑡𝑛,𝑖 =1 denotes that the task is 

assigned to either a cloud server or a fog server for remote 

execution. The f1 and c1 denote the number of fog servers and 

cloud servers. 

Weighted Cost Calculation 

The purpose of the task placement technique is to select the 

optimal configuration of available servers for each IoT application 

to limit the weighted cost of execution for each IoT device, as 

illustrated below in equations 2 to 6: 
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Γ(𝑇𝑛)

Γ𝐿𝑜𝑐𝑎𝑙𝑛
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Show that, 

C11: 𝑉𝑀𝑓𝑜𝑔,𝑖 ≤ 𝐶𝑓𝑜𝑔,𝑖  ∀𝑖 ∈ 𝑁1
1,1… .𝑁1

1,𝑓}                            (4) 

C12 : |𝑡𝑛,𝑖| = 1, ∀𝑖∈ {1,2,𝑁} 𝑡𝑛,𝑖1  j  |vn|                           (5) 

C13: (W(Vn, i)) ≤ (W(Vn, i) + Vn, i)                                  (6) 

Where Γ(𝑇𝑛), Θ(𝑇𝑛), Γ𝐿𝑜𝑐𝑎𝑙𝑛, Θ𝐿𝑜𝑐𝑎𝑙𝑛 denote the IoT device's 

execution time, energy consumption, and local execution time 

and energy consumption. Furthermore, 𝜓𝛼 and 𝜓𝛽  are control 

parameters for execution time and energy consumption, 

respectively, that allow the weighted cost model to be 

customized to the user's requirements. We also assume that the 

task can be given to a single Virtual Machine (VM) on a fog or 

cloud server. The number of VMs on the ith fog server VMfog, i is 

fewer than or equal to the fog server's maximum capacity, Cfog, i, 

as indicated by C11. C12 indicates that each time slot can only 

have one server allocated to job I from the workflow of the nth 

IoT device, C13 indicates that Vn, i predecessor ith tasks must be 

completed before the original task may be completed. 

Execution Time Model 

When 𝜓𝛼 = 1 and 𝜓𝛽 = 0 is used in Eq. (3), and the weighted 

cost optimization is equivalent to the execution time model. The 

purpose of the execution time optimization model is to identify 

the shortest possible execution time. The best setup for the 

application that is running on the computer nth IoT device, such 

that the application's execution time is reduced. The total latency 

in task offloading (Γ𝑇𝑛
𝑙𝑎𝑡) can be used to calculate the entire 

execution time of each candidate configuration, the time it takes 

for tasks in a workflow to be computed based on the servers 

they've been assigned (Γ𝑇𝑛
𝑒𝑥𝑒) and the time it takes for data to be 

transmitted between each pair of dependent jobs (Γ𝑇𝑛
𝑡𝑟𝑎) workflow 

is given below in equation 7: 

Γ(𝑇𝑛) =  Γ𝑇𝑛
𝑒𝑥𝑒 + Γ𝑇𝑛

𝑙𝑎𝑡 + Γ𝑇𝑛
𝑡𝑟𝑎                                                 (7) 

The computational execution time for the application 

operating on the nth IoT device is computed as follows in 

equation 8: 

Γ𝑇𝑛
𝑒𝑥𝑒 = ∑ γ𝑡𝑛,𝑖

𝑒𝑥𝑒 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

                                                                                                  (8) 

where  γ𝑡𝑛,𝑖
𝑒𝑥𝑒 

  denotes the computing time of task Vn, i, and it is 

calculated based on the server which is assigned from the 

following equation 9: 
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                                                           (9)  

here 𝑙𝑜𝑐𝑎𝑙𝑐𝑝𝑢 denotes the IoT device computing 

power 𝑆𝑝𝑒𝑒𝑑_𝐹𝑓1 and 𝑆𝑝𝑒𝑒𝑑_𝐹𝑐1denotes the speedup factor of 

fog and cloud servers. Based on the tasks assigned to servers, 

the offloading latency Γ𝑇𝑛
𝑙𝑎𝑡 of tasks corresponding to the nth IoT 

device is estimated using equation 10: 

Γ𝑇𝑛
𝑙𝑎𝑡 = ∑ γ𝑡𝑛,𝑖

𝑙𝑎𝑡 .
𝑡𝑛,𝑖 𝜖𝑇𝑛                                                                                               (10)  

where  γ𝑡𝑛,𝑖
𝑙𝑎𝑡 

  demonstrates the offloading task Vn, i is 

calculated based on the server which is assigned from the 

following equation 11: 

γ𝑡𝑛,𝑖
𝑙𝑎𝑡 = {

0,          𝑡𝑛,𝑖 = 0 

LatLAN,𝑡𝑛,𝑖 = 1

LatWAN,𝑡𝑛,𝑖 = 1
                                                  (11) 

 where LatLAN  and  LatWAN,  denotes the latency of LAN and 

WAN. The transmission time of the task’s workflow to the nth IoT 

device is calculated using equation 12:   

   Γ𝑇𝑛
𝑡𝑟𝑎 = ∑ γ𝑡𝑛,𝑖

𝑇𝑅𝐴 .
𝑡𝑛,𝑖 𝜖𝑇𝑛                                                           (12)  

where the transmission time of dependent tasks Vn, i and Vn,j 

is calculated using equation 13:  

γ𝑒𝑛,𝑖,𝑗
𝑡𝑟𝑎 =

{
 
 

 
 

𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝐿𝐴𝑁
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𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝑤𝐴𝑁
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                                 (13)  

where  𝐵𝑊𝐿𝐴𝑁and  𝐵𝑊𝑤𝐴𝑁  denotes the bandwidth of LAN 

and WAN.  

Energy Consumption Model  

When 𝜓𝛼 = 1 and 𝜓𝛽 = 0 are equal, and the weighted cost 

optimization equals the energy consumption model, according to 

Eq. (2). The goal of the energy consumption model is to discover 

the best feasible configuration of the application's tasks to reduce 

the energy consumption of the nth IoT device. The total energy 

consumed by any candidate configuration can be calculated as 

the sum of the energy consumed in each component( Θ𝑇𝑛
𝑙𝑎𝑡) job 

offloading and the energy used in task computation (Θ𝑇𝑛
𝑒𝑥𝑒), as 

well as the energy used for the data exchange between each pair 

of dependent tasks(Θ𝑇𝑛
𝑡𝑟𝑎) of the application, as described in 

equation 14: 

 

Θ(𝑇𝑛) = Θ𝑇𝑛
𝑒𝑥𝑒 + Θ𝑇𝑛

𝑙𝑎𝑡 + Θ𝑇𝑛
𝑡𝑟𝑎                                              (14)  

