

1
Published: An-Najah National University, Nablus, Palestine

An-Najah University Journal for Research – A

Natural Sciences

Internet of Things Based Application Placement Technique in

Fog Environment

N Malathy1,*, M Ruba1 & S Vinothini1
Type: Full Article. Received: 5th Dec. 2024, Accepted: 1st May. 2025, Published: ××××, DOI: https://doi.org/10.xxxx

Accepted Manuscript, In Press

Abstract: Fog computing bridges the gap between IoT devices and cloud servers by providing low-latency computational resources
closer to the network edge. Despite its potential, the rapid increase in IoT applications with diverse resource and quality-of-service
(QoS) requirements presents significant challenges in application deployment and resource optimization. This paper addresses these
challenges by introducing a comprehensive application placement framework designed to optimize execution time and energy
consumption in a heterogeneous fog environment. The proposed framework consists of three phases. A pre-scheduling method is
developed to efficiently allocate tasks by analyzing workflows to reduce computation delays and energy usage. Leveraging an Improved
Memetic Algorithm (IMA), this strategy enables effective scheduling of parallel IoT workflows across fog and cloud servers, ensuring
balanced resource utilization and enhanced scalability. A lightweight recovery method is incorporated to address runtime failures,
ensuring the robustness and reliability of task execution. The performance of the proposed framework is evaluated using real and
synthetic IoT workflows in the iFogSim environment. Experimental results demonstrate that the framework achieves a 65% reduction
in the weighted cost and a 51% decrease in execution time compared to existing approaches. This makes it a promising solution for
managing resource-intensive IoT applications in fog computing environments.

Keywords: Application Placement, Scheduling, Partitioning, Fog Computing, Improved Memetic Algorithm.

1 Department of Information Technology, Mepco Schlenk Engineering College.
* Corresponding Author email: malathy@mepcoeng.ac.in

https://doi.org/10.xxxx

Introduction

Human life has been greatly enhanced by the extensive use

of Internet of Things (IoT) devices in a variety of fields, including

intelligent transportation, smart healthcare, and industrial

automation [1]. Due to the massive volumes of data produced by

these devices, sophisticated and latency-sensitive Internet of

Things applications have emerged, such as online gaming, video

streaming, augmented reality, and virtual reality. By 2030, there

will be roughly 3.5 billion connected devices, according to Cisco

reports and other IoT research studies.[19] These IoT devices

usually transfer data processing tasks to more powerful

computing layers because of their limited computational and

energy resources. Using a pay-as-you-go model, cloud

computing provides scalable solutions for networking, storage,

computation, and management. However, maintaining stringent

Quality of Service (QoS) requirements is still difficult because of

the enormous volume of data produced by IoT devices and the

considerable physical distance between users and cloud data

centers. Traditional cloud-based models are inappropriate for IoT

deployments because latency-sensitive applications require

ultra-low response times, high availability, security, and

guaranteed QoS.

To overcome these restrictions, the Open Fog Consortium

unveiled Fog Computing, a framework intended to reduce the

latency, storage inefficiencies, and bandwidth restrictions that

come with cloud computing. To improve real-time capabilities,

this paradigm emphasizes data processing and intelligence near

the data production location. Fog Computing is an extension of

cloud computing that was founded in 2015 by prominent

technology companies like ARM, Cisco, Dell, Intel, Microsoft,

and Princeton. It integrates various network layers while

maintaining important advantages like virtualization,

orchestration, and efficiency. However, putting a fog network into

practice necessitates carefully weighing several variables, such

as CPU, RAM, and network capacity, as well as computational,

communication, and storage demands. [21,22] Before

implementing a fog service model, other factors like anticipated

IoT service requests, service types, execution environments, and

mobility need to be determined. Smart gateways, routers, and

base stations are important networking elements of the fog

infrastructure that offer virtualized computer resources to satisfy

real-time responsiveness demands [17].

All of the benefits of cloud computing are combined with

extra features like mobility management and context-aware

services in the three-layer Fog Computing (FC) architecture. For

mobile-based IoT applications like the Internet of Vehicles and

vehicular IoT systems, this architecture is especially helpful

[19,20,24]. Fog computing dramatically lowers network

propagation delays by positioning computing resources close to

IoT devices. IoT applications are software as a service that,

when they receive IoT data, perform a variety of tasks. For

subsequent tasks like pre-processing decision analysis, these

IoT data must be calculated in real-time. Every Internet of Things

application consists of a collection of modules, tasks, or services

that need different configurations of computing resources to

operate. Finding the services' availability is a very difficult task

for the service provider because of the diverse and dynamic

behavior of these IoT applications that estimate precise

computing resources. In addition to IoT applications' diversity

and dynamic nature, different IoT applications have different

needs for real-time responsiveness depending on the situation.

It is essential to map the set of services to the available

computing resources to meet at least one of the goals, which will

simplify the challenges of IoT applications and optimize the QoS

index of different IoT application use cases [18,23,26]. Finding

the best computing resources for diverse IoT services is the goal

of the IoT service placement problem (SPFC). Making the best

choice for service placement addresses several problems, such

as meeting deadlines, maximizing the deployment of IoT

applications by optimizing resource usage, and effectively

balancing loads to prevent overload and underload, among

others. On the other hand, determining the best mapping choice

for heterogeneous services is a well-known NP-complete

problem [21]. As a result, the majority of authors made decisions

that were almost ideal for their work [15-18] In addition to

determining the best way to map different services in fog-cloud

infrastructure, determining whether the objectives are single- or

multi-objective increases SPFC's complexity. As a single

objective optimization problem, the majority of authors

developed SPFC using various models, such as linear

programming (LP), integer linear programming (ILP), mixed

integer linear programming (MILP), mixed integer non-linear

programming (MINLP), etc. [21, 14-19,2]. A single objective

optimization centered on either network usage, QoS

maximization, cost minimization, or energy consumption

minimization is the foundation of the majority of recent SPFC

works [19, 20]. Nonetheless, there are numerous instances in

which an IoT user aims to maximize multiple goals.

A single objective optimization appears unrealistic and

unfeasible in these situations. In the literature, many authors

have formulated SPFC as a biobjective or multiobjective

optimization problem [16,25,27]. With multiple optimization

objectives, the Multi-objective SPFC seeks to determine the best

mapping between the collection of IoT application services and

computing resources. These goals, which typically conflict and

come from the perspective of the IoT user or service provider,

include maximizing performance, maximizing reliability,

minimizing energy consumption from the service provider's

perspective, and minimizing costs from the user's perspective.

Consequently, it appears feasible to formulate SPFC as a

multiobjective, and it is crucial to optimize each objective function

at an acceptance level without letting another solution dominate.

Finding the best placement strategy for diverse heterogeneous

IoT applications made up of separate services is the main focus

of this paper. To solve the problem, a hybrid algorithm based on

meta-heuristics is suggested. Finding a good trade-off between

makespan, energy, and cost for a set of IoT tasks in the fog cloud

system is the main goal of the hybrid meta-heuristic approach.

Furthermore, the weighted sum multi-objective optimization can

be readily converted to aggregated objective functions for

multiple objectives, giving the user the freedom to select the

objective functions' priority by selecting the appropriate weight.

Literature Survey

This section discusses relevant studies for application

placement techniques in fog computing environments, where

cloud and fog servers collaborate to meet the needs of IoT

applications. Based on the dependency model of their IoT

application's constituent pieces, they are categorized into

independent and dependent categories (e.g., tasks). Each IoT

application can be thought of as a collection of tasks that are

either independent or dependent. The dependent one refers to

programs that are made up of numerous dependent tasks, each

of which runs only when its previous tasks have been completed.

The tasks of the programs in the independent one, on the other

hand, do not have such execution limits.

Independent Tasks

In Mobile Edge Computing networks, the computing tasks of

many wireless devices are offloaded to multiple edge servers

and one cloud server. Taking into account various real-time

compute tasks at various wireless devices, each task is

3
Published: An-Najah National University, Nablus, Palestine

determined whether it should be performed locally at the wireless

device and should be processed either in edge servers or the

cloud server. Low-complexity computation offloading rules are

used to ensure mobile edge computing network quality of service

while reducing wireless device energy usage. For mobile edge

computing networks, both a linear programming relaxation-

based (LR-based) and a distributed deep learning-based

offloading (DDLO) technique are found separately. In

comparison to DDLO, heterogeneous DDLO can help achieve

greater convergence performance. The DDLO methods offer

greater performance than the LR-based algorithm, according to

extensive numerical studies. Furthermore, the DDLO algorithm

generates an offloading decision in less than 1 millisecond,

which is multiple times faster than traditional algorithms. The LR-

based algorithm is orders of magnitude faster [2].

