Generalizations of 2 -Absorbing Primary Hyperideals of Multiplicative Hyperrings

Received 25/2/2023, Accepted 22/6/2023, DOI: 10.35552/anujr.a.37.2.2117

Mohammad Hamoda ${ }^{1, *}$

Abstract

In this paper, we introduce the concept of $\phi-2$-absorbing primary hyperideals in multiplicative hyperrings. Several results concerning $\phi-2$-absorbing primary hyperideals are proved. We prove under certain conditions that the intersection of two $\phi-2$-absorbing primary hyperideals is also a $\phi-2$-absorbing primary hyperideal. Examples of $\phi-2$-absorbing primary hyperideals are also studied.

Keywords: Multiplicative hyperring, hyperideal, prime hyperideal.

Introduction

The hypergroup notion was introduced in 1934 by Marty (Marty, 1934) at the 8th Congress of Scandinavian Mathematicians. He defined the hypergroups as a generalization of groups. Later on, many researchers have done many papers in this field. They investigated that the theory of hyperstructures have many applications in pure and applied mathematics, for more details, see (Corsinig, 1993), Cristea \& Jancic-Rasovic, 2013), (Davvaz \& Leoreanu-Fotea, 2007) and (Omidi \& Davvaz, 2017). Similar to hypergroups, hyperrings are algebraic structures more general than rings. Hyperrings were introduced and studied by many authors, see for example (Ameri \& Norouzi, 2013), and (Asokkumar \& Velrajan, 2012). There are many types of hyperrings. A well-known type of a hyperrig, called the Krasner hyperring, where the addition is a hyperoperation, while the multiplicative is an ordinary binary operation. For more study on this type of hyperrings, we refer to (Krasner, 1983), and (Rota, 1982). Another important type of a hyperring, called the multiplicative hyperring, obtained by considering the multiplication as a hyperoperation while the addition is an operation. This type of hyperring was introduced by Rota (Rota, 1982). A general type of hyperring, where both the addition and multiplication are hypeoperations can be found in (Davvaz \& Leoreanu-Fotea, 2007). The notion of primeness of hyperideal in a multiplicative hyperring was conceptualized by Procesi and Rota (Procesi \& Rota, 1999). Dasgupta introduced the concepts of prime and primary hyperideals in multiplicative hyrerrings (Dasgupta, 2012). The notion of $2-$ absorbing and $2-$ absorbing primary hyperideals in multiplicative hyperrings have been introduced and studied by Anbarloei (Anbarloei, 2017). The objective of this paper is to construct more accurate results and concepts regarding multiplicative hyperrings. In fact the motivation of writing this paper is two folded:
(1) To extend the concepts of prime, primary, 2 -absorbing and 2 -absorbing primary hyperideals in multiplicative hyperrings to the concepts of ϕ-prime, ϕ-primary, ϕ -

2 -absorbing, and $\phi-2$-absorbing primary hyperideals respectively.
(2) To introduce the concepts of hyperideals of direct product of multiplicative hyperrings and how to classify them among absorbing hyperideals. The remains of this paper are organized as follows: Section 2 concerns some basic definitions and results in the sequel of this paper. In section 3 , the main results concerning generalizations of 2 -absorbing primary hyperideals will be given. Section 4 concerns the conclusion.

Preliminary Notes

In this section we state some basic concepts and results related to hyperring theory. We hope that this will improve the readability and understanding of this paper.

In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Let H be a non empty set and $\mathbb{P}^{*}(H)$ be the family of all nonempty subsets of H. As in (Davvaz \& Leoreanu-Fotea, 2007), a hyperoperation • on H is a mapping $\bullet: H \times H \rightarrow \mathbb{P}^{*}(H)$. The couple (H, \bullet) is called a hypergroupoid. If $A, B \in \mathbb{P}^{*}(H)$ and $x \in H$, then we define $A \bullet$ $B=\bigcup_{a \in A, b \in B} a \cdot b, A \bullet x=A \bullet\{x\}$ and $x \cdot B=\{x\} \cdot B$. The notions of semihypergroups, quasihypergroups and hypergroups are defined in (Davvaz \& Leoreanu-Fotea, 2007) as follows. A hypergroupoid (H, \bullet) is called a semihypergroup if for all a, b, c of H we have $(a \cdot b) \cdot c=a \bullet(b \cdot c)$, which means that $\mathrm{U}_{u \in a \bullet b} u \bullet c=\mathrm{U}_{v \in b \cdot c} a \bullet v$. A hypergroupoid (H, \bullet) is called a quasihypergroup if for all a of H we have $a \cdot H=H=$ $H \cdot a$.(It is also called the reproduction axiom). A hypergroupoid (H, \bullet) which is both a semihypergroup and a quasihypergroup is called a hypergroup. Recall from (Davvaz \& Leoreanu-Fotea, 2007) that a triple $(R,+, \bullet)$ is called a multiplicative hyperring if
(1) $(R,+)$ is an abelian group;
(2) (R, \bullet) is a semihypergroup;