The amount of energy used to compute the nth IoT device's 

application is calculated as follows using equation 15: 

 

Θ𝑇𝑛
𝑒𝑥𝑒 = ∑ θ𝑡𝑛,𝑖

𝑒𝑥𝑒 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

                                                              (15)  

where θ𝑡𝑛,𝑖
𝑒𝑥𝑒 

 denotes the amount of energy required to do the 

task Vn,i, as computed in the following formula mentioned in 

equation 16:   

θ𝑡𝑛,𝑖
𝑒𝑥𝑒 = {

𝛾𝑡𝑛,𝑖 
𝑒𝑥𝑒  ∗  𝑃𝑂𝑊𝑐𝑝𝑢, 𝑡𝑛,𝑖 = 0

𝛾𝑡𝑛,𝑖 
𝑖𝑑𝑙𝑒  ∗  𝑃𝑂𝑊𝑖𝑑𝑙𝑒, 𝑡𝑛,𝑖 = 1,2

                                  (16) 

where 𝑃𝑂𝑊𝑐𝑝𝑢 is the IoT device's CPU power, on which the task's 

Vn,i runs. Because we only consider energy consumption from 

the perspective of IoT devices, whenever each task is offloaded 

to fog servers (𝑡𝑛,𝑖) or cloud servers (𝑡𝑛,𝑖), the respective energy 

consumption is equal to the IoT device's idle time 𝛾𝑡𝑛,𝑖 
𝑖𝑑𝑙𝑒multiplied 

by the power consumption of that device in its idle mode 

 𝑃𝑂𝑊𝑖𝑑𝑙𝑒.The energy used to offload tasks corresponding to the 

nth IoT device Θ𝑇𝑛
𝑙𝑎𝑡 is computed as follows using equation 17: 

Θ𝑇𝑛
𝑙𝑎𝑡 = ∑ θ𝑡𝑛,𝑖

𝑙𝑎𝑡 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

                                                           (17)  

where  Θ𝑡𝑛,𝑖
𝑙𝑎𝑡

  denotes  the offloading consumption of the task vn,i 

and is computed using equation 18: 

θ𝑡𝑛,𝑖
𝑙𝑎𝑡 = {

0      ,                      𝑡𝑛,𝑖 = 0 

𝛾𝑡𝑛,𝑖 
𝑖𝑑𝑙𝑒  ∗  𝑃𝑂𝑊𝑖𝑑𝑙𝑒, 𝑡𝑛,𝑖 = 1,2

                                                        (18) 

where  θ𝑡𝑛,𝑖
𝑙𝑎𝑡

  denotes  the offloading consumption of the task Vn,i 

and is demonstrated from: 

 

The transmission energy consumption Θ𝑇𝑛
𝑡𝑟𝑎for the nth IoT 

device is calculated as follows using equation 19: 

Θ𝑇𝑛
𝑡𝑟𝑎 = ∑ θ𝑡𝑛,𝑖

𝑡𝑟𝑎 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

                                                                                           (19) 



where the transmission energy between the pair of dependent 

tasks Vn,i and Vn,j is calculated using equation 20: 

 

θ𝑒𝑛,𝑖,𝑗
𝑡𝑟𝑎 =

{
 
 

 
 
𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝐿𝐴𝑁

∗ 𝑃𝑂𝑊𝑡𝑟𝑎𝑛𝑠,   𝐶𝐶𝐸𝑖 = 𝐶𝐶𝐸1

𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝑤𝐴𝑁

∗ 𝑃𝑂𝑊𝑡𝑟𝑎𝑛𝑠,   𝐶𝐶𝐸𝑖 = 𝐶𝐶𝐸2

0                                ,     𝐶𝐶𝐸𝑖 = 𝐶𝐶𝐸3

                       (20)     

The 𝐶𝐶𝐸 displays transmission configuration for each edge 

en,i,j based on the assigned servers of its tasks to compute the 

transmission energy, which is determined from the transmission 

power of the IoT device, which is designated as 𝑃𝑂𝑊𝑡𝑟𝑎𝑛𝑠  and it 

is calculated using equation 21 

Table (1): Summary of Symbols and Notations. 

Symbol Description 

Nl Set of available servers (fog and cloud servers). 

A 
Type of server (a=0: IoT device, a=1: fog server, 

a=2: cloud server). 

B Index of a specific server within a type. 

Tn 
Offloading configuration for tasks of the nth IoT 

device. 

Vn,i ith task in the workflow of the nth IoT device. 

fi, ci Number of fog servers and cloud servers 

τ Execution time of a task. 

E Energy consumption of a task. 

λLAN,λWAN 
Latency in Local Area Network (LAN) and Wide 

Area Network (WAN). 

BLAN , BWAN Bandwidth of LAN and WAN. 

ξ 
Weighted cost optimization parameter for 

execution time. 

η 
Weighted cost optimization parameter for energy 

consumption. 

SI(Vn,i) Server index assigned to task Vn,i. 

μfog,i, μcloud,i Speedup factors of the fog and cloud servers. 

PCPU CPU power of the IoT device. 

Pidle Idle power consumption of the IoT device. 

Ptrans Transmission power of the IoT device. 

𝐶𝐶𝐸𝑖(𝑒𝑛,𝑖,𝑗
𝑤 ) = {

𝑡𝑛,𝑖⨁𝑡𝑛,𝑗 = 1,   𝑖 = 1

𝑡𝑛,𝑖⨁𝑡𝑛,𝑗 = 2,   𝑖 = 2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 3

                                (21)  

where 𝐶𝐶𝐸1 signifies data flow between two jobs Vn,i and Vn,j, 

which are allocated to the IoT device and fog servers, 

respectively. 𝐶𝐶𝐸2 is also used to depict the interaction between 

two jobs assigned to IoT devices and cloud servers. Because the 

transmission energy consumption is calculated from the 

perspective of the IoT device, it is equal to zero whenever one of 

the participating jobs in an edge 𝑒𝑛,𝑖,𝑗
𝑤  is not assigned to the IoT 

device, as shown in 𝐶𝐶𝐸3 .The symbols and the notations used 

are given in table 1. 

Methodology 

Application Placement Technique 

Ordering, batch application placement, and failure recovery 

are the three aspects of our suggested application placement 

technique. Brokers can manage concurrent IoT device 

processes using an approach presented in the pre-scheduling 

phase. Then, to minimize the weighted cost of each IoT device, 

we offer an optimized version of the Improved Memetic Algorithm 

(IMA) for batch application placement. In addition, we provide a 

lightweight failure recovery method in our technique to deal with 

any potential runtime issues. 

Ordering Phase 

The broker receives workflows from IoT devices. 