Offloading with consideration for latency and power

consumption is a promising subject in the realm of mobile cloud

computing nowadays. The cloudlet concept has evolved to allow

latency-aware offloading. Offloading an application to the most

appropriate cloudlet, on the other hand, remains a significant

difficulty. Cloudlets can handle a variety of applications. The type

of application is checked when a request for task offloading

arrives from a mobile device. The most appropriate cloudlet is

chosen from a pool of cloudlets near the mobile device based on

the type of application. The energy consumption of mobile

terminals can be decreased using an application-aware cloudlet

selection method. By dispersing the processes to be offloaded in

various cloudlets, an application-aware cloudlet selection

approach for multi-cloudlets can balance the load on the system.

As a result, the chance of putting all loads on a single cloudlet

for load balancing can be calculated [3]. Managing the

transmission power of mobile devices and the assigned server

computation while preserving their latency threshold reduces

their energy consumption and computational cost in a

multilayered Mobile Edge Computing system [4].

Fog Computing seeks to process data at the network's edge.

Transmission delay, monetary cost, and application loss caused

by Cloud Computing can all be decreased with Fog Computing.

Because fog nodes have lower processing capacity than cloud

platforms, running all apps on these nodes may cause some

QoS requirements to be breached. As a result, crucial decisions

must be made about where to execute each program to develop

a cost-effective solution that meets all application requirements.

The unit-slot optimization is a quantified near-optimal solution for

balancing the three-way tradeoff between average response

time, average cost, and an average number of application

failures.

In a three-tier Cloud of Things system, the unit-slot

optimization technique can provide cost-effective processing

while ensuring average response time and average application

loss [5]. Fog computing attempts to provide Cloud-like services

at the network edge to enable the Internet of Things (IoT)

applications that demand fast responses. Application

deployment in Fog is difficult due to the hierarchical, dispersed,

and heterogeneous nature of computing instances. The

application placement challenge is exacerbated by differing user

expectations and diverse functionalities of IoT devices. The

placement of apps to compatible Fog instances based on user

expectations can improve the system's Quality of Experience

(QoE).

A QoE-aware application placement policy prioritizes distinct

application placement requests based on user expectations and

assesses Fog instances' capabilities based on their present

status. It also makes it easier to arrange applications on

appropriate Fog instances in the Fog computing environment,

ensuring that user QoE is maximized in terms of utility access,

resource usage, and service delivery. The policy reduces data

processing time, network congestion, resource affordability, and

service quality dramatically [6]. Consider a multi-user mobile

cloud computing system with a computing access point (CAP),

in which each mobile user has numerous independent tasks that

can be completed locally, at the CAP, or on a remote cloud

server. For mobile users, the CAP serves as a network access

gateway as well as a computing service provider.

To minimize the overall cost of energy, computation, the

offloading decisions of all users' jobs as well as the allocation of

computer and communication resources. Semi-definite

relaxation (SDR), alternating optimization (AO), and sequential

tuning (ST) are efficient three-step algorithms that always

calculate a locally optimal solution and yield approximately

optimal performance under a wide range of parameter values.

Evaluating SDR-AO-ST’s performance against a lower bound on

the least cost, purely local processing, purely cloud processing,

and hybrid local-cloud processing without the use of the CAP [7].

The goal of minimizing each task's computation time and energy

consumption in the Industrial Internet of Things–edge–cloud

computing architecture is to formulate the joint problem in which

the Industrial Internet of Things (IIoT) devices select their

computation-offloading methods. A finite improvement path to

Nash equilibrium can be ensured using a free–bound method.

The Nash equilibrium can be achieved with the help of a multi-

hop cooperative messaging method and two QoS-aware

distributed algorithms [8].

Dependent Tasks

A partitioning technique that transfers computation-intensive

workloads from a single mobile device to a single edge or cloud

server. The mobile device's placement engine is installed to

discover a group of jobs to offload and lower the mobile

application's execution time and energy consumption [9][10]. To

reduce the time needed for IoT applications to run in an

environment where multiple fog servers and a cloud server are

readily accessible for application placement, which only

evaluates one mobile device in their offloading system model

and reduces mobile device power consumption by offloading

some computation to the cloud server [11]. To execute multi-user

jobs at the cloud server with low communication overhead and

tasks at the edge layer with larger communication overhead [26].

The communication cost of transferring data from the IoT

layer's sensors and devices to the fog layer during the scheduling

process [12]. To ensure the quality of service (QoS) of

application in a fog environment, which meets service delivery

deadlines and maximizes resource utilization. A latency-aware

application deployment policy was suggested in a system with

numerous fog servers and a single cloud server [13]. To compute

a task, we need both the user task data and the program that

processes it as input. The use of caching at the Mobile Edge

Computing (MEC) system to dynamically store program and/or

task data has lately been acknowledged as a cost-effective

approach to reducing compute time, energy usage, and

bandwidth cost. It provides a strategy for joint optimization of

service caching placement and computation offloading, even

though the above-mentioned techniques focus on task

placement as their primary goal [14].[15] suggested a batch job

placement based on a Genetic Algorithm (GA), in which

numerous users' mobile applications are forwarded to a single

central edge server for placement decisions. The scheduling of

various workflows using metaheuristics algorithms is discussed

in [13]-[15]. The application placement in fog computing sussing

opposition-based memetic algorithm was discussed in [16]-[18].

Several benefits have been found by current research on IoT

service placement, such as effective offloading strategies, where

low-complexity algorithms and deep learning-based frameworks

have successfully decreased execution time and energy

consumption in mobile edge computing environments. By

allocating tasks according to application requirements, cloudlet

selection and load-balancing techniques have improved system

performance and energy efficiency. Additionally, by using

strategies like latency-aware placement and QoE-aware

policies, QoS and QoE optimization techniques have enhanced

resource utilization and latency-sensitive task handling.

Cooperative offloading and Nash equilibrium-based solutions

are useful for optimizing shared resource usage in multi-user and

multi-task scenarios. Additionally, flexible and dynamic

application deployment has been made possible by hybrid

approaches that integrate edge, fog, and cloud computing,

guaranteeing performance gains under various

circumstances.[25]

Existing work, however, also poses several difficulties.

Inefficient task placement under high loads is a result of many

approaches' limited scalability, which makes it difficult to manage

large-scale IoT environments with a large number of devices and

resource-intensive workflows.[27] High computational

complexity is also an issue because, despite their effectiveness,

optimization methods like genetic algorithms frequently result in

excessive computational overhead and decision times, which

makes them inappropriate for real-time applications. The

reliability of IoT deployments may also be jeopardized by

insufficient failure recovery, as only a small number of studies

have addressed runtime failures during task execution.

Furthermore, despite real-world restrictions like limited virtual

machine capacities and variable bandwidth, some models

assume infinite resources in edge or fog servers, ignoring

resource constraints. Lastly, there are still issues with task

dependencies because many studies overlook the intricate

relationships between IoT application tasks, which results in

inefficient task placement and execution order. These pros and

cons highlight the contributions and gaps in prior research,

forming the basis for the improvements proposed in the paper.

The main contributions of this paper are as follows:

– We propose a novel weighted cost model that

simultaneously minimizes execution time and energy

consumption for IoT applications in a hybrid fog-cloud

environment. This model accounts for the limited

computational resources of fog servers while ensuring

efficient application deployment.

– A pre-scheduling approach is developed to efficiently

organize and prioritize tasks based on their dependencies

and workflows. This technique reduces computation delays

and energy usage, enhancing the performance of resource-

constrained IoT devices.

– A new batch application placement strategy is introduced,

leveraging the Improved Memetic Algorithm (IMA) to

optimize the placement of parallel IoT workflows. The

algorithm incorporates local search techniques and diversity

factors to avoid local optima and improve convergence

speed.

– To enhance system reliability, we design a lightweight failure

recovery mechanism that efficiently reallocates failed tasks

to alternative servers, minimizing disruption and ensuring

robust execution.

– The proposed framework is evaluated using real and

synthetic workflows in the iFogSim simulator. Experimental

results demonstrate up to a 65% reduction in weighted cost

and a 51% improvement in execution time compared to

state-of-the-art approaches.

Materials and Methods

System Model

We consider a framework that includes various IoT devices,

fog servers, cloud servers, and brokers, in which IoT devices

execute their workflows (i.e., DAGs) locally or offload them

entirely or partially to cloud and/or fog servers. Our system model

is shown in Figure 1 at a high level. Each broker in this system

framework has the means to support up to N IoT devices in its

immediate area. In this work, Directed Acyclic Graphs (DAGs)

are used to model IoT application workflows. Each node in the

DAG represents a specific computational task, and the directed

edges represent dependencies between tasks, indicating the

execution order. This representation enables efficient

scheduling, task placement, and optimization in a fog-cloud

environment while respecting the constraints imposed by task

dependencies and resource availability.

Problem Formulation

The task placement problem is formulated as an optimization

problem to minimize the overall execution time of IoT

applications as well as IoT energy consumption. The available

servers are represented as N1 with |N1|=Q because there are

multiple servers available to run the jobs Vn, i. The term an

identifies the type of server, and the N1
a,b denotes one server.

