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Abstract

In this paper, we prove some results related to a normal hyperalgebra. Also, we prove that
if X is a normed normal hyperalgebra with a propenty Zaos zhoy = Zabery and [A| > |Jz||. then
(z30e — ) is invertible. Moreover, we give a characterization of the center of a unital complex
Banach normal hyperalgebra with the same property. Finally, we define the quasi-center, o-quasi
center and p-quasi center of Banach normal hyperalgebra as a generalization of the center and
study some basic properties and relations between them.

! Keywords— Banach hyperalgbera, normal hyperalgebra, Hahn Banach Theorem, center, quasi-center.

1 Preliminaries and Introduction

The theory of hyperalgebra starts in 1934 by F. Marty when he define the concept of hyperzroup in his paper
[4] at the eight congress of Scandinavian mathematician in Stockholm. After that many new definitions of the
hyperstructure theory appear. The concept of hypervector space is introduced for the first time in 1988 by M. S.
Tallini in [5]. Also, she defined the normed hypervector space in 1990 in [5] which forms a fundamental base
of this paper. Recently, in [7]. Ali Taghavi and Roja Hosseinzadeh define the normal weakhyypervector space
and study this propertics. Morever, they prove the Hahn Banach Theorem and some of its results in hypervector
spaces in [13]. On the other hand, A. Taghavi and R. Parviniazadeh define the Banach hyperalgebra in [6].
Also, in 2016 they prove the Gelfand theorem for Banach hyperalgebras in [7]. In this paper, we prove some
results related to a normal hyperalgebra Then, we a prove a generalization of Louivilles theorem on normal
hyperalgebra as a result of the Hanhn Banach Theorem of functional on hypervector spaces. After that, we use
this result on the proof of the characterization of the center of normal hyperalgebra. Finally, in the last two
sections, we define the quasi center, o-quasi center and p-quasi center on Banach normal hyperalgebra, study
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76 Center and Quasi Center on .....”

properties of them and the relations between them. Through out this paper, the field I that we use is either the
ficld of complex numbers € or the ficld of real numbers . Also, P*(X) is referced o the family of all non
empty subsets of X, Let us begin with the definition of a normed hypervector space which introduced by M. §.
Tallini [3].

Detinition L.1. [8] Let F be a field. A hypervector space over F' is a quadruplet (X, +, 0, ) such that (X, +)
is an abelian group and o : F' x X — P*(X) such that for any x,y € X and a,b € F the following conditions
hold:

L (a+bjoxClacz)+ (box)

b

aof{zty)Claoz) t(aoy)

b

ao(boz)=(ab)ox

*

(-a)ozx=ao(-z)=—(ack)
5. @€ Loz where L is the identity element of F.

By [8] we note in the condition 1 of Definition 1.1, the sum of (@ o ) + (b o x) is meant in the sense of
Frobenius, that s, (wox) + (hox) = {s +1: s € (aox),t € (hox)}. Also, a hypervector space is called
anti=left distributive if the inverse inclusion in Definition 1.1 condition 1 holds, that is,

(a+bex2(aox)+ (box)
and strongly left distributive if equality in Definition 1.1 condition 1 hold, that is,
(a+blox=(aoz)+ (box)

Similarly, a hypervector space is called an anti-right distributive and strongly right distributive hypervector
spaces if the inverse inclusion and equality in Definition 1.1 condition 2 hold, respectively. Morcover, a hyper-
vector space 15 called strongly distributive if it is both strongly left and strongly right disiributive. Finally, in
the condition 3 Definition 1.1, 0 (hox) = {f:t € (aoy), suchthat ye€ (hox)}

Detinition 1.2. [5] Let X be a hypervector space over a hyperfield F. A pseudonorm on X is a mapping ||.||
i X+ R such that for all z,y € X and a € F ihe following peoperties hold:,

L[] =0,
2 |lz+ yll < llll+ lyll
3. supllacz|| =|al. |z, wheresup|acz| =sup{|t]|:tcacz}]
A pseudonorm on X is called a norm if the following condition satisfied, ||x|| = 0 if and only if x = 0.

Remark 1.3. fn order to the third condition of a pseudonorm be well defined, we must assume that a o x is a
closed and bounded subsel of X.
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A normed hypervector space ia a hypervector space with a norm ||.||.
Let (X, +, 0, F') be a normed hypervector space. For = € X and € > (0, the open ball I, () is defined in [12],
by H.(z) = {u € X : ||z —y|| < e} The sct of all open balls {14, (x) : = € X, e > 0} form a basis for the
topology on X which induced by this norm.

Detinition 1.4, [10] Let (x,,) be a sequence in a normed hypervector space (X, +,0, ||.||, ¥). This sequence
converge to a point © © X, if for every € = 0, there exists a positive number m such that |z, — x| < ¢, for
every n = m and we write limy,_ 0 Ty = & < limy, 40 |2, — x| = 0.

Definition 1.5, (/0] Let (X, +, 0, ||||1 F':] be a normed hypervecior space. A sequence (.1':") in X is said to be

0 f,'uur.')'xy SEGUEnCe (_Tﬁu every e 2= (), there ix N & M such thet ||u';." — :J;m” <5 r:,ﬁu EVETY T, T = N.