Furthermore, depending on their particular workflows, it 

evaluates the local execution time and energy consumption of 

IoT devices. In terms of the quantity and weight of tasks, 

dependencies, and the amount of data flow between each pair 

of dependent tasks, IoT device workflows are diverse. 

Furthermore, each workflow's task execution order should be 

ordered so that a new task Vn,i cannot be run until all tasks in its 

W(Vn,i) have completed their execution. 

Process of Ordering Phase 

Algorithm 1 explains how the pre-scheduling phase 

organizes tasks of each process and consequently builds 

schedules and concurrent workflows. In Algorithm 1, the local 

execution time and energy consumption for each workflow are 

estimated and saved in Local Time and Local Energy 

respectively, (lines 3 and 4). DAGs are useful because they can 

have some root vertices (source nodes), The Find_ Root method 

locates all of the DAG's root vertices, SRCn (line 5). This method 

is used to check whether the P(Vn,i) is equal to null or not. The 

Single Root_ Transformer method creates a new DAG called 

nDAG which has only one single root (line 6). To attain this, we 

should create a dummy vertex called n Dummy Root and 

connect this vertex to all source vertices of SRCn obtained from 

the original DAG. We can specify the schedule number for each 

vertex starting from the Dummy Root by using the Breadth-First-

search (BFS) algorithm (line 7). The outcome of the overall loop 

is to provide a scheduled number for every task. This algorithm 

iterates over concurrent workflows so that the tasks with the 

same schedule number are arranged in a row of 2D ArrayList 

called Final2DArrayList.The method gets (x) and adds (Vn,i) are 

used to access a 2D ArrayList and add a new entry to a 

list(line12). 

This pre-scheduling process is depicted a with an example 

scenario. Consider there exists two workflows with four and three 

vertices. The first workflow has one source vertex, while the 

second workflow contains two source vertices. Following the 

discovery of the source vertices, the Single Root_ Transformer 

method forms a new DAG called n DAG with only one source 

root. Then, the BFS algorithm is applied to schedule each task. 

While the schedule number for all the tasks is identified, the tasks 

with the same schedule number should be placed in 2D ArrayList 

called Final2DArrayList  

Batch Application Placement Phase 

We propose a batch application placement technique in 

which an Improved Memetic Algorithm (IMA) is used to decide 

where tasks in each schedule should be placed. Tasks in each 

schedule can be conducted in parallel since they are either 

independent tasks in one processor or tasks from various 

workflows (with no dependency) that are executed in parallel. 

Algorithm 1: Ordering Phase 

Input: WOF: List of all workflows 

Output: Final2D Array L ist, Local Time,    

Local Energy 

N = |WOF| (number of workflows) 

Iterate through each workflow (n = 1 to N): 

– Local Time. Add (Cal Local Exe Time (WOFn)) 

– Local Energy. Add (Cal Local Exe Energy (WOFn)) 

– SRCn = Finder_Root (WOFn) 

– nDAG = Single Root_Transformer (WOFn, SRCn) 

– BFS (nDAG, Duplicate Root) 

Iterate through each workflow (n = 1 to N): 

For each node in WOFn (i = 1 to |WOFn|): 

– integer x = Checking Order Number (Vn, i) 

– Final2DArrayList.get(x). add(Vn, i) 
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Algorithm 2: Improved Memetic Algorithm  

Input: List of Workflows, Final2DArrayList: The 2D 

ArrayList that contains all schedules. 

Output: Con_final, Cost_final 

Set Result List MA = null 

 Iterate through each schedule (i = 1 to S): 

– MAResult.get(i) =   

– IMA(Final Ordered List. get(i)) 

– Con_final =   

– Result Processor (Result L is tMA. get(i)) 

 Iterate through each workflow (n = 1 to N): 

– Compute cost: Cost_final [n] =    

– Cost Calculator (Con_final) 

Algorithm 2 gives an overview of the suggested batch 

application placement step. This phase takes as input a list of all 

workflows WOF and schedules Final2DArrayList and outputs the 

workflow configuration as Con_ final and the overall execution 

cost as Cost_ final. Due to a large number of schedules, the 

Improved Memetic Algorithm (IMA) is used to decide on tasks for 

the current schedule while taking prior schedule server 

allocations into account (line 3). Because tasks in each schedule 

come from one or more workflows, the Result Processor Result 

L ist MA method collects task assignments from all schedules 

Result L is tMA, organizes them by workflow, and stores them in 

a 2D Arraylist called Con_ final, where each row represents one 

workflow (line 4). The Cost Calculator Con_ final method 

calculates the execution cost of each workflow based on the 

relevant obtained configuration once the task assignment for all 

schedules is completed. The IMA is the key function of this 

phase. 

Improved Memetic Algorithm (IMA) 

The Improved Memetic Algorithm (MA) is an algorithm that 

combines evolutionary-based search methods like GA with one 

or more refinement methods (e.g., local search, individual 

learning) to solve various optimization issues like routing and 

scheduling. Each candidate solution is represented by an 

individual in the IMA, and the solution is retrieved from a 

population of candidate individuals. By using GA functions, we 

proposed an Improved Memetic Algorithm (IMA), in which a local 

search method is applied to the selected individuals of each 

iteration. Each possible configuration of servers assigned to 

tasks in a single schedule is encoded individually in the IMA. The 

atomic part of each individual is a gene that describes the task in 

a schedule and carries a tuple (p,q) here, p defines the type of 

assigned server and q defines the index of the server. The values 

of each tuple are derived in which values of the type of assigned 

server and index of the server are defined.  

The Genetic Algorithm is made up of four steps initialization, 

selection, crossover, and mutation. The IMA is made up of the 

first four steps of a genetic algorithm and local search, which is 

a refinement method. The utility of each candidate is evaluated 

by using a fitness function that enables the IMA to choose the 

best individuals in every iteration. In the context of the genetic 

algorithm, a population consists of multiple candidate solutions, 

referred to as individuals. Each individual is represented as a 

chromosome, which is further divided into genes that encode 

specific components of the solution. Fitness values are 

calculated for each individual to evaluate their quality. 

Algorithm 3: IMA Algorithm 

Input: schedule_ tasks: Set of tasks 

Output: Org P List. Get (0) 

Set Org P List = null, DivP List = null 

Call Initialization (schedule_tasks) 

Assign Org PList = Selection (OrgP) 

Assign Div PList = Selection (DivP) 

Iterate for i = 1 to I: 

 Crossover (Org PList, Div P List) 

 Mutation (Org P List, Div PList) 

 Local Search (OrgPList, Div PList) 

 Update Org PList = Selection (OrgP) 

 Update Div PList = Selection (DivP) 

Initialization 

In this step, the maximum number of iterations I, population 

size P_Size, and other IMA parameters. Individuals in the 

population are created, and the population is initialized. 