Then a=0 is an IoT device, a=1 is a fog server, a=2 is a cloud

server, and b is the server index, Tn signifies the offloading

configuration for each task, while 𝑡𝑛,𝑖 denotes the workflow

configuration for the nth IoT device. It is calculated using

equation 1.

Figure (1): Overview of the Proposed System.

𝑡𝑛,𝑖 = {

0,𝑁1
𝑎,𝑏 = 𝑁1

0,𝑛 (1)

1, 𝑁1
𝑎,𝑏𝜖{𝑁1

1,1, 𝑁1
1,2. . 𝑁1

1,𝐹1}, |𝑏| = 𝑓1

2,𝑁1
𝑎,𝑏𝜖{𝑁1

2,1, 𝑁1
2,2. . 𝑁1

1,𝑐1}, |𝑏| = 𝐶1

Here, 𝑡𝑛,𝑖 =0 denotes that the task is assigned to the nth IoT

device for local execution, 𝑡𝑛,𝑖 =1 denotes that the task is

assigned to either a cloud server or a fog server for remote

execution. The f1 and c1 denote the number of fog servers and

cloud servers.

Weighted Cost Calculation

The purpose of the task placement technique is to select the

optimal configuration of available servers for each IoT application

to limit the weighted cost of execution for each IoT device, as

illustrated below in equations 2 to 6:

5
Published: An-Najah National University, Nablus, Palestine

},...3,2,1{),(min
]1,0[,

NnTn

 (2)

𝜓(𝑇𝑛) = 𝜓𝛼 ∗
Γ(𝑇𝑛)

Γ𝐿𝑜𝑐𝑎𝑙𝑛
+ 𝜓𝛽 ∗

Θ(𝑇𝑛)

Θ𝐿𝑜𝑐𝑎𝑙𝑛
 (3)

Show that,

C11: 𝑉𝑀𝑓𝑜𝑔,𝑖 ≤ 𝐶𝑓𝑜𝑔,𝑖 ∀𝑖 ∈ 𝑁1
1,1… .𝑁1

1,𝑓} (4)

C12 : |𝑡𝑛,𝑖| = 1, ∀𝑖∈ {1,2,𝑁} 𝑡𝑛,𝑖1 j |vn| (5)

C13: (W(Vn, i)) ≤ (W(Vn, i) + Vn, i) (6)

Where Γ(𝑇𝑛), Θ(𝑇𝑛), Γ𝐿𝑜𝑐𝑎𝑙𝑛, Θ𝐿𝑜𝑐𝑎𝑙𝑛 denote the IoT device's

execution time, energy consumption, and local execution time

and energy consumption. Furthermore, 𝜓𝛼 and 𝜓𝛽 are control

parameters for execution time and energy consumption,

respectively, that allow the weighted cost model to be

customized to the user's requirements. We also assume that the

task can be given to a single Virtual Machine (VM) on a fog or

cloud server. The number of VMs on the ith fog server VMfog, i is

fewer than or equal to the fog server's maximum capacity, Cfog, i,

as indicated by C11. C12 indicates that each time slot can only

have one server allocated to job I from the workflow of the nth

IoT device, C13 indicates that Vn, i predecessor ith tasks must be

completed before the original task may be completed.

Execution Time Model

When 𝜓𝛼 = 1 and 𝜓𝛽 = 0 is used in Eq. (3), and the weighted

cost optimization is equivalent to the execution time model. The

purpose of the execution time optimization model is to identify

the shortest possible execution time. The best setup for the

application that is running on the computer nth IoT device, such

that the application's execution time is reduced. The total latency

in task offloading (Γ𝑇𝑛
𝑙𝑎𝑡) can be used to calculate the entire

execution time of each candidate configuration, the time it takes

for tasks in a workflow to be computed based on the servers

they've been assigned (Γ𝑇𝑛
𝑒𝑥𝑒) and the time it takes for data to be

transmitted between each pair of dependent jobs (Γ𝑇𝑛
𝑡𝑟𝑎) workflow

is given below in equation 7:

Γ(𝑇𝑛) = Γ𝑇𝑛
𝑒𝑥𝑒 + Γ𝑇𝑛

𝑙𝑎𝑡 + Γ𝑇𝑛
𝑡𝑟𝑎 (7)

The computational execution time for the application

operating on the nth IoT device is computed as follows in

equation 8:

Γ𝑇𝑛
𝑒𝑥𝑒 = ∑ γ𝑡𝑛,𝑖

𝑒𝑥𝑒 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

 (8)

where γ𝑡𝑛,𝑖
𝑒𝑥𝑒

 denotes the computing time of task Vn, i, and it is

calculated based on the server which is assigned from the

following equation 9:

γ𝑡𝑛,𝑖
𝑒𝑥𝑒 =

{

ℎ𝑛,𝑖
𝑤

𝑙𝑜𝑐𝑎𝑙𝑐𝑝𝑢
, 𝑡𝑛,𝑖 = 0

ℎ𝑛,𝑖
𝑤

𝑆𝑝𝑒𝑒𝑑_𝐹𝑓1∗𝑙𝑜𝑐𝑎𝑙𝑐𝑝𝑢
, 𝑡𝑛,𝑖 = 1

ℎ𝑛,𝑖
𝑤

𝑆𝑝𝑒𝑒𝑑_𝐹𝑐11∗𝑙𝑜𝑐𝑎𝑙𝑐𝑝𝑢
, 𝑡𝑛,𝑖 = 2

 (9)

here 𝑙𝑜𝑐𝑎𝑙𝑐𝑝𝑢 denotes the IoT device computing

power 𝑆𝑝𝑒𝑒𝑑_𝐹𝑓1 and 𝑆𝑝𝑒𝑒𝑑_𝐹𝑐1denotes the speedup factor of

fog and cloud servers. Based on the tasks assigned to servers,

the offloading latency Γ𝑇𝑛
𝑙𝑎𝑡 of tasks corresponding to the nth IoT

device is estimated using equation 10:

Γ𝑇𝑛
𝑙𝑎𝑡 = ∑ γ𝑡𝑛,𝑖

𝑙𝑎𝑡 .
𝑡𝑛,𝑖 𝜖𝑇𝑛 (10)

where γ𝑡𝑛,𝑖
𝑙𝑎𝑡

 demonstrates the offloading task Vn, i is

calculated based on the server which is assigned from the

following equation 11:

γ𝑡𝑛,𝑖
𝑙𝑎𝑡 = {

0, 𝑡𝑛,𝑖 = 0

LatLAN,𝑡𝑛,𝑖 = 1

LatWAN,𝑡𝑛,𝑖 = 1
 (11)

 where LatLAN and LatWAN, denotes the latency of LAN and

WAN. The transmission time of the task’s workflow to the nth IoT

device is calculated using equation 12:

 Γ𝑇𝑛
𝑡𝑟𝑎 = ∑ γ𝑡𝑛,𝑖

𝑇𝑅𝐴 .
𝑡𝑛,𝑖 𝜖𝑇𝑛 (12)

where the transmission time of dependent tasks Vn, i and Vn,j

is calculated using equation 13:

γ𝑒𝑛,𝑖,𝑗
𝑡𝑟𝑎 =

{

𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝐿𝐴𝑁
, 𝐶𝐶𝑇𝑖 = 𝐶𝐶𝑇1, 𝐶𝐶𝑇3

𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝑤𝐴𝑁
, 𝐶𝐶𝑇𝑖 = 𝐶𝐶𝑇2, 𝐶𝐶𝑇4

0 , 𝐶𝐶𝑇𝑖 = 𝐶𝐶𝑇3

 (13)

where 𝐵𝑊𝐿𝐴𝑁and 𝐵𝑊𝑤𝐴𝑁 denotes the bandwidth of LAN

and WAN.

