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Abstract

Multi-processor distributed systems are very useful for the
computation of intensive load. However, the optimal load fractions
allocated to each processor are the main issues that affect the performance
of these systems. Therefore, these load fractions depend on different
parameters, such as processing capability for each processor and
communication time with each processor. So, these values must be known
before we start to distribute the load. In this paper, we present a model-
based approach to study the performance of multi-processor distributed
systems and the different communication times that use an inference
message to collect such information. We notably propose a new model for
load distribution over different regions connected through wide area
network (WAN). We mainly focus on the effect of total communication
time over the final result. Performance analyses are evaluated by a
simulator, based on C++ programming language that can be an excellent
solution to calculate the total finish time, in addition to the limits over the
maximum number of regions.

Keywords: Distributed systems; Intensive Load; Communication
Time; WAN; Model-based Approach.
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Introduction

During the last decade, the huge development in the speed of the
processors and communication links has resulted significant changes on
high-performance computing. This development has let high-performance
computing environments to consist of powerful workstations
interconnected via high-speed communication links instead of expensive
special purpose super computers.

Distributed memory systems with multiple address space such as
clusters of workstations or network-based multi-computers have become
the most prominent. A good example is the Tera-scale computing system
project which achieved 6Tflops peak capability (Bataineh, S. M.). This
system consists of (2728) alpha processors, 2.7Tbytes memory and 50T
bytes disk space. In the literature (Pfister, G. F.), there are more than
1,000,000 computer clusters in use worldwide. Example of such systems,
include IBM SP2, DEC TruCluster, HP, Intel /Sandia ASCI Option Red,
etc. The importance of distributed systems increased not only because of
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their scalability but also because they can handle large computational loads.
Therefore, the performance of such systems is important and of interest to
many researchers (Pfister, G. F.; Thomas, R.).

Consequently, computational job has been increasing according in
diverse needs like the demands to resources such as high energy and
nuclear physics experiments (Yu, D. & Robertazzi, T.) or large size image
processing (Veeravalli, B. & Ranganath, S.). However, by coupling
numerous heterogeneous computational and storage resources the term
“Grid computing” has been added to the world of distributed computing.
Grids are able to accommodate very large resource-demanding jobs
(Thysebaert, P. & De Leenheer, M.; Mamar, A. & Lu, Y.) shows many of
the currently working grids and the huge number of processors of each grid.
Moreover, each Grid System consists of many clusters and each cluster
consists of a large number of processors (Broberg, J. & Venugopal, S.;
Singh, S. & Bawa, R.; Sarkar, A. D. & Roy, S.; Seinstra, F. J. & Maassen,
1).

Therefore, evaluation of multicomputer systems is an interest of
computer designers and a challenge for computer scientists and researchers.
When evaluating the performance of multicomputer systems, one has to
take different parameters in considerations, such as, system parameters
(processors speed, link speed), application parameters (degree of
divisibility of the parallel job and the level of interactions among tasks of
the same job), fault tolerance at both the application and system levels,
number of processors available, scheduling algorithm, and the processors
allocation algorithm. The conventional modeling techniques failed in to
integrate all those elements in a generic model because they normally
evaluated the performance of a specific machine. Therefore, there is a need
to develop an efficient performance evaluation model, which has the
ability of scheduling a given load on a number of available processors in
order to minimize the finish time. The model has to be generic while
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considering the system parameters, application parameters and algorithms
adopted for process allocation and scheduling. That is, the system has to
be independent of machine, link, applications, etc. An efficient
performance model is the model that can explain all normal behaviors,
predict any abnormality in the system and allow the designer to adjust
some of the parameters and ignoring unimportant details.

Conventional computer modeling techniques involve detailed
simulation of individual hardware components and introduce too many
details to be of wide practical use. Some of these techniques measure the
system as a whole, while others measure specific aspects of the computer
system such as node utilization, I/O speed, operating system performance,
etc. For example, (Thysebaert, P. & De Leenheer, M.) focused on the
communication speed only.

Most applications, such as signal and image processing, Kalman
filtering, cryptography, and genetic algorithms, all involve parallel and
distributed computing in order to improve their execution performance.
These applications lend themselves to divisible load theory (DLT). DLT
has been considered as a powerful tool for modeling data intensive
computational ~ problems  incorporating  communication  and
communications issues (Drozdowski, M.; Wong, H. M. & Yu, D.; Moges,
M. & Yu, D.).