Moreover, a new population has been added to the Original 

Population (OrgP). Diversity Population is a term used to 

describe a strategy for increasing the diversity of solutions 

(DivP). Because the IMA's major purpose is to determine the 

best possible server configuration. The cost of local execution 

downs and a pre-defined individual is assigned and created for 

the OrgP, in which all gene tuple values are tuples set to the local 

servers of their choice. Because those whose fitness values are 

lesser than the pre-defined individual are not selected in the 

following iterations, the number of low-utility individuals is 

reduced. In the initialization step, the rest of the individuals in the 

OrgP and the individuals in the DivP are generated at random. 

The solution is represented as an individual in the Improved 

Memetic Algorithm (IMA), and each individual is associated with 

a particular task assignment configuration within a specified 

timeframe. Each gene in the person is a task and is encoded as 

a tuple (p, q), where q is the server index and p is the type of 

server (e.g., 0 for an IoT device, 1 for a fog server, and 2 for a 

cloud server). For example, a gene (1,2) indicates that the 

second fog server is given the task. A person is made up of 

several of these genes, which together determine where each 

task should be placed in a schedule. The number of tasks (n) 

and the number of available servers (m) determine the size of 

the search space, which leads to 

The number of available servers (m) and the number of tasks 

(n) determine the size of the search space, which comes out to 

be mⁿ. The effective search space is decreased by practical 

limitations like task dependencies and resource limitations, even 

though this size increases exponentially with the number of 

tasks. When working with large search spaces, heuristic 

algorithms like IMA are especially helpful because deterministic 

approaches become computationally costly due to exponential 

growth. Additionally, heuristic methods efficiently provide near-

optimal solutions when it is not possible to obtain an optimal 

solution in a practical timeframe. The intricacy of constraints, 

such as resource limitations, dependency models, and latency 

considerations, emphasizes even more how flexible heuristic 

methods are in comparison to deterministic algorithms. 

Fitness Function 

For Orginal Population (OrgP), the IMA employs two global 

and local fitness functions, which are used to assess the utility of 

each Mp
orgp (indiv) indicating the utility of a server's configuration 

for each task of one workflow on that schedule Mq
orgp (Vn,i). The 

Mq
orgp (Vn,i) receives the task Vn,i and local fitness value is 

calculated [from Equ. (2)] with the execution cost of the 

unassigned workflow are equal to zero. Algorithm 4 describes 

how the fitness value of every individual Mp
orgp (Vn,i) is 

calculated. The Mp
orgp (Vn,i) is the total of local fitness Mq

orgp (Vn,i) 



of tasks in one schedule. Due to the concurrent execution of 

tasks of one workflow in every schedule, the local fitness Mq
orgp 

(Vn,i) values of tasks that belong to the same workflow Maxi Loc 

are calculated (lines 1-11). The Concurrent Task Checking is the 

method that stores the parallel tasks of workflow in the 

Concurrent Set (line 3). Moreover, the local fitness of every task 

in the Concurrent Set is calculated and the maximum local 

fitness is stored in Maxi Loc (lines 4-10). Thus, the global fitness 

value is calculated by the sum of all values of MaxiLoc, which 

stores the maximum local fitness value of each workflow. 

Input: indiv: An individual showing tasks of Schedule 

Output: pBest 

Iterate through each workflow (n = 1 to K): 

– Reset Concurrent Set = null 

– Concurrent Set = Concurrent Checking (indiv, WO Fn) 

– Maxi Loc[k] = Mqorgp (Concurrent Set. get(1)) 

Iterate through Concurrent Set (i = 1 to |ConcurrentS et|): 

– temp = Fqorgp (Concurrent Set[i]) 

– If temp > Maxi Loc[k], update: Maxi Loc[k] = temp 

– Iterate through Maxi Loc (i = 1 to |MaxiLoc|): 

P Best = p Best + Maxi Loc. Get (i) 

In IMA, the main goal of Diversity Population (𝑑𝑖𝑣𝑃) is to 

diversify the individuals so that the probability of local optimum 

decreases. Moreover, the fitness function of 𝑑𝑖𝑣𝑃, 

The 𝑀𝑝
𝑑𝑖𝑣𝑃(𝑖𝑛𝑑𝑖𝑣𝑛

𝑑𝑖𝑣𝑃) is completely different from 𝑜𝑟𝑔𝑃 and it is 

calculated as follows using equation 22 and 23: 

𝑀𝑝
𝑑𝑖𝑣𝑃(𝑖𝑛𝑑𝑖𝑣𝑛

𝑑𝑖𝑣𝑃) = ∑ 𝐻𝐷(𝑖𝑛𝑑𝑖𝑣𝑖
𝑜𝑟𝑔𝑃

, 𝑖𝑛𝑑𝑖𝑣𝑛
𝑑𝑖𝑣𝑃)𝑃𝑠𝑖𝑧𝑒

𝑖=1    (22) 

where 𝑃𝑠𝑖𝑧𝑒 describes the population size of 𝑜𝑟𝑔𝑃 and 𝑑𝑖𝑣𝑃. 

The individual of 𝑜𝑟𝑔𝑃 and 𝑑𝑖𝑣𝑃 is described as 𝑖𝑛𝑑𝑖𝑣𝑖
𝑜𝑟𝑔𝑃

and 

𝑖𝑛𝑑𝑖𝑣𝑛
𝑑𝑖𝑣𝑃.The 𝐻𝐷(𝑖𝑛𝑑𝑖𝑣𝑖

𝑜𝑟𝑔𝑃
, 𝑖𝑛𝑑𝑖𝑣𝑛

𝑑𝑖𝑣𝑃) is the Hamming distance 

function that calculates the difference between individuals of the 

assigned server to the tasks and it is described as follows: 

𝐻𝐷(𝑖𝑛𝑑𝑖𝑣𝑖
𝑜𝑟𝑔𝑃

, 𝑖𝑛𝑑𝑖𝑣𝑛
𝑑𝑖𝑣𝑃) = ∑ 𝑑𝑖𝑣_𝑓𝑆

𝑘=1                            (23)  

where f describes the size of each individual. To compute the 

fitness of one individual of 𝑑𝑖𝑣𝑃, we calculate its difference by the 

number of individuals in the OrgP in Eqs. (22) and (23), and the 

individual with the higher difference receives a higher fitness 

value. This aids in the retention of individuals with a greater 𝑑𝑖𝑣𝑃 

difference who are more diverse than the individuals in the IMA. 