Energy Consumption Model

When 𝜓𝛼 = 1 and 𝜓𝛽 = 0 are equal, and the weighted cost

optimization equals the energy consumption model, according to

Eq. (2). The goal of the energy consumption model is to discover

the best feasible configuration of the application's tasks to reduce

the energy consumption of the nth IoT device. The total energy

consumed by any candidate configuration can be calculated as

the sum of the energy consumed in each component(Θ𝑇𝑛
𝑙𝑎𝑡) job

offloading and the energy used in task computation (Θ𝑇𝑛
𝑒𝑥𝑒), as

well as the energy used for the data exchange between each pair

of dependent tasks(Θ𝑇𝑛
𝑡𝑟𝑎) of the application, as described in

equation 14:

Θ(𝑇𝑛) = Θ𝑇𝑛
𝑒𝑥𝑒 + Θ𝑇𝑛

𝑙𝑎𝑡 + Θ𝑇𝑛
𝑡𝑟𝑎 (14)

The amount of energy used to compute the nth IoT device's

application is calculated as follows using equation 15:

Θ𝑇𝑛
𝑒𝑥𝑒 = ∑ θ𝑡𝑛,𝑖

𝑒𝑥𝑒 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

 (15)

where θ𝑡𝑛,𝑖
𝑒𝑥𝑒

 denotes the amount of energy required to do the

task Vn,i, as computed in the following formula mentioned in

equation 16:

θ𝑡𝑛,𝑖
𝑒𝑥𝑒 = {

𝛾𝑡𝑛,𝑖
𝑒𝑥𝑒 ∗ 𝑃𝑂𝑊𝑐𝑝𝑢, 𝑡𝑛,𝑖 = 0

𝛾𝑡𝑛,𝑖
𝑖𝑑𝑙𝑒 ∗ 𝑃𝑂𝑊𝑖𝑑𝑙𝑒, 𝑡𝑛,𝑖 = 1,2

 (16)

where 𝑃𝑂𝑊𝑐𝑝𝑢 is the IoT device's CPU power, on which the task's

Vn,i runs. Because we only consider energy consumption from

the perspective of IoT devices, whenever each task is offloaded

to fog servers (𝑡𝑛,𝑖) or cloud servers (𝑡𝑛,𝑖), the respective energy

consumption is equal to the IoT device's idle time 𝛾𝑡𝑛,𝑖
𝑖𝑑𝑙𝑒multiplied

by the power consumption of that device in its idle mode

 𝑃𝑂𝑊𝑖𝑑𝑙𝑒.The energy used to offload tasks corresponding to the

nth IoT device Θ𝑇𝑛
𝑙𝑎𝑡 is computed as follows using equation 17:

Θ𝑇𝑛
𝑙𝑎𝑡 = ∑ θ𝑡𝑛,𝑖

𝑙𝑎𝑡 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

 (17)

where Θ𝑡𝑛,𝑖
𝑙𝑎𝑡

 denotes the offloading consumption of the task vn,i

and is computed using equation 18:

θ𝑡𝑛,𝑖
𝑙𝑎𝑡 = {

0 , 𝑡𝑛,𝑖 = 0

𝛾𝑡𝑛,𝑖
𝑖𝑑𝑙𝑒 ∗ 𝑃𝑂𝑊𝑖𝑑𝑙𝑒, 𝑡𝑛,𝑖 = 1,2

 (18)

where θ𝑡𝑛,𝑖
𝑙𝑎𝑡

 denotes the offloading consumption of the task Vn,i

and is demonstrated from:

The transmission energy consumption Θ𝑇𝑛
𝑡𝑟𝑎for the nth IoT

device is calculated as follows using equation 19:

Θ𝑇𝑛
𝑡𝑟𝑎 = ∑ θ𝑡𝑛,𝑖

𝑡𝑟𝑎 .
𝑡𝑛,𝑖 𝜖𝑇𝑛

 (19)

where the transmission energy between the pair of dependent

tasks Vn,i and Vn,j is calculated using equation 20:

θ𝑒𝑛,𝑖,𝑗
𝑡𝑟𝑎 =

{

𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝐿𝐴𝑁

∗ 𝑃𝑂𝑊𝑡𝑟𝑎𝑛𝑠, 𝐶𝐶𝐸𝑖 = 𝐶𝐶𝐸1

𝑒𝑛,𝑖,𝑗
𝑤

𝐵𝑊𝑤𝐴𝑁

∗ 𝑃𝑂𝑊𝑡𝑟𝑎𝑛𝑠, 𝐶𝐶𝐸𝑖 = 𝐶𝐶𝐸2

0 , 𝐶𝐶𝐸𝑖 = 𝐶𝐶𝐸3

 (20)

The 𝐶𝐶𝐸 displays transmission configuration for each edge

en,i,j based on the assigned servers of its tasks to compute the

transmission energy, which is determined from the transmission

power of the IoT device, which is designated as 𝑃𝑂𝑊𝑡𝑟𝑎𝑛𝑠 and it

is calculated using equation 21

Table (1): Summary of Symbols and Notations.

Symbol Description

Nl Set of available servers (fog and cloud servers).

A
Type of server (a=0: IoT device, a=1: fog server,

a=2: cloud server).

B Index of a specific server within a type.

Tn
Offloading configuration for tasks of the nth IoT

device.

Vn,i ith task in the workflow of the nth IoT device.

fi, ci Number of fog servers and cloud servers

τ Execution time of a task.

E Energy consumption of a task.

λLAN,λWAN
Latency in Local Area Network (LAN) and Wide

Area Network (WAN).

BLAN , BWAN Bandwidth of LAN and WAN.

ξ
Weighted cost optimization parameter for

execution time.

η
Weighted cost optimization parameter for energy

consumption.

SI(Vn,i) Server index assigned to task Vn,i.

μfog,i, μcloud,i Speedup factors of the fog and cloud servers.

PCPU CPU power of the IoT device.

Pidle Idle power consumption of the IoT device.

Ptrans Transmission power of the IoT device.

𝐶𝐶𝐸𝑖(𝑒𝑛,𝑖,𝑗
𝑤) = {

𝑡𝑛,𝑖⨁𝑡𝑛,𝑗 = 1, 𝑖 = 1

𝑡𝑛,𝑖⨁𝑡𝑛,𝑗 = 2, 𝑖 = 2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 3

 (21)

where 𝐶𝐶𝐸1 signifies data flow between two jobs Vn,i and Vn,j,

which are allocated to the IoT device and fog servers,

respectively. 𝐶𝐶𝐸2 is also used to depict the interaction between

two jobs assigned to IoT devices and cloud servers. Because the

transmission energy consumption is calculated from the

perspective of the IoT device, it is equal to zero whenever one of

the participating jobs in an edge 𝑒𝑛,𝑖,𝑗
𝑤 is not assigned to the IoT

device, as shown in 𝐶𝐶𝐸3 .The symbols and the notations used

are given in table 1.

Methodology

Application Placement Technique

Ordering, batch application placement, and failure recovery

are the three aspects of our suggested application placement

technique. Brokers can manage concurrent IoT device

processes using an approach presented in the pre-scheduling

phase. Then, to minimize the weighted cost of each IoT device,

we offer an optimized version of the Improved Memetic Algorithm

(IMA) for batch application placement. In addition, we provide a

lightweight failure recovery method in our technique to deal with

any potential runtime issues.

Ordering Phase

The broker receives workflows from IoT devices.

Furthermore, depending on their particular workflows, it

evaluates the local execution time and energy consumption of

IoT devices. In terms of the quantity and weight of tasks,

dependencies, and the amount of data flow between each pair

of dependent tasks, IoT device workflows are diverse.

Furthermore, each workflow's task execution order should be

ordered so that a new task Vn,i cannot be run until all tasks in its

W(Vn,i) have completed their execution.

Process of Ordering Phase

Algorithm 1 explains how the pre-scheduling phase

organizes tasks of each process and consequently builds

schedules and concurrent workflows. In Algorithm 1, the local

execution time and energy consumption for each workflow are

estimated and saved in Local Time and Local Energy

respectively, (lines 3 and 4). DAGs are useful because they can

have some root vertices (source nodes), The Find_ Root method

locates all of the DAG's root vertices, SRCn (line 5). This method

is used to check whether the P(Vn,i) is equal to null or not. The

Single Root_ Transformer method creates a new DAG called

nDAG which has only one single root (line 6). To attain this, we

should create a dummy vertex called n Dummy Root and

connect this vertex to all source vertices of SRCn obtained from

the original DAG. We can specify the schedule number for each

vertex starting from the Dummy Root by using the Breadth-First-

search (BFS) algorithm (line 7). The outcome of the overall loop

is to provide a scheduled number for every task. This algorithm

iterates over concurrent workflows so that the tasks with the

same schedule number are arranged in a row of 2D ArrayList

called Final2DArrayList.The method gets (x) and adds (Vn,i) are

used to access a 2D ArrayList and add a new entry to a

list(line12).

This pre-scheduling process is depicted a with an example

scenario. Consider there exists two workflows with four and three

vertices. The first workflow has one source vertex, while the

second workflow contains two source vertices. Following the

discovery of the source vertices, the Single Root_ Transformer

method forms a new DAG called n DAG with only one source

root. Then, the BFS algorithm is applied to schedule each task.

While the schedule number for all the tasks is identified, the tasks

with the same schedule number should be placed in 2D ArrayList

called Final2DArrayList

Batch Application Placement Phase

We propose a batch application placement technique in

which an Improved Memetic Algorithm (IMA) is used to decide

where tasks in each schedule should be placed. Tasks in each

schedule can be conducted in parallel since they are either

independent tasks in one processor or tasks from various

workflows (with no dependency) that are executed in parallel.