Definition 1.6, [11] A hyperBanach space X is a complete normed hypervecior space. That is, every Cauchy

sequence in X is convergent.

Definition 1.7. (9] Let fX_. +1,01, F}, fV_. +=2, 02, F} be iwo hypemcmr spaces over aﬁefrf . A homomor-
phism between X and Y is a mapping [ © X — V such that for all @ € F and x,y € X [ salisfies,
Ja+iy)=f)+2 f(y) andf(aorz) Caop f(z).

Also, in [9] a strongly homomorphism is a homomorphism such that the equality in the second condition
holds, thatis: f(nop 2) = aos f(z).

Definition 1.8. [10] Let (X, 41, 01, |- ||l1, F), (Y, 42,22, ||.]|2, I} be twe normed hypervector spaces over F.
A homomorphism or a strongly homomorphism [ : X — Y is said to be bounded if there exisis K = 0 such

that || f(z)||l2 < K. ||z, for every x € X.

2 Normal hyperalgebra

Definition 2.1. (6] Let (X, +, 0, ') be a hypervector space over a field F. Then X is called a hyperalgebra
over he field I if there exist a mapping X % X — X of (5,y) inte z.y € X such that:

I (zy)z==(y2)

2 (x+y)lz=mzz+y.z

Iorly+z)=zy+tzrz

4 (cox)y=colzy) =x.(coy)Vz,y,z € X, Vee F.

Let X be a hyperalgebra and }* be a nonempty subset of X. Then Y is said to be a subhyperalgebra of X
if Y is subhypervector space such that z.y € ¥ wheneverz,y € Y.

Definition 2.2. j6] A normed hyperalgebra is a hyperalgebra which is normed as a hypervecior space and in
which ||y = |l v

Definition 2.3. 6] A Banach hyperalgebra is a complete normed hyperalgebra.

A Banach hyperalgebra is called real or complex when the underlying hyperalgebra is real or complex.
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Proposition 2.4. [6] Let X be a normed hyperalgebra and « € X, a € IF. Then there exists an esseniial point
Zuar € @0 x has the property || ch::” sup ”ﬁ. Q J'”

Remark 2.5. [6] We call the elements zqor: © a o x which satisfy || zgez|| = sup ||a o z|| the essential points of
a o . This essential points have property that = € a~" © Zyor when a # 0 and Zgor = 0 when a = 10,

Remark 2.6. The essential poinl zuqr for a o x in a hyperalgebra is not unigue. So let Zyor be the set of all
essential points for a o x. The nexi example shows that the essential poini is not unigue where we construct this
example according to an example about weak hypervector space in f15] .

Example 2.7, Let X = C be the normed hyperalgebra of the set of complex numbers over the field of R with
aperations of usual sum, the follwing hyperscalar multiplication mapping o : R x C — P*(C) is defined by
the following

o {rﬂfﬂ 0 <y < afflz],0 <8 < 27} if a#0 and x40
TOET {0y if a=0 or =0

Together with usual multiplication and norm defined by ||z = (z1,%2)|| = \/(z] + 23). Then (T, +,0,., ||l )
is a normed hyperalgebra with the set of essential points given by

7 {re v =la|l|lz],0<0<2x} if a#0 and z#0
“m {0} if a=0 or z=10

Definition 2.8. [6] A hyperalgebra X is called a normal hyperalgebra if the following two conditions holds
foralla,bc Fandforanyz,yc X

1. Hatb)or = Zaoz T Zboxr
2. Zua(zty) = Zacx T Zaoy.
From the above definition we directly get the following Proposition.

Proposition 2.9. Lei X be normal hyperalgebra. Then following two conditions holds for all a,b € F and for
any r,y € X

1. Ziysyor N[ Zaox + Zbos) # 0.
2. Zuu{;c-}—y} M [Zau.r + Zr.my] ?‘ .

The following Lemma is similar to Lemma 2.15 in the case of weak hypervector space in [15] with a similar
proof.

Lemma 2.10. Let X be a hyperalgebra over F such that . € X and a,b € F. The following properties hold:
l. e Z logs
2 Leth# 0, thenaozp,, —abour,

3 Z—ur.u'. _eru:-
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4. Ifa # 0, then there is y € X such thai «© € Z,,,,
5. If X is normal, then Z o 15 a singleton.
Proaf. 1. Since z € 1oz, then = € Z1.,

2. Leth# 0, then zpo, € box, whichimplies, aozpe, C ackox = abox . Conversely, since, & € b 0200,
thenaboz Caobob™ o0 24 = a0 2oy Thus, ac 24, = abo z,

Zgor={z:z€—aoxxe (—n._l] azh
={z:—zcaox,ze(a oz}
—{—z:z€ao0m,zc(a )0z}
——{z;zEﬂ.u;c,lu:E('u_]]uz}——Zm,_

4. Lety = z,-1,,, then by part 2, we have, s oy = aoz,-1,, =an  ox = lox and so by part 1,

& € Zlox = Zuoy. Thus, & € Z,0y,

5. Let X be normal, then [Z_yop + Zaox| N Z(_ o\ ajer 7 @& DUt Z_ 44 a)or = Zioz = {0} by the Definition
of the essential points. Therefore, Z_,o0 + Zaoz = {0} and by part 3, Z_40r = — Zaox. S0 — Zgog |
Zgox = {0} and this hold only when Z,,. is a singleton because if Z,,, has more than one essential
point, then —Z,o; + Zyor = {0} is a set of at least three elemznts. Thus, Z,,.,. must be a singleton.

n

Remark 2.11. The converse of Part 5 in Proposition 2.10, need not be true in general. That is there is a
hyperalgebra with a a unique essential point but not normal. In the following example we show that the
essential point is unique but the hyperalgebra is not normal which we construct it from a similar example about
weak hypervector spaces in [15] .