Since the various type of servers (i.e., Internet of Things, fog, 

and cloud) with varying numbers of servers in each type (for 

example, server index) is taken into account by the system. A 

diversity factor 𝑑𝑖𝑣_𝑓  is defined in the model, which explains 

each task's fitness based on the type and index of the task server 

that has been assigned as follows using equation 24: 

𝑑𝑓 =  

{
 
 
 
 

 
 
 
 
2 , 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) −  𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 1

     𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) −  𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 0

𝛿
 

1 , 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) −  𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 1

     𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) −  𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 0

𝛿
0 , 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) −  𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 0

     (24)  

Here, sym is the Symbolic Function which is described in 

equation 25:  

𝑆𝑦𝑚(|𝑝 − 𝑞|) = {
0,𝑚 = 𝑛
1.𝑚 ≠ 𝑛

                                             (25) 

From Eqn (25), each task in the DivP (i.e., ST (indivr,k
divp)) 

receives a greater fitness value if the server type of the 

corresponding task is an individual of OrgP (ST (indivi,k
orgp )). The 

div_f is set as 1 if the server types of these tasks are equal. 

Furthermore, if the two jobs are assigned to the same server (i.e., 

the same server type and server index), the DivP fitness value 

for that work is zero. 

Selection  

The purpose of selection is to choose high-utility individuals 

from both OrgP and DivP for future iterations based on their 

respective fitness functions. The individuals of OrgP and DivP 

are sorted according to their fitness functions, and the top three 

candidate solutions from each population, as well as one random 

individual, are selected and saved in the orgpList and divpList, 

respectively. 

Crossover and Mutation  

The purpose of the crossover stage is to create new 

individuals (known as offspring) from a group of individuals 

chosen in the selection step (called parents). The IMA develops 

two offspring from each pair of selected parents using a two-point 

crossover operation. The total number of new offspring for each 

population is computed in each iteration using the equation 26: 

Offspring Number = 2,
)!(

!



p

pw

w
         (26) 

 Two crossing points are chosen at random from the parents 

in the two-point crossover. The genes between the two crossover 

locations are then exchanged between the parent individuals, 

leaving the rest unaffected. Because the IMA generally uses two 

populations, OrgP and DivP, inbreeding occurs when individuals 

from the same population crossbreed, whereas crossbreeding 

occurs when individuals from separate populations crossbreed. 

Individual variety is provided by crossbreeding, which helps to 

avoid local optimal values with a higher probability. In addition, 

crossbreeding results are recorded in a selected list of both 

populations (OrgPList, DivPList), whereas inbreeding results are 

stored in the selected list of corresponding populations. The 

mutation function in the APMA affects many genes of progeny 

based on a predefined probability in the hopes of developing 

individuals with better utility. In the mutation step, a random 

resetting mutation is applied, where selected genes are 

reassigned to a different server type and/or server index with a 

predefined mutation probability. This ensures diversity in the 

population and enhances the exploration of the search space to 

avoid premature convergence." 

 

 

Local Search Step 

Optimization approaches that utilize a population of 

candidate solutions are known as genetic algorithms (GAs). 

Parent selection, crossover, mutation, and replacement are the 

four processes that the population goes through. GAs is 

commonly thought of as search techniques for locating high-

performance areas in large, complex search spaces, but they are 

not well suited for fine-tuning solutions. The components of GAs, 

on the other hand, might be custom-designed and their 

characteristics fine-tuned to enable effective local search 

behavior. Several models have lately been given with this goal. 

These algorithms are referred to as Local Genetic Algorithms in 

this chapter (LGAs). Considering that the crossover locations 

and mutation genes are chosen at random, a new function called 

local search is constructed, which is based on the 

OrgP(Fq
orgp(Vn,i))’s local fitness function. The crossover function 

and mutation provide randomness, which is important since it 

allows for a higher possibility of jumping out of local optimal 
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locations. Together with those random functions, the local search 

function accelerates convergence to the global optimal solution.  

Algorithm 5: Local Search Step 

Input: OrgP List: Selected list of the original population, 

DivP List: Selected list of diverse population 

Set length = |Org P List| 

Buff List = set List (MAXINT) 

Iterate through each individual (p = 1 to |indiv|): 

Iterate through the original population list (q    

= 1 to length): 

If Flop (indivq, porgp) < buff List. Get (p),   

update: 

– Buff List [p] = Flop (indivq, porgp) 

– Org P List. Add (GenerateIndiv (buff List. Get (0))) 

– Update Popul (Org P, Org P List) 

– Update Popul (Div P, Div P List) 

Although the local search function enhances the likelihood of 

faster convergence to the global optimal solutions, it may cause 

two issues. First, relying entirely on local search functions 

increases the likelihood of becoming stuck in local optimal spots. 

Second, the local search mechanism takes a long time to 

traverse the search space for an issue with a big solution space. 

As a result, when implementing a local search function in the 

IMA, these two considerations should be taken into initializing the 

buff List with an infinite number of values. Genes with the same 

index number are evaluated in terms of their local fitness values 

for individuals in the Org P List. Flop (indivq, porgp) and best 

genes are chosen and stored in buff List's respective index 

numbers (lines 3-9). Because the fitness function is based on the 

execution cost, a lower fitness value indicates a better 

assignment (line 5). Following that, a new individual is generated 

and saved in the Org P List (line 10). Finally, the Org P and Div 

P are combined with the updated Org P List and Div P List from 

the local search stage and the top candidate solutions from each 

population are chosen for the populations of the next iteration 

(lines 11-12). The best individual of the Org P stored in Org P 

List. Get (0) is returned as the outcome of the IMA whenever it 

reaches its halting criterion. 

Failure Recovery Phase 

Failures can occur in any system, so providing an effective 

failure recovery strategy is critical. Brokers in our system keep 

track of all the servers and see if they have any plans to 

undertake a whether the task will be completed soon or not. 

Furthermore, they estimate the complete cost of each work 

based on its local fitness value, Mqorgp (Vn, i) taking into account 

the assigned server for each task. If any job fails to execute, 

choose a surrogate server for that task. As inputs, the failure 

recovery technique takes a list of currently available free servers 

(including IoT devices) and a failed job. The local fitness value 

Mqorgp (Vn, i) of that task is then calculated for free servers. 

Finally, jobs with the least Mqorgp (Vn, i) for execution will be 

forwarded to the server. 

Overhead Analysis 

The computational steps of the Improved Memetic Algorithm 

(IMA) and the lightweight pre-scheduling phase determine the 

time complexity of the suggested application placement 

technique. The task ordering procedure in the pre-scheduling 

phase creates the Directed Acyclic Graph (DAG) by a traversal 

of the Breadth-First Search (BFS). This results in a time 

complexity of O(V + E), where V is the number of tasks (vertices) 

and E is the number of dependencies (edges) in the workflows. 