[^0](3) for all $a, b, c \in R$, we have $a \cdot(b+c) \subseteq a \bullet b+a \cdot c$ and $(b+c) \cdot a \subseteq b \cdot a+c \cdot a ;$
(4) for all $a, b, c \in R$, we have $a \cdot(-b)=(-a) \cdot b=-(a \cdot b)$.

If in (3) we have equalities instead of inclusions, then we say that the multiplicative hyperring is strongly distributive.

A multiplicative hyperring $(R,+, \bullet)$ is said to be commutative if R is commutative with respect to hyperoperation \bullet. Throughout this paper all multiplicative hyperrings are assumed to be commutative with absorbing zero; i.e., there exists $0 \in R$ such that $x=0+x$ and $0 \in x \bullet 0$ for all $x \in R$. Recall from (Ameri et al., 2017), that if $(R,+, \bullet)$ is a multiplicative hyperring, then an element $e \in R$ is called a left (resp. right) identity if $a \in e \cdot a$ (resp. $a \in a \bullet e$) for $a \in R$. e is called an identity element if it is both left and right identity element. An element $e \in R$ is called a left (resp. right) scalar identity if $a=e \cdot a$ (resp. $a=a \cdot e$) for $a \in R . e$ is called a scalar identity element if it is both left and right scalar identity element. If ($R,+, \bullet$) is a multiplicative hyperring with identity e, then $a \in R$ is called a left (resp. right) invertible (with respect to e) if there exists $x \in R$ such that $e \in$ $x \cdot a$ (resp. $e \in a \cdot x$). a is called invertible if it is both left and right invertible. A multiplicative hyperring $(R,+, \bullet)$ is called unitary if it contains an element u such that $a \cdot u=u \cdot a=\{a\}$ for all $a \in R$. A nonempty subset H of a multiplicative hyperring $(R,+, \bullet)$ is called a subhyperring of $(R,+, \bullet)$ if $(H,+, \bullet)$ is a multiplicative hyperring. In other words, H is a subhyperring of $(R,+, \bullet)$ if $H-H \subseteq H$ and $x \bullet y \subseteq H$ for any $x, y \in H$. A nonempty subset I of a multiplicative hyperring $(R,+, \bullet)$ is called a hyperideal of $(R,+, \bullet)$ if $I-I \subseteq I$ and $x \bullet r \cup r \bullet x \subseteq I$ for any $x \in I$ and $r \in R$. The intersection of two subhyperrings of a multiplicative hyperring $(R,+, \bullet)$ is a subhyperring of R. The intersection of two hyperideals of a multiplicative hyperring $(R,+, \bullet)$ is a hyperideal of R. Moreover any intersection of subhyperrings of a multiplicative hyperring is a subhyperring, and any intersection of hyperideals of a multiplicative hyperring is a hyperideal. The hyperideal generated by any subset S of $(R,+, \bullet)$ is the intersection of all hyperideals of R containing S. From (Davvaz \& Leoreanu-Fotea, 2007), and (Dasgupta, 2012), let A and B be non empty hyperideals of a multiplicative hyperring $(R,+, \bullet)$.
(1) The sum $A+B$ is the hyperideal defined by
$A+B=\{a+b: a \in A, b \in B\}$.
(2) The product $A \cdot B$ is the hyperideal defined by
$A \cdot B=U \quad\left\{\sum_{i=1}^{n} a_{i} \cdot b_{i}: a_{i} \in A, b_{i} \in B, n \in \mathbb{N}\right\}$.
(3) The principal hyperideal of R generated by an element a is given by

$$
\begin{gathered}
<a>=\{p a: p \in \mathbb{Z}\}+ \\
\left\{\sum_{i=1}^{n} x_{i}+\sum_{j=1}^{m} y_{j}+\sum_{k=1}^{l} z_{k}: \forall i, j, k, \exists r_{i}, s_{j}, u_{k}, t_{k} \in R, x_{i} \in\right. \\
\left.r_{i} \cdot a, y_{j} \in a \bullet s_{j}, z_{k} \in t_{k} \bullet a \bullet u_{k}\right\} .
\end{gathered}
$$