In this paper, we present a new design of a load distribution model for
a grid of processors by taking into account the time needed to collect
information about processors (inference time) in addition to
communication time, processing time and collecting the results time. The
main contribution of this paper is the closed form solution for obtaining
the minimum finish time and optimal load allocation over each processing
region. We validate our model through mathematical proof and
comprehensive simulations. The model is based on theoretical load
distribution. It can be very efficient for huge distributed system load.
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The originality in our work is that when a controller processor
(initiator processor) has a load, it has the ability to infer information about
other regions by inference messages to/from the controller of each region.
After that, each controller has to reply to the inference message by a
message contains information such as the number of busy/idle helper
processors in its region, the communication time, etc.

Moreover, we developed a simulator by using the C++ language for
our model that tries to find the finish time when the load is distributed over
different numbers of regions. Then, based on the minimum finish time, the
optimum number of regions that can share the specified load is easily
specified.

This paper is organized as follows. In Section 2, related work is
presented. Section 3 shows the system model. Section 4 and 5 contain
results and conclusion, respectively.

Literature Review

The attempts to find an analytical model to study the performance of
multicomputer distributed systems are very important. What is mostly
common among all the work of multicomputer distributed systems is that
the load is divisible. That is, the parallel job consists of independent tasks.
Several previous studies have considered this type of load under a variety
of assumptions. In literature, several previous models (Balasubramaniam,
M. Banicescu, I. & Ciorba, F. M.; Rosas, C. Sikora, A. Jorba, J. Moreno,
A. & César, E.; Abdullah, M. & Othman, M.; Abdullah, M. & Othman, M.)
tried to study the optimal distribution of highly divisible load using DLT,
but they considered specific parameters. (Balasubramaniam, M. Banicescu,
I. & Ciorba, F. M.) focused on the perturbation parameters in terms of
processor availability and network latency and bandwidth. However, our
model is more general that is it considers these parameters (processor
availability and network latency) in terms of processing power and
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communication time. In addition, the main contribution in our model is the
inference message to collect information about the state of the system
parameters.

In (Rosas, C. Sikora, A. Jorba, J. Moreno, A. & C¢sar, E.) a
methodology is proposed to dynamically improve the performance of
certain data-intensive applications based on adapting the size and the
number of data partitions and the number of processing nodes. In addition,
the tuning parameters considered in that methodology are the partition
factor for the data set, the distribution of the data chunks and the number
of the processing nodes to be used. In (Abdullah, M. & Othman, M.;
Abdullah, M. & Othman, M.), a closed form solution is proposed to
calculate the fractions of the data file to be transferred to each cluster. In
this model, the input data sources send the data concurrently to a certain
cluster and computation starts only after the assigned data set is totally
transferred to that cluster. However, it did not mention the criteria by which
the data sources decide to transfer data to a specific cluster; also, it did not
mention the criteria by which the cluster decides the computation power
of other clusters. (Viswanathan, S. & Veeravalli, B.) present scheduling
strategies for scheduling large-scale computational task on cluster/grid
computing environment. Each cluster has its coordinator processors that
collect information about other processors in the cluster and distribute the
load among them. However, it did not consider the coordination time.
Consequently, in (Bataineh, S. M.) the model was introduced as a network
of processors (workstations) connected through a high performance local
area network (LAN). Processors, in that model, are classified into central
processors and helper processors. The central processors are distributed
evenly. Each helper processor can be idle or processing a local task (from
its central processor) or processing an external task (from nearby central
processor). Therefore, the central processor views each one of its helper
processors as available or busy. When a central processor receives a

An - Najah Univ. J. Res. (N. Sc.) Vol. 32(1), 2018



Muhannad Al-Jabi & Aladdin Masri 81

parallel job, it has to first: stop running the local job and determine the
optimum number of helper processors, second: it distributes to the helper
processors their assigned task while computing its own job, finally it
collects the results. It seems clear that the models introduced in (Bataineh,
S. M.; Abdullah, M. & Othman, M.; Abdullah, M. & Othman, M.) have
not considered the congestion effects due to the concurrent transmission,
and have not considered the time needed to collect information about the
available processors.

In the next section, we focus on the problem of scheduling large-
volume loads (divisible loads) among multiple regions (clusters of
computers) and the model we propose.