Algorithm 1: Ordering Phase

Input: WOF: List of all workflows

Output: Final2D Array L ist, Local Time,

Local Energy

N = |WOF| (number of workflows)

Iterate through each workflow (n = 1 to N):

– Local Time. Add (Cal Local Exe Time (WOFn))

– Local Energy. Add (Cal Local Exe Energy (WOFn))

– SRCn = Finder_Root (WOFn)

– nDAG = Single Root_Transformer (WOFn, SRCn)

– BFS (nDAG, Duplicate Root)

Iterate through each workflow (n = 1 to N):

For each node in WOFn (i = 1 to |WOFn|):

– integer x = Checking Order Number (Vn, i)

– Final2DArrayList.get(x). add(Vn, i)

7
Published: An-Najah National University, Nablus, Palestine

Algorithm 2: Improved Memetic Algorithm

Input: List of Workflows, Final2DArrayList: The 2D

ArrayList that contains all schedules.

Output: Con_final, Cost_final

Set Result List MA = null

 Iterate through each schedule (i = 1 to S):

– MAResult.get(i) =

– IMA(Final Ordered List. get(i))

– Con_final =

– Result Processor (Result L is tMA. get(i))

 Iterate through each workflow (n = 1 to N):

– Compute cost: Cost_final [n] =

– Cost Calculator (Con_final)

Algorithm 2 gives an overview of the suggested batch

application placement step. This phase takes as input a list of all

workflows WOF and schedules Final2DArrayList and outputs the

workflow configuration as Con_ final and the overall execution

cost as Cost_ final. Due to a large number of schedules, the

Improved Memetic Algorithm (IMA) is used to decide on tasks for

the current schedule while taking prior schedule server

allocations into account (line 3). Because tasks in each schedule

come from one or more workflows, the Result Processor Result

L ist MA method collects task assignments from all schedules

Result L is tMA, organizes them by workflow, and stores them in

a 2D Arraylist called Con_ final, where each row represents one

workflow (line 4). The Cost Calculator Con_ final method

calculates the execution cost of each workflow based on the

relevant obtained configuration once the task assignment for all

schedules is completed. The IMA is the key function of this

phase.

Improved Memetic Algorithm (IMA)

The Improved Memetic Algorithm (MA) is an algorithm that

combines evolutionary-based search methods like GA with one

or more refinement methods (e.g., local search, individual

learning) to solve various optimization issues like routing and

scheduling. Each candidate solution is represented by an

individual in the IMA, and the solution is retrieved from a

population of candidate individuals. By using GA functions, we

proposed an Improved Memetic Algorithm (IMA), in which a local

search method is applied to the selected individuals of each

iteration. Each possible configuration of servers assigned to

tasks in a single schedule is encoded individually in the IMA. The

atomic part of each individual is a gene that describes the task in

a schedule and carries a tuple (p,q) here, p defines the type of

assigned server and q defines the index of the server. The values

of each tuple are derived in which values of the type of assigned

server and index of the server are defined.

The Genetic Algorithm is made up of four steps initialization,

selection, crossover, and mutation. The IMA is made up of the

first four steps of a genetic algorithm and local search, which is

a refinement method. The utility of each candidate is evaluated

by using a fitness function that enables the IMA to choose the

best individuals in every iteration. In the context of the genetic

algorithm, a population consists of multiple candidate solutions,

referred to as individuals. Each individual is represented as a

chromosome, which is further divided into genes that encode

specific components of the solution. Fitness values are

calculated for each individual to evaluate their quality.

Algorithm 3: IMA Algorithm

Input: schedule_ tasks: Set of tasks

Output: Org P List. Get (0)

Set Org P List = null, DivP List = null

Call Initialization (schedule_tasks)

Assign Org PList = Selection (OrgP)

Assign Div PList = Selection (DivP)

Iterate for i = 1 to I:

 Crossover (Org PList, Div P List)

 Mutation (Org P List, Div PList)

 Local Search (OrgPList, Div PList)

 Update Org PList = Selection (OrgP)

 Update Div PList = Selection (DivP)

Initialization

In this step, the maximum number of iterations I, population

size P_Size, and other IMA parameters. Individuals in the

population are created, and the population is initialized.

Moreover, a new population has been added to the Original

Population (OrgP). Diversity Population is a term used to

describe a strategy for increasing the diversity of solutions

(DivP). Because the IMA's major purpose is to determine the

best possible server configuration. The cost of local execution

downs and a pre-defined individual is assigned and created for

the OrgP, in which all gene tuple values are tuples set to the local

servers of their choice. Because those whose fitness values are

lesser than the pre-defined individual are not selected in the

following iterations, the number of low-utility individuals is

reduced. In the initialization step, the rest of the individuals in the

OrgP and the individuals in the DivP are generated at random.

The solution is represented as an individual in the Improved

Memetic Algorithm (IMA), and each individual is associated with

a particular task assignment configuration within a specified

timeframe. Each gene in the person is a task and is encoded as

a tuple (p, q), where q is the server index and p is the type of

server (e.g., 0 for an IoT device, 1 for a fog server, and 2 for a

cloud server). For example, a gene (1,2) indicates that the

second fog server is given the task. A person is made up of

several of these genes, which together determine where each

task should be placed in a schedule. The number of tasks (n)

and the number of available servers (m) determine the size of

the search space, which leads to

The number of available servers (m) and the number of tasks

(n) determine the size of the search space, which comes out to

be mⁿ. The effective search space is decreased by practical

limitations like task dependencies and resource limitations, even

though this size increases exponentially with the number of

tasks. When working with large search spaces, heuristic

algorithms like IMA are especially helpful because deterministic

approaches become computationally costly due to exponential

growth. Additionally, heuristic methods efficiently provide near-

optimal solutions when it is not possible to obtain an optimal

solution in a practical timeframe. The intricacy of constraints,

such as resource limitations, dependency models, and latency

considerations, emphasizes even more how flexible heuristic

methods are in comparison to deterministic algorithms.

Fitness Function

For Orginal Population (OrgP), the IMA employs two global

and local fitness functions, which are used to assess the utility of

each Mp
orgp (indiv) indicating the utility of a server's configuration

for each task of one workflow on that schedule Mq
orgp (Vn,i). The

Mq
orgp (Vn,i) receives the task Vn,i and local fitness value is

calculated [from Equ. (2)] with the execution cost of the

unassigned workflow are equal to zero. Algorithm 4 describes

how the fitness value of every individual Mp
orgp (Vn,i) is

calculated. The Mp
orgp (Vn,i) is the total of local fitness Mq

orgp (Vn,i)

of tasks in one schedule. Due to the concurrent execution of

tasks of one workflow in every schedule, the local fitness Mq
orgp

(Vn,i) values of tasks that belong to the same workflow Maxi Loc

are calculated (lines 1-11). The Concurrent Task Checking is the

method that stores the parallel tasks of workflow in the

Concurrent Set (line 3). Moreover, the local fitness of every task

in the Concurrent Set is calculated and the maximum local

fitness is stored in Maxi Loc (lines 4-10). Thus, the global fitness

value is calculated by the sum of all values of MaxiLoc, which

stores the maximum local fitness value of each workflow.

Input: indiv: An individual showing tasks of Schedule

Output: pBest

Iterate through each workflow (n = 1 to K):

– Reset Concurrent Set = null

– Concurrent Set = Concurrent Checking (indiv, WO Fn)

– Maxi Loc[k] = Mqorgp (Concurrent Set. get(1))

Iterate through Concurrent Set (i = 1 to |ConcurrentS et|):

– temp = Fqorgp (Concurrent Set[i])

– If temp > Maxi Loc[k], update: Maxi Loc[k] = temp

– Iterate through Maxi Loc (i = 1 to |MaxiLoc|):

P Best = p Best + Maxi Loc. Get (i)

In IMA, the main goal of Diversity Population (𝑑𝑖𝑣𝑃) is to

diversify the individuals so that the probability of local optimum

decreases. Moreover, the fitness function of 𝑑𝑖𝑣𝑃,

The 𝑀𝑝
𝑑𝑖𝑣𝑃(𝑖𝑛𝑑𝑖𝑣𝑛

𝑑𝑖𝑣𝑃) is completely different from 𝑜𝑟𝑔𝑃 and it is

calculated as follows using equation 22 and 23:

𝑀𝑝
𝑑𝑖𝑣𝑃(𝑖𝑛𝑑𝑖𝑣𝑛

𝑑𝑖𝑣𝑃) = ∑ 𝐻𝐷(𝑖𝑛𝑑𝑖𝑣𝑖
𝑜𝑟𝑔𝑃

, 𝑖𝑛𝑑𝑖𝑣𝑛
𝑑𝑖𝑣𝑃)𝑃𝑠𝑖𝑧𝑒

𝑖=1 (22)

where 𝑃𝑠𝑖𝑧𝑒 describes the population size of 𝑜𝑟𝑔𝑃 and 𝑑𝑖𝑣𝑃.