There are several computational steps in the Improved Memetic 

Algorithm (IMA). The complexity of the initialization phase, which 

entails creating a population of size, Psize is O(Psize*T) where 

T is the number of tasks in a schedule. A complexity of 

O(I*Psize*T) results from evaluating the fitness function for I 

iterations. O(I*Psize*T) is the complexity of the crossover and 

mutation operations, which also depend on Psize and T. 

Furthermore, a subset of Psize is subjected to the local search 

refinement step, yielding a complexity of O(L*T) where L is the 

number of individuals undergoing local refinement. Thus, the 

overall time complexity of the proposed solution is 

O(V+E)+O(I*Psize*T). This analysis highlights that the algorithm 

is scalable for moderate-sized workflows but may incur higher 

computational costs for larger systems, which should be 

considered in real-time applications. 

Results and Discussion 

The system setup and parameters, as well as a full 

performance analysis of our technique in comparison to its 

competitors, are discussed in this section. 

System Setup and Parameters 

In this experiment, we used the iFogsim simulator to assess 

all approaches. Real workflows and synthetic workflows were 

used here. The DAGs that were obtained from the facial 

recognition app (Workflow1) and the QR code recognition 

application were used to create the real workflows (Workflow2). 

In contrast, several synthetic workflows are designed to examine 

various possible kinds of workflows (Workflow3 to Workflow6). 

Consider a case in which there are six IoT devices, each with its 

own workflow (Workflow1 through Workflow6). One fog broker 

connects each group of six IoT devices, and fog brokers have a 

connection to six fog servers and three cloud servers. Every fog 

server has three virtual machines (VMs) in this design, while 

each cloud server has 16 virtual machines (VMs). IoT devices 

also have the computing power of 500 MIPS [15], with a power 

consumption of 0.9W and 0.3W in processing and idle levels, 

respectively. Additionally, IoT devices need 1.3 watts of 

transmission power. We also assume that each VM of fog 

servers has to have a computer power of 6 to 8 times that of IoT 

devices [15], whereas each VM of cloud servers has a computing 

power of 10 to 12 times that of IoT devices. Table 2 displays the 

parameters of our evaluation and their corresponding values. 

 

Table (2): System Parameters. 

Parameter Value 

IoT Devices 6 

Fog Servers 6 

Cloud Servers 3 

LAN Bandwidth 2000–4000 KB/s 

WAN Bandwidth 500–1000 KB/s 



LAN Delay 0.5 ms 

WAN Delay 30 ms 

IoT Device Computing Power 500 MIPS 

Fog Server Speedup Factor 6–8 

Cloud Server Speedup Factor 10–12 

IoT Device Idle Power 0.3 W 

IoT Device CPU Power 0.9 W 

IoT Device Transmission Power 1.3 W 

 

 

 

  

 

Figure (2): Execution cost, Energy Consumption, Weighted Cost with 

various workflows on varying bandwidth values. 

Performance Study 

To analyze the performance of our technique in various 

experiments, we evaluated three quantitative parameters: 

execution time, energy consumption, and weighted cost. The 

effectiveness of techniques with varying bandwidths, iteration 

sizes, decision durations, failure recovery, and system size 

analyses is evaluated in 5 trials. Both  and  are set to 0.5, 

indicating the importance of processing time and energy use in 

the conclusions. These values, however, can be changed 

depending on the needs of the users and network conditions. For 

evaluations, the methods are also used to evaluate the ability of 

our technique: 

LOCAL: Because all workflow tasks in this technique are 

completed locally on their respective IoT devices, workflow tasks 

cannot be executed in tandem. This method's outcomes can be 

used to evaluate the technique's gain. 

NLY EDGE: All workflow tasks are outsourced to fog servers 

at the edge layer for implementation in this approach. If all of the 

virtual servers on a server are full, no more virtual servers are 

available; the remaining jobs will have to wait until more 

computing resources become available. 

ONLY CLOUD: All workflow tasks are to be carried out on 

cloud servers by using the method. 

Bandwidth Analysis 

In this analysis, we look at how approaches perform at 

different bandwidths, as shown in Figure 4 and Pop Size are set 

to 100 and 20, respectively, for maximum iteration size and 

population size. In comparison to the local execution of 

workflows, Figure 3 demonstrates that when bandwidth grows, 

process execution time, energy usage, and weighted cost 

decrease, implying improved application placement. 

Furthermore, because fog servers are located near IoT devices 

and can be accessed with faster bandwidth and low bandwidth, 

the edge technique surpasses the only cloud option in most 

circumstances. However, as fog servers have fewer resources 

than cloud servers, they are unable to provide the best results. 

As can be demonstrated, our proposed technique outperforms 

all others due to two main aspects: it involves simultaneous 

usage of fog and cloud servers. Second, due to its local fitness 

function, local search, and the variation provided by the Div P, it 

keeps a higher chance of staying away from local optimal values, 

grows faster to the optimal solution, and has a higher probability 

of remaining away from local optimal values. It's important to 

note that while the weighted cost of the only cloud method in 

some scenarios, such as Workflow5 in Fig. 2c, is lower than the 

local execution, its execution time in Fig. 2a is much greater. 

Because the  and  are both set to 0.5, execution time and 

energy usage are given equal weight. As a result, the weighted 
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cost indicates a low gain for task placement due to the lower 

value for energy consumption in this workflow when compared 

to the obtained execution time. 

Figure 2 illustrates the impact of varying bandwidth values 

on the execution cost of IoT workflows using different application 

placement strategies. It compares the proposed method with 

baseline approaches (Local, Only Edge, and Only Cloud), 

demonstrating how increased bandwidth improves application 

placement efficiency. The figure highlights that the proposed 

method consistently outperforms others due to its effective use 

of both fog and cloud resources, as well as its capability to avoid 

local optima through the Improved Memetic Algorithm (IMA). 

Maximum Iteration Number Analysis 

The maximum iteration number, which may be used to 

assess the speed with which evolutionary application placement 

approaches reach the ideal answer, is one of the most essential 

factors to compare. The solutions of the local implementation, 

edge, and only cloud approaches do not change over time; the 

acquired outcomes of these methods are shown to help 

understand the efficacy of other strategies. For this investigation, 

the Pop Size, LAN, and WAN bandwidths are set to 20, 2000, 

and 500 KB/s, respectively. As shown in Fig. 3, increasing the 

maximum number of iterations improves our technique's 

solutions for all workflows when compared to the local, only 

edge, and only cloud techniques. 

 

 

 

 

Figure (3): Execution cost of workflows with different maximum iteration 

numbers of values. 