Example 2.12. Let X = B? over R with usual addition, wsual product together with a hyperscalar multiplica-
tiono : R x B? — P*(X) defined by

segment  —orx if a0 and x <)
aox segment  OF if a0 and =10

{a} if a=0 or =0
. Then (B2 +,0,.) is a hyperalgebra with the sei of essential points given by

{—z} i a#0 and x<0
Zos {a} if a#0 and =10
{0} if a=0 or =10

However, [JR”. t,0,.) is not normal because for any a,b ¢ R such that a,b < 0 then Zpor = Zpor = {2z}
and 50 Zyoy + Zpor = {—a} + {2} = {22} and 24 e = {2} ThS, 2(a bjor N Zaoz + Zhox = 0.
Hence, (R?, +,0,.) is not normal.
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Definition 2.13. [6] Let X be a hyperalgebra. An element e € X ix called an identity or a unit if for every
r e X, er = x.e = @ In this case, we say that X is a unital hyperalgebra.

Definition 2.14. [6] Let X be a unital hyperalgebra. An element © € X is said to be invertible if it has an

inverse in X, that is, there exists an element w7 € X such that, z.t—' — 2~ V@ — e, where e is the identity

element in X.
Remark 2.15. (6] In a unital hyperalgebra X,

1. Any nonzero element x in X, has at most one inverse,

2. The set of all invertible elements is denoted by I'nv(X). The complement of Inv(X) in X is the set of
all non invertible elements in X and it’s denoted by Sing(X).

Lemma 2.16. [6] Let (X, ||.||) be a Banach hyperalgebra. If x € X with ||z|| < L, then (¢ — z) € Inv(X).

Lemma 2.17. [6] Let (X, ||.|) be a Banach hyperalgebra. Then, Inv(X) the set of all inveriible elements in
X, is an open set in X.

Definition 2.18. [6] Let X be a hyperalgebra and x ¢ X. The specirum of =, is denoted by o x (x) or simply
a(x), is the set of all complex numbers A such that (zje. — x) € Sing(X). That is,
a(z) = {N € C: (zp0e — ) € Sing(X)}
The complement of o(z) in C is called the resolvent of x and it’s denoted by p(z).
Theorem 2.19. [6] Let (X, ||.||) be @ Banach normal hyperalgebra and = € X. Then o(x) is nonempty.

Theorem 2.20, [6] Let (X, ||.||) be a Banach normal hyperalgebra and = ¢ X. Then o(x) is bounded in C
and is contained in the closed disk {A ¢ T:|A| < |lz|}.

Detinition 2.21. [2] Let (X, ||.||) be a normed hyperalgebra with = € X. The spectral radius of x, denoted by
r(x), is defined by

r(x) inl'{“:n""i n=1,2,..}h
Theorem 2.22, [2] Let (X, ||.||) be a Banach hyperalgebra with a unit element and = € X such that r(z) < 1.
Then, (e —x) isimvertible and (e —x)™' = e+ 37 2"
Theorem 2.23. Let X be a complex Banach normal hyperalgebra and . € X, then o(x) is a compact subset
of C.
Proof. By Theorem 2.20 , o(x) is bounded. So, it remains to prove that o(x) is closed. let Ay & o(), then
(zagee — @) € Inu(X), Define f: C — X by f(A) = zxo — 7, then f is a continuous function and since
by Lemma 2.17, Tnv(X) is an open subset of X containing f(Ag), then there exists an open subset S( f(Ag))
such that S{f(Ag)) C Inv(X). Since f is continuous, then as A — Ay we have f(A) — f(Ag) and so there
exists a neighborhood N(Ag) such that for A € N(Ag) , we have f{A) = (2a0e — =) € S(f(An)) C Inv(X).
So, A ¢ o(x). Therefore, there exists N (Ag) such that N(Ag) € C — o(z). Thus p(x) = C — o(z) is an open
set and thus, o(z) is a closed. Hence, o(x) is a compact set, |
Proposition 2.24. Let X be normed normal hyperalgebra such that Zaoz-Zpoy = Zabory Jor all a,b e C,x,y ¢
X_ I\ € Csuch that |A| > ||x||, then zxo —  is invertible.