The individual of 𝑜𝑟𝑔𝑃 and 𝑑𝑖𝑣𝑃 is described as 𝑖𝑛𝑑𝑖𝑣𝑖
𝑜𝑟𝑔𝑃

and

𝑖𝑛𝑑𝑖𝑣𝑛
𝑑𝑖𝑣𝑃.The 𝐻𝐷(𝑖𝑛𝑑𝑖𝑣𝑖

𝑜𝑟𝑔𝑃
, 𝑖𝑛𝑑𝑖𝑣𝑛

𝑑𝑖𝑣𝑃) is the Hamming distance

function that calculates the difference between individuals of the

assigned server to the tasks and it is described as follows:

𝐻𝐷(𝑖𝑛𝑑𝑖𝑣𝑖
𝑜𝑟𝑔𝑃

, 𝑖𝑛𝑑𝑖𝑣𝑛
𝑑𝑖𝑣𝑃) = ∑ 𝑑𝑖𝑣_𝑓𝑆

𝑘=1 (23)

where f describes the size of each individual. To compute the

fitness of one individual of 𝑑𝑖𝑣𝑃, we calculate its difference by the

number of individuals in the OrgP in Eqs. (22) and (23), and the

individual with the higher difference receives a higher fitness

value. This aids in the retention of individuals with a greater 𝑑𝑖𝑣𝑃

difference who are more diverse than the individuals in the IMA.

Since the various type of servers (i.e., Internet of Things, fog,

and cloud) with varying numbers of servers in each type (for

example, server index) is taken into account by the system. A

diversity factor 𝑑𝑖𝑣_𝑓 is defined in the model, which explains

each task's fitness based on the type and index of the task server

that has been assigned as follows using equation 24:

𝑑𝑓 =

{

2 , 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) − 𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 1

 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) − 𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 0

𝛿

1 , 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) − 𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 1

 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) − 𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 0

𝛿
0 , 𝑠𝑦𝑚(|𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑖,𝑘𝑜𝑟𝑔𝑝) − 𝑆𝑇(𝑖𝑛𝑑𝑖𝑣𝑟,𝑘𝑑𝑖𝑣𝑝)|) = 0

 (24)

Here, sym is the Symbolic Function which is described in

equation 25:

𝑆𝑦𝑚(|𝑝 − 𝑞|) = {
0,𝑚 = 𝑛
1.𝑚 ≠ 𝑛

 (25)

From Eqn (25), each task in the DivP (i.e., ST (indivr,k
divp))

receives a greater fitness value if the server type of the

corresponding task is an individual of OrgP (ST (indivi,k
orgp)). The

div_f is set as 1 if the server types of these tasks are equal.

Furthermore, if the two jobs are assigned to the same server (i.e.,

the same server type and server index), the DivP fitness value

for that work is zero.

Selection

The purpose of selection is to choose high-utility individuals

from both OrgP and DivP for future iterations based on their

respective fitness functions. The individuals of OrgP and DivP

are sorted according to their fitness functions, and the top three

candidate solutions from each population, as well as one random

individual, are selected and saved in the orgpList and divpList,

respectively.

Crossover and Mutation

The purpose of the crossover stage is to create new

individuals (known as offspring) from a group of individuals

chosen in the selection step (called parents). The IMA develops

two offspring from each pair of selected parents using a two-point

crossover operation. The total number of new offspring for each

population is computed in each iteration using the equation 26:

Offspring Number = 2,
)!(

!

p

pw

w
 (26)

 Two crossing points are chosen at random from the parents

in the two-point crossover. The genes between the two crossover

locations are then exchanged between the parent individuals,

leaving the rest unaffected. Because the IMA generally uses two

populations, OrgP and DivP, inbreeding occurs when individuals

from the same population crossbreed, whereas crossbreeding

occurs when individuals from separate populations crossbreed.

Individual variety is provided by crossbreeding, which helps to

avoid local optimal values with a higher probability. In addition,

crossbreeding results are recorded in a selected list of both

populations (OrgPList, DivPList), whereas inbreeding results are

stored in the selected list of corresponding populations. The

mutation function in the APMA affects many genes of progeny

based on a predefined probability in the hopes of developing

individuals with better utility. In the mutation step, a random

resetting mutation is applied, where selected genes are

reassigned to a different server type and/or server index with a

predefined mutation probability. This ensures diversity in the

population and enhances the exploration of the search space to

avoid premature convergence."

Local Search Step

Optimization approaches that utilize a population of

candidate solutions are known as genetic algorithms (GAs).

Parent selection, crossover, mutation, and replacement are the

four processes that the population goes through. GAs is

commonly thought of as search techniques for locating high-

performance areas in large, complex search spaces, but they are

not well suited for fine-tuning solutions. The components of GAs,

on the other hand, might be custom-designed and their

characteristics fine-tuned to enable effective local search

behavior. Several models have lately been given with this goal.

These algorithms are referred to as Local Genetic Algorithms in

this chapter (LGAs). Considering that the crossover locations

and mutation genes are chosen at random, a new function called

local search is constructed, which is based on the

OrgP(Fq
orgp(Vn,i))’s local fitness function. The crossover function

and mutation provide randomness, which is important since it

allows for a higher possibility of jumping out of local optimal

9
Published: An-Najah National University, Nablus, Palestine

locations. Together with those random functions, the local search

function accelerates convergence to the global optimal solution.

Algorithm 5: Local Search Step

Input: OrgP List: Selected list of the original population,

DivP List: Selected list of diverse population

Set length = |Org P List|

Buff List = set List (MAXINT)

Iterate through each individual (p = 1 to |indiv|):

Iterate through the original population list (q

= 1 to length):

If Flop (indivq, porgp) < buff List. Get (p),

update:

– Buff List [p] = Flop (indivq, porgp)

– Org P List. Add (GenerateIndiv (buff List. Get (0)))

– Update Popul (Org P, Org P List)

– Update Popul (Div P, Div P List)

Although the local search function enhances the likelihood of

faster convergence to the global optimal solutions, it may cause

two issues. First, relying entirely on local search functions

increases the likelihood of becoming stuck in local optimal spots.

Second, the local search mechanism takes a long time to

traverse the search space for an issue with a big solution space.

As a result, when implementing a local search function in the

IMA, these two considerations should be taken into initializing the

buff List with an infinite number of values. Genes with the same

index number are evaluated in terms of their local fitness values

for individuals in the Org P List. Flop (indivq, porgp) and best

genes are chosen and stored in buff List's respective index

numbers (lines 3-9). Because the fitness function is based on the

execution cost, a lower fitness value indicates a better

assignment (line 5). Following that, a new individual is generated

and saved in the Org P List (line 10). Finally, the Org P and Div

P are combined with the updated Org P List and Div P List from

the local search stage and the top candidate solutions from each

population are chosen for the populations of the next iteration

(lines 11-12). The best individual of the Org P stored in Org P

List. Get (0) is returned as the outcome of the IMA whenever it

reaches its halting criterion.

Failure Recovery Phase

Failures can occur in any system, so providing an effective

failure recovery strategy is critical. Brokers in our system keep

track of all the servers and see if they have any plans to

undertake a whether the task will be completed soon or not.

Furthermore, they estimate the complete cost of each work

based on its local fitness value, Mqorgp (Vn, i) taking into account

the assigned server for each task. If any job fails to execute,

choose a surrogate server for that task. As inputs, the failure

recovery technique takes a list of currently available free servers

(including IoT devices) and a failed job. The local fitness value

Mqorgp (Vn, i) of that task is then calculated for free servers.

Finally, jobs with the least Mqorgp (Vn, i) for execution will be

forwarded to the server.

Overhead Analysis

The computational steps of the Improved Memetic Algorithm

(IMA) and the lightweight pre-scheduling phase determine the

time complexity of the suggested application placement

technique. The task ordering procedure in the pre-scheduling

phase creates the Directed Acyclic Graph (DAG) by a traversal

of the Breadth-First Search (BFS). This results in a time

complexity of O(V + E), where V is the number of tasks (vertices)

and E is the number of dependencies (edges) in the workflows.

There are several computational steps in the Improved Memetic

Algorithm (IMA). The complexity of the initialization phase, which

entails creating a population of size, Psize is O(Psize*T) where

T is the number of tasks in a schedule. A complexity of

O(I*Psize*T) results from evaluating the fitness function for I

iterations. O(I*Psize*T) is the complexity of the crossover and

mutation operations, which also depend on Psize and T.

Furthermore, a subset of Psize is subjected to the local search

refinement step, yielding a complexity of O(L*T) where L is the

number of individuals undergoing local refinement. Thus, the

overall time complexity of the proposed solution is

O(V+E)+O(I*Psize*T). This analysis highlights that the algorithm

is scalable for moderate-sized workflows but may incur higher

computational costs for larger systems, which should be

considered in real-time applications.