Our method converges to a superior solution in a less 

number of iterations. The achieved results of our approach in I= 

50 for all processes surpass the results obtained even at I = 200, 

as shown in Fig. 3a. This pattern is shown in Fig. 3b for the 

weighted cost of execution. It is crucial to remember that while 

extending the maximum number of iterations can lead to better 

solutions, it also increases the decision time of algorithms, this is 

important for some workflows, especially those that are latency-

sensitive. 

While increasing bandwidth and the number of iterations 

demonstrably improve solution quality, these findings have 

practical limitations. Higher bandwidth may lead to diminishing 

returns, and achieving such conditions may be cost-prohibitive 

or infeasible in certain environments. Similarly, increasing the 

number of iterations comes with trade-offs in terms of decision 

time and resource consumption, particularly for latency-sensitive 

or energy-constrained applications. Future work should explore 

adaptive strategies to optimize bandwidth usage and 

dynamically determine the ideal number of iterations based on 

system constraints. 

The effectiveness of each strategy is evaluated in this 

experiment based on the amount of time it takes to get a suitable 

solution. Whereas application placement algorithms provide 

server configurations that minimize IoT application execution 

time and energy usage, the time spent getting to that solution is 

also crucial.  

Establishing excellent server configurations for IoT 

applications over a long period of time might have a detrimental 

impact on the IoT applications' execution time needs. Another 

significant reason for the importance of decision time analysis, 

particularly for optimization algorithms, is that iteration size 

analysis alone cannot determine the efficiency of a single 

application placement approach. This is because, while one 

method may produce greater outcomes in fewer iterations than 

its rivals, another strategy may need more iterations. The 

duration of each loop may be significantly greater, resulting in a 

longer decision time. As an outcome, whereas the maximum 

iteration size analysis is critical, the decision time analysis is 

used as a backup to ensure that one approach is effective. The 

LAN and WAN bandwidth consumption in this experiment is 

2000 KB/s and 500 KB/s, correspondingly. For four distinct 

decision times,  

Table 3 provides the COM2019 execution times for the 

recommended solution. As the decision time of approaches 

climbs from 100 milliseconds to 400 milliseconds, the execution 

time of approaches decreases, meaning that higher utility 

outcomes are attained. Our solution's obtained results gradually 

decrease from 100 to 400 milliseconds, whereas COM2019's 

study results show a significant decreasing trend in the variations 

of 100-200 milliseconds and 200-300 milliseconds, as well as a 

steady decrease between 300 and 400 milliseconds, intimating 

that COM2019's results modeled convergence at 400 

milliseconds. It is obvious that our approach not only produces 

superior values in the same decision time as the COM2019 but 

that its results at 100 ms also beat the COM2019's findings at 

400 ms. This shows that irrespective of the number of iterations, 

our method converges to the best solutions faster.  



 

 

 

Figure (4): System size analysis with different number of IoT 

devices 

Table (3): Decision time Analysis. 

Time Technique 
Workflow Execution Time Result (s) 

WF1 WF2 WF3 WF4 WF5 WF6 

100 
ms 

Proposed 2.4 1.8 3.1 3.2 3.5 3.3 

COM2019 4.333 2.917 3.422 6.276 6.526 3.09 

200 
ms 

Proposed 2.37 1.76 2.92 3.17 3.42 3.27 

COM2019 4.073 2.707 2.984 5.344 5.109 2.529 

300 
ms 

Proposed 2.31 1.72 2.85 3.12 3.38 3.18 

COM2019 3.656 2.494 2.868 4.388 4.709 2.746 

400 
ms 

Proposed 2.27 1.65 2.79 2.73 3.27 3.12 

COM2019 3.623 2.445 2.753 3.663 4.295 2.523 

This is mostly due to the fact that time is measured in 

milliseconds (ms), representing the time allocated for the 

optimization algorithm. Workflow execution time results are 

measured in seconds (s) and represent the total time taken to 

execute the workflows under the determined placement strategy. 

Failure Recovery Analysis 

The influence of failure recovery methods on application 

placement approaches is investigated in this experiment. In 

comparison to local execution, Table 3 shows the outcomes of 

our method in failure recovery mode (FR Mode), where the 

probability of failure is 5%. In this experiment, the maximum 

number of iterations size I is set to 100, while the rest of the 

parameters are left at their default settings from decision time 

analysis. Table 3 shows that the results of our method in FR 

mode continue to beat local execution for all processes and 

generate offloading gains. Failed tasks result in inadequate 

workflow execution due to interdependence among tasks in one 

workflow in strategies that ignore failure recovery. However, by 

tolerating a tiny overhead of the failure recovery phase, our 

technique can yield a reasonable gain over local execution.  

Table (4): Failure Recovery Analysis. 

Technique 
Workflow Execution Time Results 

WF1 WF2 WF3 WF4 WF5 WF6 

Proposed 2.871 2.732 2.885 3.511 3.66 1.51 

Local 6.3 10.2 5.8 9.2 6.2 7.8 

System Size Analysis 

The impact of system size on various application placement 

approaches is investigated in this system experiment. Each fog 

broker in our system decides where each IoT device's application 

should be installed. As a result, we increase the number of IoT 

devices and fog servers for each fog broker by a factor of six, 

from six to twenty-four for each fog broker.  This allows us to 

evaluate the performance of our suggested technique. In 

addition, we use identical procedures in this experiment as we 

did in the prior ones. The LAN and WAN bandwidth utilization are 

also set to 2000 and 500 KB/s, correspondingly, with the 

remainder of the parameters remaining unchanged from Table 

4. When varying numbers of IoT devices are linked to a single 

fog broker, the result of Cumulative Execution Time (CET), 

Cumulative Energy Consumption (CEC), and Cumulative 

Weighted Cost (CWC) is shown in Fig. 6. The overall execution 

cost of all IoT devices is referred to as cumulative.  As the 

number of IoT devices rises, the CET, CEC, and CWC rise as 

well. All approaches CET, CEC, and CWC are cheaper than of 

the local execution cost in all cases; nonetheless, our suggested 

strategy beats other ways and saves money in all scenarios. 

Conclusion 

In this study, we proposed a weighted cost model and a 

novel batch application placement technique using the Improved 

Memetic Algorithm (IMA) to minimize the execution time and 

energy consumption of IoT applications in fog-cloud 

environments. The proposed technique also incorporates a 

lightweight pre-scheduling approach and an efficient failure 

recovery mechanism to handle runtime issues effectively. 

Experimental evaluations demonstrate that our method 

outperforms state-of-the-art approaches in various scenarios: In 

Bandwidth Analysis the proposed system achieved a 65% 

reduction in weighted cost compared to baseline techniques 

such as Local Execution, Only Edge, and Only Cloud methods. 