Proof. Let || = ||z|| then [A]~"||=]| = L but |A|7"||z|| = sup|[A~" o #|| < 1 which implies for the essential
point 2z 14, of A Lo, (€ — zy 14, ) is invertible but zy,, is invertible (it's inverse is 7y 15.) and 50 Zxge.(€
Iy log) = CEioe — ZdoeE) lop = Zhoe — EAN loes = Zhoe — I i5 inverible. |
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3 Center in Hyperalgebra

In order to measure how close any Banach hyperalgebra X 1o be a commutative hyperalgebra we define the
center Z(X) by
ZX)={ze X :zy=yz foral ye X}

It’s easy to see that Z(z) is a commutitve subhyperalgebra of X that contain the identity. Moreover, If X is
commutative, then Z{X) = X. In what follows we will give a characterization of the center of a special class
of a unital Banach hyperalgebra namely, a unital Banach normal hyperalgebra. This characterization is done
by way of slight modification of the characterization of the center of a classical unital Banach algebra.

Firstly, we need to define the exponential function in a way similar to the definition of it on a unital complex
Banach algebra and stay the Hahn Banach Theorem for functionals on hypervector spaces, then we use it to
prove the generalization of Liouville's Theorem.

Definition 3.1. Let X be a unital complex Banach normal hyperalgebra. For an element @ € X, the exp(z) is
defined by

where z1 . is the essential point of n—]‘ L
! N

The proof of the following Lemma is similar to the case in Banach algebra as in [14] with a slight modifi-
cation as follows.

Lemma 3.2. Let X be a unital complex Banach normal hyperalgebra with a property Zyor Zhoy = Zaboxy for
allx,y € X and a,b € F. Then

1. exp(z + y) = exp(z) exply), where Ty = yz.
2. (exp(x)) 1 exp(—z),
3. exp(z) = limpoa(e 1 zlw)“-

P"”!ﬁ I' l‘{:l Iﬂ:lyﬂ:l le-? éﬂ:l rhl:l C"F bL'. L]L:ﬁn{:d b}r:

T

n=¢t Zlozh —-:’-I-LZ Loy —-3+L2 L o(z4y)kr

k=1 k=1

n ] ™ ]
Go=14Y el nn—uz Sl =143 gl +
2. |

81

Then, Tnln—in = )5 p) Za, pozigh i'.rhm't:{:':ﬂr = Oforall j, kand so [lzayn—z|l = | 327y Zoypexiy i =

Yokt Wagpomige | < 3200 Lol I ¥l < 3250 asellzlP lull* = €utta — Gu.
Since iy o0 (Entin — Ga) = exp(||z]]) exp(|ly||) — exp(||z]| + |ly||) = 0 Since the norm is continuous
we have,

T
0= lim (x 2 (e+ lim Lz (e+ lim LZI
n—}cxz{ nlin n} t =00 Wk t =300 WE}
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m

= (e+ Jim ¥z () = oxp(x) exp(y) — exp(z + ).
k=1

Thus, explz) exp(y) = exp(z + y)

2. Since cxplz) exp(y) = exp(z + y). Lety = =, then exp(z) exp(—z) = exp(z + —z) = e. Thus,
(exp(z)) ™" = exp(—z).

3. Let xp, 4n, £n, T be defined by:
n n 1 l
_ _ _ k _
et Y g W=t &= glel = ()"

Then, ZTn =Y = ¥ j—3 Zuyoxk Where ag > 0 for all k and so we have, ||z — yoll = 12075 Zagomt || <
:'icl_‘a ||zm,ux*|| = >::_2|C"k|"-"7k” = )’:E_‘a Q'Pc"“:”k = Tiy — 7. Since limy, 400(bn — 1) = 14
limyosoo gy e lF—Tlimp oo (14+-L{|z])™ = exp(|z]]) —exp(]z]]) = 0. By the continuity of norm,
0 = limposoo(n — Yn) = e+ liMyose Yo g Zhosk ~ litnyy e (& + z%“}" exp(a) — limypoo (e +
210" Thus, exp(z) = limgeale + 22, )"

Definition 3.3. [/3] Let X be a hypervector space and Y be a nonempty subset of X_ Then, Y is a weak
sublypervector space of X if the following two conditions holds:

Ly+ypel
2 zaey €Y, forally,,ppeYandacF.

Definition 3.4. [13] Let X be a hypervector space over F. A mapping f : X —» F is said ta be a weak linear
functional if and only if f is additive and f(z4er) = af(z) holds for all x € X and a € F.

We note that if X is a normed hypervector space over F, we will detone o the set of all bounded weak
lincar functionals on X by X7.

Definition 3.5, [13] Let X be a hypervector space. A sublinear functional is a real valued functiong : X - R
which is

L glz +y) < g(z) +g(y) forallz,y € X

2. supglaoz) =ag(z) = g(zae) forallz ¢ X and all a = 0,

Theorem 3.6. [13] Let X be a real normal hypervector space and p is a sublinear functional on X. Further-
maore, Let [ be a weak linear junciional which is defined on a weak subhypervecior space M of X and satisfies
flz) < plz) forall & € M. Then there exists a weak linear functional g : X — R such that g(x) = [(x) for
all z € M and g(x) < p(z) forall z € X.

Corollary 3.7. [13] Let & be in a normed normal hypervector space X over F.Then we have ||z = SUD{W :
fe Xy f#0). Hence, if zg is such that f(xo) = 0 forall f ¢ XJ, then zy = 0,
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Definition 3.8. Let X be a normal hyperBanach space and [ - D — X is a mapping on a domain I in the
complex plane C into X. Then [ is called analytic on IV if and only if

Eﬂ:‘l}lzh Lof(z+h) — Zh—tof(z)]

exists for every x € [
In the usual way we say that f is an integral function if it is analytic on C. Moreover, we define it to be

a bounded if ||f(z)|| < M for all z ¢ C. Now we are ready to prove the generalized Liouville theorem on
hypervector spaces.