(4) The zero hyperideal is the hyperideal generated by the additive identity zero denoted by $\langle 0\rangle$ and we have $<0\rangle=$ $\left\{\sum_{i=1}^{n} x_{i}+\sum_{j=1}^{m} y_{j}+\sum_{k=1}^{l} z_{k}: \forall i, j, k, \exists r_{i}, s_{j}, u_{k}, t_{k} \in R, x_{i} \in r_{i} \bullet\right.$ $\left.0, y_{j} \in 0 \cdot s_{j}, z_{k} \in t_{k} \bullet 0 \bullet u_{k}\right\}$.

Recall from (Procesi \& Rota, 1999) that a prober hyperideal I of a multiplicative hyperring $(R,+, \bullet)$ is called a prime hyperideal of R if for any $a, b \in R, a \bullet b \subseteq I$, then $a \in I$ or $b \in I$. From (Dasgupta, 2012), let C be the class of all finite products of elements of a multiplicative hyperring $(R,+, \bullet)$, i.e., $C=\left\{r_{1} \bullet r_{2} \bullet\right.$ $\left.\ldots \cdot r_{n}: r_{i} \in R, n \in \mathbb{N}\right\} \subseteq \mathbb{P}^{*}(R)$. A hyperideal I of R is called a
C-ideal of R if for any $A \in C, A \cap \quad I \neq \emptyset \Longrightarrow A \subseteq I$. The radical of I denoted by Rad (I) is the intersection of all prime hyperideals of R containing I. If R does not have any prime hyperideal containing I, then $\operatorname{Rad}(I)=R$.

Let \sqrt{I} defined as $\sqrt{I}=\left\{r \in R: r^{n} \subseteq I\right.$ for some $\left.n \in \mathbb{N}\right\}$, where $r^{n}=\underbrace{r \bullet r \bullet \bullet r}_{n \text {-times }}$ for any positive integer $n>1$ and $r^{1}=$ $\{r\}$, then by Proposition 3.2. in (Dasgupta, 2012), $\sqrt{I} \subseteq \operatorname{Rad}(I)$. The equality holds when I is a C-ideal of R. A hyperideal $I \neq R$ of a multiplicative hyperring $(R,+, \bullet)$ is called a primary hyperideal of R if for any $a, b \in R, a \bullet b \subseteq I$, then $a \in I$ or $b \in$ \sqrt{I}.

Recall from (Davvaz \& Leoreanu-Fotea, 2007) that a homomorphism (resp. good homomorphism) between two multiplicative hyperrings $(R,+, \bullet)$ and $\left(R^{\prime},+^{\prime}, \bullet '\right)$ is a map $f: R \rightarrow$ R^{\prime} such that for all x, y of R, we have $f(x+y)=f(x)+{ }^{\prime} f(y)$ and $f(x \cdot y) \subseteq f(x) \cdot ' f(y)(r e s p . f(x \bullet y)=f(x) \cdot ' f(y))$.

The kernel of f is the inverse image of $\langle 0\rangle$, the hyperideal generated by the zero in R^{\prime} and is denoted by $\operatorname{Ker}(f)$. From (Davvaz \& Leoreanu-Fotea, 2007), let $(R,+, \bullet)$ be a multiplicative hyperring and I be a hyperideal of R. The usual addition of cosets and multiplication defined as:
$(a+I) \star(b+I)=\{c+I: c \in a \bullet b\}$ on the set $R / I=\{a+$ $I: a \in R\}$ of all cosets of I. Then, $(R / I,+, \star)$ is a multiplicative hyperring and it is strongly distributive if R is so.

Recall from (Anbarloei, 2017) that a prober hyperideal I of a multiplicative hyperring $(R,+, \bullet)$ is called a 2 -absorbing (resp. 2 -absorbing primary) hyperideal of R if $a \bullet b \bullet c \subseteq I$, then $a \bullet b \subseteq I$ or $b \bullet c \subseteq I$ or $a \bullet c \subseteq I$ (resp. $a \bullet b \subseteq I$ or $b \bullet$ $c \subseteq \sqrt{I}$ or $a \cdot c \subseteq \sqrt{I}$) for any $a, b, c \in R$.