Results and Discussion

The system setup and parameters, as well as a full

performance analysis of our technique in comparison to its

competitors, are discussed in this section.

System Setup and Parameters

In this experiment, we used the iFogsim simulator to assess

all approaches. Real workflows and synthetic workflows were

used here. The DAGs that were obtained from the facial

recognition app (Workflow1) and the QR code recognition

application were used to create the real workflows (Workflow2).

In contrast, several synthetic workflows are designed to examine

various possible kinds of workflows (Workflow3 to Workflow6).

Consider a case in which there are six IoT devices, each with its

own workflow (Workflow1 through Workflow6). One fog broker

connects each group of six IoT devices, and fog brokers have a

connection to six fog servers and three cloud servers. Every fog

server has three virtual machines (VMs) in this design, while

each cloud server has 16 virtual machines (VMs). IoT devices

also have the computing power of 500 MIPS [15], with a power

consumption of 0.9W and 0.3W in processing and idle levels,

respectively. Additionally, IoT devices need 1.3 watts of

transmission power. We also assume that each VM of fog

servers has to have a computer power of 6 to 8 times that of IoT

devices [15], whereas each VM of cloud servers has a computing

power of 10 to 12 times that of IoT devices. Table 2 displays the

parameters of our evaluation and their corresponding values.

Table (2): System Parameters.

Parameter Value

IoT Devices 6

Fog Servers 6

Cloud Servers 3

LAN Bandwidth 2000–4000 KB/s

WAN Bandwidth 500–1000 KB/s

LAN Delay 0.5 ms

WAN Delay 30 ms

IoT Device Computing Power 500 MIPS

Fog Server Speedup Factor 6–8

Cloud Server Speedup Factor 10–12

IoT Device Idle Power 0.3 W

IoT Device CPU Power 0.9 W

IoT Device Transmission Power 1.3 W

Figure (2): Execution cost, Energy Consumption, Weighted Cost with

various workflows on varying bandwidth values.

Performance Study

To analyze the performance of our technique in various

experiments, we evaluated three quantitative parameters:

execution time, energy consumption, and weighted cost. The

effectiveness of techniques with varying bandwidths, iteration

sizes, decision durations, failure recovery, and system size

analyses is evaluated in 5 trials. Both and are set to 0.5,

indicating the importance of processing time and energy use in

the conclusions. These values, however, can be changed

depending on the needs of the users and network conditions. For

evaluations, the methods are also used to evaluate the ability of

our technique:

LOCAL: Because all workflow tasks in this technique are

completed locally on their respective IoT devices, workflow tasks

cannot be executed in tandem. This method's outcomes can be

used to evaluate the technique's gain.

NLY EDGE: All workflow tasks are outsourced to fog servers

at the edge layer for implementation in this approach. If all of the

virtual servers on a server are full, no more virtual servers are

available; the remaining jobs will have to wait until more

computing resources become available.

ONLY CLOUD: All workflow tasks are to be carried out on

cloud servers by using the method.

Bandwidth Analysis

In this analysis, we look at how approaches perform at

different bandwidths, as shown in Figure 4 and Pop Size are set

to 100 and 20, respectively, for maximum iteration size and

population size. In comparison to the local execution of

workflows, Figure 3 demonstrates that when bandwidth grows,

process execution time, energy usage, and weighted cost

decrease, implying improved application placement.

Furthermore, because fog servers are located near IoT devices

and can be accessed with faster bandwidth and low bandwidth,

the edge technique surpasses the only cloud option in most

circumstances. However, as fog servers have fewer resources

than cloud servers, they are unable to provide the best results.

As can be demonstrated, our proposed technique outperforms

all others due to two main aspects: it involves simultaneous

usage of fog and cloud servers. Second, due to its local fitness

function, local search, and the variation provided by the Div P, it

keeps a higher chance of staying away from local optimal values,

grows faster to the optimal solution, and has a higher probability

of remaining away from local optimal values. It's important to

note that while the weighted cost of the only cloud method in

some scenarios, such as Workflow5 in Fig. 2c, is lower than the

local execution, its execution time in Fig. 2a is much greater.

Because the and are both set to 0.5, execution time and

energy usage are given equal weight. As a result, the weighted

11
Published: An-Najah National University, Nablus, Palestine

cost indicates a low gain for task placement due to the lower

value for energy consumption in this workflow when compared

to the obtained execution time.

Figure 2 illustrates the impact of varying bandwidth values

on the execution cost of IoT workflows using different application

placement strategies. It compares the proposed method with

baseline approaches (Local, Only Edge, and Only Cloud),

demonstrating how increased bandwidth improves application

placement efficiency. The figure highlights that the proposed

method consistently outperforms others due to its effective use

of both fog and cloud resources, as well as its capability to avoid

local optima through the Improved Memetic Algorithm (IMA).

Maximum Iteration Number Analysis

The maximum iteration number, which may be used to

assess the speed with which evolutionary application placement

approaches reach the ideal answer, is one of the most essential

factors to compare. The solutions of the local implementation,

edge, and only cloud approaches do not change over time; the

acquired outcomes of these methods are shown to help

understand the efficacy of other strategies. For this investigation,

the Pop Size, LAN, and WAN bandwidths are set to 20, 2000,

and 500 KB/s, respectively. As shown in Fig. 3, increasing the

maximum number of iterations improves our technique's

solutions for all workflows when compared to the local, only

edge, and only cloud techniques.

Figure (3): Execution cost of workflows with different maximum iteration

numbers of values.

Our method converges to a superior solution in a less

number of iterations. The achieved results of our approach in I=

50 for all processes surpass the results obtained even at I = 200,

as shown in Fig. 3a. This pattern is shown in Fig. 3b for the

weighted cost of execution. It is crucial to remember that while

extending the maximum number of iterations can lead to better

solutions, it also increases the decision time of algorithms, this is

important for some workflows, especially those that are latency-

sensitive.

While increasing bandwidth and the number of iterations

demonstrably improve solution quality, these findings have

practical limitations. Higher bandwidth may lead to diminishing

returns, and achieving such conditions may be cost-prohibitive

or infeasible in certain environments. Similarly, increasing the

number of iterations comes with trade-offs in terms of decision

time and resource consumption, particularly for latency-sensitive

or energy-constrained applications. Future work should explore

adaptive strategies to optimize bandwidth usage and

dynamically determine the ideal number of iterations based on

system constraints.

The effectiveness of each strategy is evaluated in this

experiment based on the amount of time it takes to get a suitable

solution. Whereas application placement algorithms provide

server configurations that minimize IoT application execution

time and energy usage, the time spent getting to that solution is

also crucial.

Establishing excellent server configurations for IoT

applications over a long period of time might have a detrimental

impact on the IoT applications' execution time needs. Another

significant reason for the importance of decision time analysis,

particularly for optimization algorithms, is that iteration size

analysis alone cannot determine the efficiency of a single

application placement approach. This is because, while one

method may produce greater outcomes in fewer iterations than

its rivals, another strategy may need more iterations. The

duration of each loop may be significantly greater, resulting in a

longer decision time. As an outcome, whereas the maximum

iteration size analysis is critical, the decision time analysis is

used as a backup to ensure that one approach is effective. The

LAN and WAN bandwidth consumption in this experiment is

2000 KB/s and 500 KB/s, correspondingly. For four distinct

decision times,

Table 3 provides the COM2019 execution times for the

recommended solution. As the decision time of approaches

climbs from 100 milliseconds to 400 milliseconds, the execution

time of approaches decreases, meaning that higher utility

outcomes are attained. Our solution's obtained results gradually

decrease from 100 to 400 milliseconds, whereas COM2019's

study results show a significant decreasing trend in the variations

of 100-200 milliseconds and 200-300 milliseconds, as well as a

steady decrease between 300 and 400 milliseconds, intimating

that COM2019's results modeled convergence at 400

milliseconds. It is obvious that our approach not only produces

superior values in the same decision time as the COM2019 but

that its results at 100 ms also beat the COM2019's findings at

400 ms. This shows that irrespective of the number of iterations,

our method converges to the best solutions faster.

Figure (4): System size analysis with different number of IoT

devices

Table (3): Decision time Analysis.

Time Technique
Workflow Execution Time Result (s)

WF1 WF2 WF3 WF4 WF5 WF6

100
ms

Proposed 2.4 1.8 3.1 3.2 3.5 3.3

COM2019 4.333 2.917 3.422 6.276 6.526 3.09

200
ms

Proposed 2.37 1.76 2.92 3.17 3.42 3.27

COM2019 4.073 2.707 2.984 5.344 5.109 2.529

300
ms

Proposed 2.31 1.72 2.85 3.12 3.38 3.18

COM2019 3.656 2.494 2.868 4.388 4.709 2.746

400
ms

Proposed 2.27 1.65 2.79 2.73 3.27 3.12

COM2019 3.623 2.445 2.753 3.663 4.295 2.523

This is mostly due to the fact that time is measured in

milliseconds (ms), representing the time allocated for the

optimization algorithm. Workflow execution time results are

measured in seconds (s) and represent the total time taken to

execute the workflows under the determined placement strategy.