Theorem 3.9. Let X be a normal hyperBanach space and [ : C — X be a bounded integral function, then f
is constant.

Proof. Letg € Xj and f : C — X be a bonded integral function, Then there is M such that ||f(z)|| < M
and so, [g(f(z))] < llgllllf(=)]] < |lgllM on C and gf is bounded. Since gf is also integral function in a
complex variable sense, the ordinary Liouville's theorem yields g(f(x)) = g(f(£)), for any z, & € C and so
g(f(x) — f(£)) = 0 for any =, & € C. Thus, by Corollary3.7, we have f(z) — f(£) = D and so f(z) = f(£)

|

for any . & € C. Therefore, fis a constant.

In what follows we will prove the main Proposition in this section which determines the characterization of
the center of a unital complex Banach normal hyperalgebra in a way similar to the same characterization of the
center of a unital complex Banach algebra with slight modifications.

Proposition 3.10. Let X be a unital complex Banach normal hyperalgebra with a property zy o0 Z2g0y
Zx Aoy forall z,y € X and Ay, hg € C. If |l zaee — )| < ||(200e — ®)al| for all a € X and X € T, then
x € Z(X).

= ||z| then by Proposition 2.24, (zpee — =) 7" exists and so (), — ) 'y € X for any
la(zxoe — T)|| < [[(200e — z)al| forall@a € X and A € C. Choose

Proaf. Let |A
y € X. Moreover, by assumption,
a = (Zy0e — ) "'y € X. Then,

ll(z30e = 2) " lz30e — D) < (2206 — Z)(200e — ) 'yl =ly|  forall a€X and A€C.

Fix u € € such that u 3 0 and let n € ZT such that i [=]. Also, let X = Z & C. Then, for any
b € X we have, (2200 — 2) (2200 — D) < lyll and since sup|[1 o (200 — 2) "y(zzee — )] =
11(z20c — 2)y(z20e — 2)]| < [l S0
sup|[1 o (20 — 2) " y(z20. — )| < [yl
Since 1o (zng, — ) Mylznoe —2) = 110 (200, — ) y(2nge —2) = (10 (200 —x) oy (10 (200, — x))
we have,
sup||(10 (2200 — 2)™)y.(1 0 (220 — 2))|| < [y

2) = (2)7.2 0z~ 2) 1) (220 (2200 2)) = (2) (B0 (220 ~2) )41 (20 (20 (2200 —2)) =
(B)ylo(loe—Zox) lylo(loe— o) Sowehave,

Writing the firstone by 1 = (2)~".2 and the second one by 1 = 2.2 g0 we have (1o(zn0.—2) 7 ).gr.(10(22 00—

T 1 n i
supll((2) e (toe—2oz) HaCo(loe— o) <yl
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and hence,

,_ T Uy U U 1 U
E — — log——ox gy(loe——ox < 5] log——ox a(loe——ox)|| <
sup [((3)7" Zyo(1oe— 2 oz) ™ g (10e— 20zl < 1yl = sup [(10e—2 02) ™" y.(1oe— 2 02)]| < [y

But (¢ — zo,) e — zug,) € (1oe — 2o ) Ly (loe— % o)
Hence,
(e — 2202) " p-(€ — 2300) || < Iyl

By induction, we have
(e~ zxoz) ™.l — z20g)™| < [lyll  forall meN

. Then,
[[((e — za0e) ™ 3-fe — 220e)" [ < |yl

By taking the limit as n — oo, we have
lim [[((e — z20z) "y.(e — 220z)"|| < [yl
TE— kO " n

By continuity of the norm we have

H : - i'l' H ... T {
Il Jim (e — z0p) ™.y lim (e — zaor)"l| < [yl

Which is equivalent to

i uu' H U o
I Jim (e — z15,) """y lim (e — 71, )""[| < |lyl

Hence, by Lemma 3.2, we have ||(expz)".y.(exp —x)"| < |ly|| forall y € X and u € C/{0}. Also this
inequality is true for u = 0 and so it's true for all u € C.

Let y be any fixed element in X and let f : C —+ X be defined by f(u) = exp(z)®yexp(—z"), then || f(u)|| =
|lexp(z)*yexp(—=)*| < ||y|| for all # € C. Hence, [ is entire bounded function on a Banach hyperalgebra
X which implies, by Theorem 3.9, [ must be a constant function and so f(u) = exp(z)*yexp(—z)* = y.
Since y € X is arbitrary in X, then, exp(z)*y exp(—z)* = y forall y € X and so by lemma3.2, exp(z)"y =

yexp(x)™. Thus,
Xy

o
(Z zﬂ;'nz}“y = y(z z._:m:)“ forall ye X andueC
n=0 n=0

and so, for u = 1 we have
(e + 210z 4 1oyt Ly =yle + 210z 4 Zlop . forall ye X
But X is normal so,
(c{x{z%m+,,,]y=y[c|x|3%m{..,} forall ye X

Therefore, oy = ya forall y € X. Thus, = € Z(X). |

An - Najah Univ. J. Res. (N. Sc.) Vol. 36(1), 2022



Ayman Mizyed & As’ad As’ad 85

4 0-Quasi Center in a Banach Normal Hyperalgebra

In this section we will generalize the definition of center of a umital complex Banach normal hyperalgebra with
PrOPETLY Zyor-Zhoy = Zabory 10 What will be called quasi-center and o-quasi center of a unital complex Banach
normal hyperalgebra, Recall in Definition 2,18, that in a Banach normal hyperalgebra with a unit element over
the complex field C and x € X, the spectrum set of zis ox(x) = {A € C: (T — zp0e) € Sing(X)} and the
resolvent of @ is the set py (z) = C — ox(z).