Results and Discussion

We start by the following definitions.
Definition 3.1 Let $(R,+, \bullet)$ be a multiplicative hyperring, $L(R)$ be the lattice of all hyperideals of R and $\phi: L(R) \rightarrow$ $L(R) \cup\{\varnothing\}$ be a function.
(1) A proper hyperideal I of R is called a ϕ-prime hyperideal of R if whenever $a, b \in R$ with $a \bullet b \subseteq I-\phi(I)$, then $a \in I$ or $b \in I$.
(2) A proper hyperideal I of R is called a ϕ-primary hyperideal of R if whenever $a, b \in R$ with $a \bullet b \subseteq I-\phi(I)$, then $a \in I$ or $b \in \sqrt{I}$.
(3) A proper hyperideal I of R is called a $\phi-2$-absorbing hyperideal of R if whenever $a, b, c \in R$ with $b \cdot c \subseteq I-\phi(I)$, then $a \cdot b \subseteq I$ or $a \cdot c \subseteq I$ or $b \cdot c \subseteq I$.
(4) A proper hyperideal I of R is called a $\phi-2$-absorbing primary hyperideal of R if whenever $a, b, c \in R$ with $a \cdot b \cdot c \subseteq$ $I-\phi(I)$, then $a \bullet b \subseteq I$ or $a \bullet c \subseteq \sqrt{I}$ or $b \cdot c \subseteq \sqrt{I}$.

Definition 3.2 Let $(R,+, \bullet)$ be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, and I be a $\phi-$ 2 -absorbing primary hyperideal of R. Then,
(1) If $\phi(P)=\varnothing$ for every $P \in L(R)$, then we say that $\phi=\phi_{\emptyset}$, and I is called a $\phi_{\emptyset}-2$-absorbing primary hyperideal of R, and hence I is a 2 -absorbing primary hyperideal of R.
(2) If $\phi(P)=P$ for every $P \in L(R)$, then we say that $\phi=\phi_{1}$ and I is called a $\phi_{1}-2$-absorbing primary hyperideal of R.
(3) If $n \geq 2$ a positive integer and $\phi(P)=P^{n}$ for every $P \in$ $L(R)$, then we say that $\phi=\phi_{n}$ and I is called a $\phi_{n}-$

2 -absorbing primary hyperideal of R. In the case that $n=2$, we say that $\phi=\phi_{2}$ and I is called an almost-2 -absorbing primary hyperideal of R.
(4) If $\phi(P)=\bigcap_{n=1}^{\infty} P^{n}$ for every $P \in L(R)$, then we say that $\phi=\phi_{w}$ and I is called a $\phi_{w}-2$-absorbing primary hyperideal of R.

Remark 3.3

(1) As $I-\phi(I)=I-(I \cap \phi(I))$, so we may assume that $\phi(I) \subseteq I$.
(2) Given two functions $\psi_{1}, \psi_{2}: L(R) \rightarrow L(R) \cup \quad\{\varnothing\}$, we say that $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(P) \subseteq \psi_{2}(P)$ for each $P \in L(R)$. Thus, one can be easily seen that $\phi_{\emptyset} \leq \phi_{w} \leq \ldots \leq \phi_{n+1} \leq \phi_{n} \leq \ldots \leq \phi_{2} \leq \phi_{1}$.
(3) Every ϕ-prime hyperideal of a multiplicative hyperring R is ϕ-primary hyperideal of R.
(4) It is clear that every $\phi-2$-absorbing hyperideal is a $\phi-$ 2 -absorbing primary hyperideal.
(5) It is clear that every ϕ-primary hyperideal is a $\phi-$ 2 -absorbing primary hyperideal.

The following example shows that a $\phi-2$-absorbing primary hyperideal need not be $\phi-2$-absorbing hyperideal.

Example 3.4 Let R be the ring Z under ordinary addition and multiplication. For any $a, b \in R$, we define the hyperoperation $a \cdot$ $b=\{2 a b, 3 a b\}$. Then, $R=(\mathbb{Z},+, \bullet)$ is a multiplicative hyperring. Let $H=12 \mathbb{Z}=\{12 n: n \in \mathbb{Z}\}$ be a subset of R. Then, H is a $\phi_{n}-$ 2 -absorbing primary hyperideal of R that is not ϕ_{n} 2 -absorbing hyperideal of $\forall n \geq 2$.

The following example shows that a $\phi-2$-absorbing primary hyperideal need not be ϕ-primary hyperideal.