System Modeling

In this work, the grid computing system infrastructure considered
consists of a network of super computers and/or clusters of computers
(regions) connected by a wide area network (WAN), having different
computational and communication capabilities. Communication is
assumed to be predominant between different regions and to be negligible
within a single region. Each region has a controller processor that has to
store and view the information of other busy/idle helper processors within
its region. In addition, the controller processor has to infer whether to
distribute the load fractions among idle processors in its region or send the
load fractions to other regions based on the available idle helper processors.
We assume each region to be homogenous according to the processing
power of all processors within that region.

When a controller processor (initiator processor) has a load, it has the
ability to infer other regions by inference messages to the controller of
each region. Each controller has to reply by a message with information
such as the number of busy/idle helper processors in its region, the
communication time, etc. Thereafter, the initiator processor collects the
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information inside the reply messages and the initiator processor can now
take its decision to distribute the load among other regions or to process
the load locally within its region based on the optimum finish time.

Based on the useful concept of the Divisible Load Theory, one can
replace a network of processors by an equivalent processor that has exactly
the same computational power as the original network (Yu, D. &
Robertazzi, T.). In our work, we use this concept in order to view the
system introduced as a multidimensional distributed communication “tree”
network. Each “leaf of the tree” represents a region. Transmitting message
between two regions requires that the transmitted message must be
received by the controller of that region.

From Fig.1, we can see the communication steps needed between the
controller of the originating region and the controllers of each other
regions and the controller of the destination region and a processor in that
region. Where the time needed to:

— Send an inference message to regioni=inference time * region number,
also the same time is needed to reply to the inference message.

— Send the load fraction to region i = communication time *region
number.

— Process the load fraction by region i = inverse of the processing power*
load fraction.

— Send the results back = inference time * region number.
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Figure (1): Time Sequence Diagram.

In this scenario, the controller of the region j sends an inference
message to the controller of region i. Then the controller of region i replies
to the inference message with the required information. The load fractions
are calculated by the controller of region j and transmitted to region i.
Consequently, region i starts execution of its load fraction then the results
are returned back. Table 1 lists the notations used in our equations for the
mentioned concepts.
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Table (1): Terminology, definitions and notations.

Notation Significance
ai Fraction of the total load that is assigned to region i.
Tinf Inference time.
Tc Communication time between regions.
The time at which the region i will finish processing its
Tpi |
oad.
Tsi Total finish time including returning back the results.
Qi The inverse of the processing power for a region i.
Teo The cpmputation time for t.he entire load if the entire load
is assigned to a region having Q = 1.

Suppose a controller of a region decided to distribute the load to other
regions, it has to infer to which regions the load will be distributed and

then send the load fractions to the desired regions, so the total finish time

for each region will be:

Ty= inference time + processing time + communication time + return
the results time

In order to actualize consistency and bandwidth preservation, we
consider that different regions have different inference time and
communication time with multiplicity of 7j, and T.respectively. So, a
communication time 7 to send the load fraction or return the results from
regionl, and 27.to send the load fraction or return the results from region2
are needed. This means:

— The communication time with region number i = i*T¢

— The inference time, to infer region i, = i*Tixf

— The time to return back the results from region i = i*T¢
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Figure (2): Timeline diagram.

Therefore, the time at which the region i will finish processing its load
will be:

Tri=i*Tint+ o * Qi * Tep+ 1*Te (1)

Moreover, the time at which region 1 will finish processing its load and
will return the results will be, as in Fig. 2:

T=i*Tint+ 00 * Qi * Tept i* Te + i*Te=T4i+i*T.
This yields to:
Tr=Tint+ a1 * Q1 * Tep+ Tc + Te =Trpr+Te
Tro =2*Tint+ a2 * Q2 * Tep+ 2*Tc+2*T=Trpo+2* T
and:

Tin=n*Tintt+ an * Qn * Tep+ N*Te+N*Tc=Thpi+N*T¢
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Since all regions must stop processing on the same time:

Tipr =Ttp2 = Trpz =......= T'ipn
We get:
Tint+ o1 * Ql * Tcp+ Te=2*Tintt+ a2 * QZ * Tcp+ 2*T¢
oo = a,Q:Tep Te +Tins
, = -
QTep QxTep
Alternatively:

a. = alQchp _(n_l)(TC +Tinf ) D

) 0oo
QnTCP QnTCP

In order to satisfy that a, is positive, the following condition must hold:

yQiTep 2 (N=1)(Tg +Tins )