Detinition 4.1. Let X be a uniral Banach normal hyperalgebra with a unir element e over the complex field C
such that zaoz.Zhoy = Zabozy. A element x € X is called quasi ceniral if there exists K = 1 such that

llr(zaee — )| < Kll(2p0c — =)yl
forallyc X and A € C.
For any K = 1 we can write
QIK, X)={zc X ||u(zaoe — 2)|| < K||(220e —z)y| forall ycX and AcCl

Moreover, the collection of all guasi central elements in a unital complex Banach normal hyperalgebra X will
be denoted by Q(X) which defined by

QX) = |J QK, X).

K=1

Remark 4.2, For K = 1, we have Z(X) = Q(1,X) C Q(X) and hence Q(X) is not empty since the zero
element and the unit element e are always in Z(X).

Note that in the definition of quasi central, A is chosen from the whole of the complex numbers  but in the
following definition the choice of A will be restricted to the resolvent set p(x) only which lead us to a useful
definition o-quasi central.

Definition 4.3. Let X be a unital complex Banach normal hyperalgebra with a property zoor Zhoy = Zabory-
An element x: € X is called o-quasi central if there exists K = 1 such that

ly(zrce — )l < K|l (220e — )yl
forally € X and ) € p(x).
So, for K > 1, we have
QoK. X) = {2 € X : [y(zroe — )| < Kll(2ree — 3yl forall yeX and A€ plz)}.

Also, the collection of all o-guasi central elements in X will be denoted by ()(.X') and is defined by

Q. (X) = |J (K, X)

K=l

Moreover, we have, (J(X) € (J,(X) and by Remark 4.2, Z(X) C Q(X) C Q.(X)
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Proposition 4.4. Let X be a unital complex Banach normal hyperalgebra with a property Zaoe Zpoy = Zabory-
Then z € Q, (K, X) if and only if || (zyee — %) (230 — 7)|| < K||y|| for all y € X and X € p(x).

Proof. Assume that z ¢ (K, X), then by Definition 4.3, ||y(zace — )| < K|[(#30e — z)y|| forall y € X
and A € p(x). Since A € p(x), (230e —x) " exists and 50 (zpoe —2) 'y € X S0, |[(2a0e— ) " Y(E00e —x)|| <
K|l(230e — 2)(230e — =) 'yl = K]ly]l-

Conversely, assume [|(zxce — &) '¥(Zace — )|| < K||y|| forall y € X and A € p(x). Then, |ly(zx0e — z)]| =
ll(za0e = )™ ((220e — %)) (230e — 2)|| < K [[(230e — z)y|l. Hence, z € Qo( K, X). u

Definition 4.5, Let X be a Banach hyperalgebra and © € X. The inner derivation with respect to x is denoted
by D.(y) and is defined as by
De(y) =y —yz Jorall ye X.

Lemma 4.6. Let X be a complex Banach hyper algebra and x ¢ X. Then Ly = xy is the left multiplication
operator and Ry = yx is the right multiplication operator on X corresponding to x for all y € X. Then the
following properties hold where By (X)) is the set of all bounded strongly homomorphisms on X as in [2]:

. Lr:ffz € B!:(-X}
o LyRe = Ralix
s D=L, Ry

Proposition 4.7. Let X be a unital complex Banach normal hyperalgebra with a property z,or . Zbor = Zabor
and © € Qn (K, X). Then if Dy is the inner derivation corresponding to x. then

l(zas0e — 2) " (2agoe — 2) " eee(Za0e — 2) Dyl < (K + 1)yl
forally € X and A; € p(x) where 1 <i < n.
Proof. The proof is by the induction over n. Forn = 1, lety € X and Ay € p(x), we have

Doy = zy — yz = —(2a00 — Ty + (20100 — 7)
which implies,
(zJuﬂc - x)_l Dry = [z)nuc - z)_ly(zhﬂt' - T) -y
By Proposition 5.4,
Il (25,00 — ) " Dayll < (2a,0e — ) y(2010e — 2)]| + [yl < Kyl + lly]l = (K + D)]yll-

Assume the inequality hold for some n > 1 we will show that it holds forn + 1. Let y € X and A; € p(z) for
1 < i < nthen we have (23,0 — ) 7'2 = 223,00 — )7 because (2y,00 — &) commutes with . Also,