Failure Recovery Analysis

The influence of failure recovery methods on application

placement approaches is investigated in this experiment. In

comparison to local execution, Table 3 shows the outcomes of

our method in failure recovery mode (FR Mode), where the

probability of failure is 5%. In this experiment, the maximum

number of iterations size I is set to 100, while the rest of the

parameters are left at their default settings from decision time

analysis. Table 3 shows that the results of our method in FR

mode continue to beat local execution for all processes and

generate offloading gains. Failed tasks result in inadequate

workflow execution due to interdependence among tasks in one

workflow in strategies that ignore failure recovery. However, by

tolerating a tiny overhead of the failure recovery phase, our

technique can yield a reasonable gain over local execution.

Table (4): Failure Recovery Analysis.

Technique
Workflow Execution Time Results

WF1 WF2 WF3 WF4 WF5 WF6

Proposed 2.871 2.732 2.885 3.511 3.66 1.51

Local 6.3 10.2 5.8 9.2 6.2 7.8

System Size Analysis

The impact of system size on various application placement

approaches is investigated in this system experiment. Each fog

broker in our system decides where each IoT device's application

should be installed. As a result, we increase the number of IoT

devices and fog servers for each fog broker by a factor of six,

from six to twenty-four for each fog broker. This allows us to

evaluate the performance of our suggested technique. In

addition, we use identical procedures in this experiment as we

did in the prior ones. The LAN and WAN bandwidth utilization are

also set to 2000 and 500 KB/s, correspondingly, with the

remainder of the parameters remaining unchanged from Table

4. When varying numbers of IoT devices are linked to a single

fog broker, the result of Cumulative Execution Time (CET),

Cumulative Energy Consumption (CEC), and Cumulative

Weighted Cost (CWC) is shown in Fig. 6. The overall execution

cost of all IoT devices is referred to as cumulative. As the

number of IoT devices rises, the CET, CEC, and CWC rise as

well. All approaches CET, CEC, and CWC are cheaper than of

the local execution cost in all cases; nonetheless, our suggested

strategy beats other ways and saves money in all scenarios.

Conclusion

In this study, we proposed a weighted cost model and a

novel batch application placement technique using the Improved

Memetic Algorithm (IMA) to minimize the execution time and

energy consumption of IoT applications in fog-cloud

environments. The proposed technique also incorporates a

lightweight pre-scheduling approach and an efficient failure

recovery mechanism to handle runtime issues effectively.

Experimental evaluations demonstrate that our method

outperforms state-of-the-art approaches in various scenarios: In

Bandwidth Analysis the proposed system achieved a 65%

reduction in weighted cost compared to baseline techniques

such as Local Execution, Only Edge, and Only Cloud methods.

In Decision Time Analysis the system attains improved execution

time by 51% compared to COM2019 at equal decision time, with

results converging faster even at lower decision times (e.g., 100

ms). In failure recovery mode, the proposed method consistently

delivered execution time gains of up to 53% compared to local

execution, highlighting its robustness. System Size Analysis

demonstrated superior scalability, with Cumulative Execution

Time (CET) and Cumulative Weighted Cost (CWC) reductions

across all scenarios, even as the number of IoT devices

increased. These results confirm the effectiveness and

scalability of the proposed technique, offering significant

performance improvements over existing state-of-the-art

methods in terms of execution cost, energy consumption, and

weighted cost metrics. Future work will explore the integration of

monetary cost considerations into the weighted cost model and

address challenges associated with mobility models in dynamic

fog environments.

Disclosure Data

– Ethics approval and consent to participate: This article

doesn’t need any ethical approval.

– Data Availability: The dataset used is publicly available

13
Published: An-Najah National University, Nablus, Palestine

– Authors Contribution: N. Malathy -Methodology, Draft

revision and editing, Verification, Validation and supervision.

Ruba, Vinothini - Methodology, Implementation, Draft

preparation, Verification, Validation

– Funding: This work doesn’ t receives any fund.

– Conflict of Interest: The authors declare that they have no

conflict of interest.

– Acknowledgements: The authors would like to thank

Mepco schlenk engineering college for providing

environment to carry out this research work.

Open Access

This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original

author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included

in the article's Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc/4.0/

References

1] Goudarzi, M., & Wu, H. (2021). An Application Placement Technique

for Concurrent IoT Applications in Edge and Fog Computing

Environments. IEEE Transactions on Mobile Computing, 20(4),

1298–1311. https://doi.org/10.1109/TMC.2020.2967041

2] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multiserver

multiuser multitask computation offloading for mobile edge computing

networks,” Sensors, vol. 19, no. 6, 2020, Art. no. 1446.

3] D. G. Roy, D. De, A. Mukherjee, and R. Buyya, “Application-aware

cloudlet selection for computation offloading in the multi-cloudlet

environment,” J. Supercomputing, vol. 73, no. 4, pp. 1672–1690,

2020.

4] E. El Haber, T. M. Nguyen, D. Ebrahimi, and C. Assi, “Computational

cost and energy efficient task offloading in hierarchical edge-clouds,”

in Proc. 29th IEEE Int. Symp. Personal Indoor Mobile Radio

Commun., 2022, pp. 1–6.

5] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya,

“A dynamic tradeoff data processing framework for delaysensitive

applications in cloud of things systems,” J. Parallel Distrib. Comput.,

vol. 112, pp. 53–66, 2020.

6] Malathy N, Grace Sophia J, Swathi S, Vijaya-Subasri K. Privacy-

preserving medical diagnosis system using harris hawk optimization

in edge computing. Int Res J Multidisciplin Scope. 2024;5(1):157–70

7] Malathy Navaneetha Krishnan, Revathi Thiyagarajan. Multi-objective

task scheduling in fog computing using improved gaining sharing

knowledge-based algorithm. Concurrency and Computation: Practice

and Experience.2022;34:1- 22.

8] Malathy Navaneetha Krishnan, Revathi Thiyagarajan. Entropy-based

complex proportional assessment for efficient task scheduling in fog

computing. Transactions on Emerging Telecommunications

Technologies.2023;23:2.

9] Malathy Navaneetha Krishnan, Revathi Thiyagarajan. Opposition-

based Improved Memetic Algorithm for Placement of Concurrent IoT

Applications in Fog Computing. Transactions on Emerging

Telecommunications Technologies.2024

10] H. K. Apat, P. Sattarapu, R. N. Dash, V. Goswami, S. Mohanty and

R. K. Barik, "Leveraging towards Multi-objective IoT Application

Placement in Fog Computing Environment," 2023 IEEE 3rd

International Conference on Smart Technologies for Power, Energy

and Control (STPEC), Bhubaneswar, India, 2023, pp. 1-6, doi:

10.1109/STPEC59253.2023.10430628.

11] Hemant Kumar Apat, Bibhudutta Sahoo, Veena Goswami, Rabindra

K. Barik,A hybrid meta-heuristic algorithm for multi-objective IoT

service placement in fog computing environments,Decision Analytics

Journal,Volume 10,2024,100379,ISSN 2772-

6622,https://doi.org/10.1016/j.dajour.2023.100379.

12] Hemant Kumar Apat, Bibhudatta Sahoo,A Blockchain assisted fog

computing for secure distributed storage system for IoT Applications,

Journal of Industrial Information Integration,Volume 42,2024,100739,

ISSN 2452-414X,https://doi.org/10.1016/j.jii.2024.100739.

13] Mohammad Goudarzi , Huaming Wu , Marimuthu Palaniswami , and

Rajkumar Buyya , “An Application Placement Technique for

Concurrent IoT Applications in Edge and Fog Computing

Environments”, IEEE Transactions on Mobile Computing, Vol. 20, No.

4, April 2021.

14] Maria Diamanti, Panagiotis Charatsaris,Eirini Eleni Tsiropoulou and

Symeon Papavassiliou,” Incentive Mechanism and Resource

Allocation for Edge-Fog Networks Driven by Multi-Dimensional

Contract and Game Theories”,vol no: 3,

10.1109/OJCOMS.2022.3154536,2022.

15] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey

on memetic computation,” IEEE Trans. Evol. Comput., vol. 15, no. 5,

pp. 591–607, Oct. 2011

16] Isaac Lera, Carlos Guerrero, and Carlos Juiz,” Analysing the

Applicability of a Multi-Criteria Decision Method in Fog Computing

Placement Problem”, IEEE International Conference on Fog and

Mobile Edge Computing (FMEC 2019).

17] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework

for partitioning and execution of data stream applications in mobile

cloud computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40,

no. 4, pp. 23–32, 2013.

18] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can

offloading computation save energy?” Computer, vol. 43, no. 4, pp.

51–56, 201