Knowing that, the summation of all load fractions equals to 1:

D=1 000
i=1
From (2) and (3), we get:

D (1=1)*(Te +Tigt )
1+
_ ,ZZ: Qi*Tep

1+Zn:&
i=2 i

221

(4)
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Simulation and Results

We can now start investigating the correctness of our model by
assuming homogenous regions according to the processing power of all
regions, such that, Q;=0>=Q;. Therefore, the dominant system parameter
in satisfying the condition from (2) will be (n) for certain values of 7. and
Tins. In other words, the value of 7, will limit the maximum number of
regions that can take part in processing the load since all regions must stop
at the same time. Therefore, when 7, is small, the maximum value of n
has to be smaller than when T¢, is large due to the communication and
inference overhead.

Moreover, in our simulation we have found that there is a maximum
value of n and the optimum value of n. The optimum value of # is obtained
based on the minimum total finish time. Based on the equations in the
system model we have built our simulator by using C++ language and in
our simulation, we assume that the value of 7.=0.001s and 7;,~=0.001s and
0 =0.01 for different values of 7., and for different values of n.

We found that for fixed values of Tjy; T¢, T¢» the value of n cannot be
increased more than a certain value, because ostarts to be negative. This
violates the condition from (2). Therefore, we called the largest value of n
at which aj still positive “The maximum number of regions”.

Fig.3 shows the variations in a, for different values of 7,. Such that
the lowest curve shows that when 7,=5, the load fraction that is assigned
to the last region (an) starts to be negative sooner than when 7,,=20 and
T»=150. Note that the middle curve is when 7,=20 and the upper curve
when 7¢,=150.
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Figure (3): o, vs number of regions.

From Fig.4 and Fig.5, we can see that as the processing time (7c,)
increased, the maximum number of regions that can participate in
processing that load will be increased which agrees with the condition
from 2. In addition, we found that for fixed values of Tiy; T¢, Tcpthere is
an optimum value of n at which the total finish is minimum. Therefore, we
called this value “the optimum number of regions”.

From Fig.5, we can see that the optimum number of regions increases
proportional to the increase in the processing time (7cp). This seems
evident because for smaller processing time adding more regions means
adding more significant communication and inference overhead.
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Figure (5): Optimum number of regions vs Processing Time.

However, for larger load size the extra communication and inference
overhead can be negligible in comparison to the decrease in the total finish
time due to distribute the load over more regions. In the upper curve, 7¢,
is 10 and in the lower curve, T, is 5. Therefore, the lower curve starts to
increase before the upper curve.
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Figure (6): Total finish time vs number of regions.

In Fig.6 and Fig.7, we can see that the upper curve in Fig. 6 cannot
have a value for number of regions greater than 10 and the lower curve
cannot have values greater than 7. Where in Fig. 7, the upper curve cannot
have values greater than 14 and the lower curve cannot have number of
regions greater than 12 because of the maximum number of regions
concept which we discussed before. In addition, if the number of regions
exceeds the maximum number of regions, the results starts to be not
realistic. That is because the total finish time starts to contain a negative
term (0, *Qi*Tcp), which not so realistic to have a negative term in time
calculations.
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Figure (7): The effect of increasing the number of regions on the total
finish time for different processing times.

In Fig.8, we investigate the effect of variation in 7c.on the optimum
number of regions by assuming different values of 7.,=50, 75 and 100,
Q=0.01, T;»=0.001 and different values of 7. and different values of n. We
found that as the value of 7t increases, the optimum number of regions
deceases. Also, we found that as Tcp increases, the optimum number of
regions increases. That seems reasonable because when the value of T¢
increase, the communication overhead increases.
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Conclusion
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In this research, we have developed an effective model for optimal
workload allocation. The model is proposed for load allocation for
multiple regions and for scheduling divisible data grid applications. The
results showed that the proposed model is capable of almost optimal
solution for single source scheduling. Hence, the proposed model can
balance the processing loads efficiently. We are planning to adapt the
proposed model to be implemented in multiple sources. With such
improvements, the proposed model can be integrated in the existing data
grid schedulers in order to improve their performance.
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