D200 — :r:}_'y 2(2) 00 — :f:}_l'y — (2a0e — r::}_l'y:n_ (1)
= (2x00 — 2) 2y — (2200 — 7) 'y @
= (2x0e = 2) ™' Day- 3)
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Moreover, (2,00 — ) ]‘(z%w_ —z) 1= (z;\_’w_ — ) Y zpoe —x) Morall 1 <4,5 <n+ 1. Thus,

[l (zas00=2) H(2agoe=2) " ors(2an g r0e=2) TRyl = (2 s0e—2) H(znoe—a) te(zagoe—a)  DE |
1 Cone o =) (2ayon— ) (e = 2) 1 D2 < (K4 1) (2o ) (g ) (g —

x) "1 D%y||. By the induction hypothesis, we have

I(zaee = 2) 7" (2a000 — 2) ' (Bryr0e —2) T Dyl < (K 4+ 1)y
. Thus the Proposition holds for all n ¢ M, ]

Remember that a topological space is called connected if it is can’t be written as the union of two disjoint
open subsets and a component is a maximal connected of it
Definition 4.8. [1] Let K be a compact subset of C, then w(K) = K* where K¢ is the unbounded componet
of K¢

Definition 4.9. [/ Let K be a compact subset of C. A funciion [ is called admissible for K if f is defined and
analytic on w(K') and satisfies || f|| < 1 and f(o0) = 0. A function [ is a admissible for some compact subset
of E.

The set of all admissible functions for a set K will be denoted by F'( E).
Definition 4.10. [1] Let F be a subset of C. The analytic capacity of E is defined by
Y(E) =sup{ lim zf(z): f € F(E)}.
i e v

Definition 4.11. (1] Let K be a compact set in C and let T be the class of all complex valued functions which
are bounded and analytic on the unbounded component of the complement of K. Then if each element in T is
constant, K is called a painleve null sei.

Theorem 4.12. [ 1] The painleve null set coincide with the compact seis of zero analytic capacity.

Theorem 4.13. Let X be a complex Banach normal hyperalgebra with a unit element. If x ¢ Q,(X) and o(x)
has zero analytic capacity, then Dy = ().

Proof. Letx € Q,(X), then there is K = 1 such that z € @, (K, X). Fix a bounded weak lincar functional
¢ on X and consider the function f : px(z) — Chy f(A) = d((zrce —:c}_‘D,-;y)‘ Then f is bounded since
IFN] = [6((230e — 2) 7' De)| < [9llll(230e — )~ Doyl < [I6(K + 1)1yl the Tast two inqualties hold
sinee ¢ is bounded and by Proposition 4.3, respectively, Thus f is bounded on px (7). Also,

A)— T (A
L —TC0) — (3 20) (2o 2) e 2) ID28) = 00 3) (21 o) 9 Ds)
Since
(z)wr.-. - 5‘7}_' - (z;\ar-m - ‘E}_l = (2aee — ":)_l(zﬁoue - z)ku«}{a)\auu - “7)_]
Then,

B((2r-ra) 1 (Zace — ) — (2agoe — ) ) D2t) = H2(-r9) H{zr0e—1) TN Tr———— L M)
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So

F(A) = flAa) ,
Af/\nu _qb(z(«‘-,\ou—x.}" fhgmf;f.)" ny}

By continuity of ¢ and inversion, we obtain

FA) = F(Mo)
A

iy _ﬁb((z)\.uuc - -"7) - D;-_!,J’)
—AD

; .
(o) = lim
Hence, f(A.n} exists for arbitrary Ay € px(x) and so [ is analytic on py(x). Thus, f is bounded and
analytic complex valued function on unbounded component of px () the complement of the compact subset
ax(x). By assumption o x () has zero analytic capacity and since it compact then by Theorem 4.12, o x () is
a painleve null set. Moreover, Let T be the class of all bounded and analytic complex valued functions on the
unbounded component of the complement of o x (), then f € T and so by Definition 4.11, f must be a constat.
Finally, let A € {A € C: |A| = [lz||} € px(z). then |5 < 1 and by Theorem 2.24, (23, — ) is invertible
and so (z.lur.' - x)_l = {z,\uc-(e - z:\"uu:)}_l = z;og'{c + Z?;U 1{zf\_1oa'.}n} = z;oto + z;olp_' Ef 1{2)1_103'.}“
and so

o o0
T = (2300 + Zroee D (23 102)")-Dap) = 230, (D) + 230, 8D (21-102)")-Day)
n=1 n=1
But f is a constat so ¢b{ D,y) = 0 which implies D,y = 0 where ¢ is an arbitrary bounded lincar functional on
X and  is an arbitrary element in X, Thus, D, = 0 n

Corollary 4.14. Ler X be a complex Banach normal hyperalgebra with a unit element. If z ¢ Q5(X) and
o(z) has zero analytic capacity, then Q. (X) = Z(X).

Proof. Let = € (),(X), then by Theorem 4.13, D,y = 0 which implies that =y — yx = 0 and so xy = yx
forall y € X. Thus, z € Z(X). Therefore, @, (X) C Z(X), however, Z(X) C Q,(X). Hence, Q,(X)
Z(X). "

5 p-Quasi Center in a Banach Hyperalgebra

In the previous section we generalize the concept of the quasi center Q(X') which is given by z € Q(X) if
there is K = 1 such that ||(2y0e — Z)y|| = K||¥(2xce — )| forally € X and A € C by reduce the choosing
of A only in p(z) instead of the whole of the complex numbers C and this generalization produce the definition
of - quasi center. In this section we will define a new generalization of the quasi center called p-quasi center.
This generalization hold by choosing A only in (). Consider the following definition.