In Decision Time Analysis the system attains improved execution 

time by 51% compared to COM2019 at equal decision time, with 

results converging faster even at lower decision times (e.g., 100 

ms). In failure recovery mode, the proposed method consistently 

delivered execution time gains of up to 53% compared to local 

execution, highlighting its robustness. System Size Analysis 

demonstrated superior scalability, with Cumulative Execution 

Time (CET) and Cumulative Weighted Cost (CWC) reductions 

across all scenarios, even as the number of IoT devices 

increased. These results confirm the effectiveness and 

scalability of the proposed technique, offering significant 

performance improvements over existing state-of-the-art 

methods in terms of execution cost, energy consumption, and 

weighted cost metrics. Future work will explore the integration of 

monetary cost considerations into the weighted cost model and 

address challenges associated with mobility models in dynamic 

fog environments. 

Disclosure Data 

– Ethics approval and consent to participate: This article 

doesn’t need any ethical approval. 

– Data Availability: The dataset used is publicly available 



 

13 
Published: An-Najah National University, Nablus, Palestine 

– Authors Contribution: N. Malathy -Methodology, Draft 

revision and editing, Verification, Validation and supervision. 

Ruba, Vinothini - Methodology, Implementation, Draft 

preparation, Verification, Validation 

– Funding: This work doesn’ t receives any fund. 

– Conflict of Interest: The authors declare that they have no 

conflict of interest. 

– Acknowledgements: The authors would like to thank 

Mepco schlenk engineering college for providing 

environment to carry out this research work. 

Open Access 

This article is licensed under a Creative Commons 

Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original 

author(s) and the source, provide a link to the Creative 

Commons licence, and indicate if changes were made. The 

images or other third party material in this article are included in 

the article's Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included 

in the article's Creative Commons licence and your intended use 

is not permitted by statutory regulation or exceeds the permitted 

use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit 

https://creativecommons.org/licenses/by-nc/4.0/ 

References 

1] Goudarzi, M., & Wu, H. (2021). An Application Placement Technique 

for Concurrent IoT Applications in Edge and Fog Computing 

Environments. IEEE Transactions on Mobile Computing, 20(4), 

1298–1311. https://doi.org/10.1109/TMC.2020.2967041 

2] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multiserver 

multiuser multitask computation offloading for mobile edge computing 

networks,” Sensors, vol. 19, no. 6, 2020, Art. no. 1446. 

3] D. G. Roy, D. De, A. Mukherjee, and R. Buyya, “Application-aware 

cloudlet selection for computation offloading in the multi-cloudlet 

environment,” J. Supercomputing, vol. 73, no. 4, pp. 1672–1690, 

2020. 

4] E. El Haber, T. M. Nguyen, D. Ebrahimi, and C. Assi, “Computational 

cost and energy efficient task offloading in hierarchical edge-clouds,” 

in Proc. 29th IEEE Int. Symp. Personal Indoor Mobile Radio 

Commun., 2022, pp. 1–6. 

5] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya, 

“A dynamic tradeoff data processing framework for delaysensitive 

applications in cloud of things systems,” J. Parallel Distrib. Comput., 

vol. 112, pp. 53–66, 2020. 

6] Malathy N, Grace Sophia J, Swathi S, Vijaya-Subasri K. Privacy-

preserving medical diagnosis system using harris hawk optimization 

in edge computing. Int Res J Multidisciplin Scope. 2024;5(1):157–70 

7] Malathy Navaneetha Krishnan, Revathi Thiyagarajan. Multi-objective 

task scheduling in fog computing using improved gaining sharing 

knowledge-based algorithm. Concurrency and Computation: Practice 

and Experience.2022;34:1- 22.  

8] Malathy Navaneetha Krishnan, Revathi Thiyagarajan. Entropy-based 

complex proportional assessment for efficient task scheduling in fog 

computing. Transactions on Emerging Telecommunications 

Technologies.2023;23:2.  

9] Malathy Navaneetha Krishnan, Revathi Thiyagarajan. Opposition-

based Improved Memetic Algorithm for Placement of Concurrent IoT 

Applications in Fog Computing. Transactions on Emerging 

Telecommunications Technologies.2024 

10] H. K. Apat, P. Sattarapu, R. N. Dash, V. Goswami, S. Mohanty and 

R. K. Barik, "Leveraging towards Multi-objective IoT Application 

Placement in Fog Computing Environment," 2023 IEEE 3rd 

International Conference on Smart Technologies for Power, Energy 

and Control (STPEC), Bhubaneswar, India, 2023, pp. 1-6, doi: 

10.1109/STPEC59253.2023.10430628. 

11] Hemant Kumar Apat, Bibhudutta Sahoo, Veena Goswami, Rabindra 

K. Barik,A hybrid meta-heuristic algorithm for multi-objective IoT 

service placement in fog computing environments,Decision Analytics 

Journal,Volume 10,2024,100379,ISSN 2772-

6622,https://doi.org/10.1016/j.dajour.2023.100379. 

12] Hemant Kumar Apat, Bibhudatta Sahoo,A Blockchain assisted fog 

computing for secure distributed storage system for IoT Applications, 

Journal of Industrial Information Integration,Volume 42,2024,100739, 

ISSN 2452-414X,https://doi.org/10.1016/j.jii.2024.100739. 

13] Mohammad Goudarzi , Huaming Wu , Marimuthu Palaniswami , and 

Rajkumar Buyya , “An Application Placement Technique for  

Concurrent IoT Applications in Edge and Fog Computing 

Environments”, IEEE Transactions on Mobile Computing, Vol. 20, No. 

4, April 2021. 

14] Maria Diamanti, Panagiotis Charatsaris,Eirini Eleni Tsiropoulou and 

Symeon Papavassiliou,” Incentive Mechanism and Resource 

Allocation for Edge-Fog Networks Driven by Multi-Dimensional 

Contract and Game Theories”,vol no: 3, 

10.1109/OJCOMS.2022.3154536,2022. 

15] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey 

on memetic computation,” IEEE Trans. Evol. Comput., vol. 15, no. 5, 

pp. 591–607, Oct. 2011 

16] Isaac Lera, Carlos Guerrero, and Carlos Juiz,” Analysing the 

Applicability of a Multi-Criteria Decision Method in Fog Computing 

Placement Problem”, IEEE International Conference on Fog and 

Mobile Edge Computing (FMEC 2019). 

17]  L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework 

for partitioning and execution of data stream applications in mobile 

cloud computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, 

no. 4, pp. 23–32, 2013. 

18] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can 

offloading computation save energy?” Computer, vol. 43, no. 4, pp. 

51–56, 201 