Definition 5.1. Let X be a Banach normal hyperalgebra with a unit element e over the complex field C. An
element x € X is called p-quasi central if there exists K = 1 such that

l[u(zs0e — 2)| < K|(220e — z)yl

forally € X and A € a(z).
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So, for K > 1, we have
Qp(K, X) = {r € X : [[y(zroe — 2)|| = K|[(zp0e — x)y]| forall ye X and Aeo(z)}

Also, the collection of all p-quasi central elements in X will be denoted by (0, (X) and is defined by Q4 (X) =
Uz Qp(K, X). The following Proposition shows the relations between Z(X ), (X) and ¢Q,(X). The prove
is directly form the these definitions so we omit the proof.

Proposition 5.2. Let X be a Banach normal hyperalgebra with a unit element. Then, Z(X) C Q(X) C
Qu(X).

Proposition 5.3. Let X be a Banach normal hyperalgebra. Then x € Q(X) if and only if there is a constant
L such that ||zy — yz|| < L||(2xee — =)yl for all y € X and A € o(zx).

Proof. Let z ¢ (),(X) then there exists K > 1 such that [[y(zye — z)|| = K||(2ree — z)y|| forall y € X
and A € o(z). So, llzy — yall = |ly(zace — ) — (2a0e — 2yl = [l¥(za0e — )| + (2000 — 2yl =
K||(za0e — z)ull + [(z20e — )yl = Lll{(z30e — x)y|| where L = K + L.

Conversely, suppose that there is L such that [|zy — yz|| < L||(zyee — 2)y|| forall y € X and A € o(x). Then,
[4(zx0e —2) || = l(zr0e — )y + 2y —y|| < ||(2r0 —2)yll+ oy —yz]| < |(220e —2)yll+ Lll (2700 — )yl| =
K ||(2xee — x)y|| where K = L + 1. Hence, by Definition 5.1,z € ,(X). [ |

Propusition 5.4, Let X be a Banach normal hyperalgebra. Then Q(X) = Q(X) N Q,(X).

Proof. Since Q(X) € Q. (X) and Q(X) € Qu(X), then Q(X) € Q,(X) N Q) (X). Conversely, Let = ¢
:(X)NQ,(X). then there is K > 1 such that z € (K, X)NQ),( K, X) which implies that z € (), (K, X)
and 5o ||(zaee — #)yl| < K||y(zaee — x)|| forally € X and A € p(x). Also, we have = € Q,(K, X) and so
Hzaoe — 2)yll = K|ly(zr0e — z)|| forally € X and X € a(x). Thus, ||(zxe. — x)y|| = K||y(z)ee — x| for
ally € X and A € C. Hence, z € Q(K, X) € Q(X). Thus, Q(X) = Q,(X) N Q,(X). n

Proposition 5.5, Let X be a complex Banach normal hyperalgebra with unity. If © € Q4 (X) such that o(z)
has zero analytic capacity, then Q,(X) C Q,(X).

Proof. By Corollary 4.14, (},(X) = Z(X) and since Z(X) C Q(X) C (J,(X) sowehave Z(X) = Q(X) =
()-(X), and by Proposition 5.2, (H(X) C QQu(X). Thus, (Jo(X) € Q.(X). [ |

Proposition 5.6. Let X be a complex Banach normal hyperalgebra with unity and K = 1. If Y is a closed
commutative subhyperalgebra of By(X) that containing L., R, and the identity operator I. Then, for = €
Qp(X), we have, | D T|| < (K +1)|(230e — Le)T|| forall T € Y and X € o(z).

Proof. Let x € Qu(X), then forall y € X and A € o(x), we have, ||y(za0e — Z)|| = ||[(Zr0e — z)yl|.
However, [ly(zxce — 2)Il = l(2xee — Rz)yll and [[(zaee — @)yl = [[(z30e — Lz)yll- Then [[(zace — )yl =
K||(2x0e — Lz )y|l- So that || Day|| = [[(za0e — Re)y — (220 — La)yll < (K +1)|[(2a0e — Lz)yl|. By replacing
y by Ty where T' ¢ M in the above inequality and taking the supremum over all i such that ||y|| = 1 we have
[D=T|| =< (K + 1)[[(2200 — L) T- u
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6 Conclusion

In this article we use the Hahn Banach Theorem for functionals on hypervector space Lo prove the generalization
of Liouvell’s Theorem on hyperBanach spaces. Then we prove a characterization of the center of a unital
complex Banach normal hyperalgebra with property Zgeg-Zboy = Zabozy- Moreover, we define the quasi center
QX), o-quasi center Q4 (X) and p-quasi center (Q,(X) of Banach hyperalgebra X and prove their properties
and relations between them, In additions we show that for a unital complex Banach normal hyperalgebra X
with the above property, if # € (X)) and o(z) has zero analytic capacity, then (0, (X) = Q(X) = Z(X)
and Q7 (X) € Q,(X). Finally, we prove that Q(X) = Q-(X) N Q.(X).
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