Example 3.5 Consider the multiplicative hyperring \mathbb{Z} define in Example 3.4.The hyperideal $12 \mathbb{Z}=\{12 n: n \in \mathbb{Z}\}$ is a ϕ_{n} 2 -absorbing primary hyperideal of $\mathbb{Z} \forall n \geq 2$. However, $12 \mathbb{Z}$ is not ϕ_{n}-primary hyperideal of $\mathbb{Z} .4 \cdot 3 \subseteq 12 \mathbb{Z}-\phi_{\emptyset}(12 \mathbb{Z})=12 \mathbb{Z}$ and $4 \notin 12 \mathbb{Z}, 3^{n} \nsubseteq 12 \mathbb{Z} \forall n \geq 2$. Also, $3 \notin 12 \mathbb{Z}, 4^{n} \nsubseteq 12 \mathbb{Z} \forall n \geq 2$. Therefore, $12 \mathbb{Z}$ is not ϕ_{n}-primary hyperideal of \mathbb{Z}.

Now, we give the following diagram which clarifies the place of $\phi-2$-absorbing primary hyperideal in the lattice of all hyperideals $L(R)$ of R.
prime hyperideal $\Rightarrow \phi$-prime hyperideal $\Rightarrow \phi-$ 2 -absorbing hyperideal $\Rightarrow \phi-2$-absorbing primary hyperideal.

Proposition 3.6 Let I be a proper hyperideal of a multiplicative hyperring $(R,+, \bullet)$ and let $\psi_{1}, \psi_{2}: L(R) \rightarrow$ $L(R) \cup\{\varnothing\}$ with $\psi_{1} \leq \psi_{2}$. If I is a $\psi_{1}-2$-absorbing primary hyperideal of R, then I is a $\psi_{2}-2$-absorbing primary hyperideal of R.

Proof. Assume that I is a $\psi_{1}-2-$ absorbing primary hyperideal of R and let $a, b, c \in R$ with $a \bullet b \bullet c \subseteq I-\psi_{2}(I)$. Now, $a \bullet b \cdot c \subseteq I-\psi_{2}(I) \subseteq I-\psi_{1}(I)$. Therefore, I is a $\psi_{2}-$ 2 -absorbing primary hyperideal of R.

Now, we need the following definition.
Definition 3.7 A proper hyperideal I of a multiplicative hyperring $(R,+, \bullet)$ is called an idempotent if $I=I^{2}$.

Theorem 3.8 Let I be a proper hyperideal of a multiplicative hyperring $(R,+, \bullet)$. Then the following assertions hold.
(1) If I is a 2 -absorbing primary hyperideal of R, then I is a $\phi_{w}-2-$ absorbing primary hyperideal of R.
(2) If I is a $\phi_{w}-2$-absorbing primary hyperideal of R, then I is a $\phi_{n+1}-2$-absorbing primary hyperideal of R for every positive integer $n \geq 2$.
(3) If I is a $\phi_{n+1}-2-$ absorbing primary hyperideal of R, then I is a $\phi_{n}-2$-absorbing primary hyperideal of R for every positive integer $n \geq 2$.
(4) If I is a $\phi_{n}-2$-absorbing primary hyperideal of R for every positive integer $n \geq 2$, then I is almost 2 -absorbing primary hyperideal of R.
(5) If I is an idempotent hyperideal of R, then I is a ϕ_{w} 2 -absorbing primary hyperideal of R and I is a ϕ_{n} 2 -absorbing primary hyperideal of R for every positive integer $n \geq 1$.
(6) If $I=\sqrt{I}$, then I is a $\phi_{n}-2$-absorbing primary hyperideal of R if and only if I is a $\phi_{n}-2-$ absorbing hyperideal of R.
(7) I is a $\phi_{n}-2-$ absorbing primary hyperideal of R for every positive integer $n \geq 2$ if and only if I is a $\phi_{w}-2$-absorbing primary hyperideal of R.
(8) If I is a ϕ - primary hyperideal of R and $\phi(\sqrt{I})=\sqrt{\phi(I)}$, then \sqrt{I} is a ϕ-prime hyperideal of R.

Proof.

(1-4) Follow directly from Proposition 3.6.
(5) Assume that I is an idempotent hyperideal of R. Then, $I=I^{n}$ for every positive integer $n \geq 1$. Thus, $\phi_{w}(I)=\cap_{n=1}^{\infty} I^{n}=$ I. Thus, we are done.
(6) Since, $\sqrt{\sqrt{I}}=\sqrt{I}$, we are done.
(7) Assume that I is a $\phi_{n}-2$-absorbing hyperideal of R and let $a, b, c \in R$ with $a \cdot b \cdot c \subseteq I-\bigcap_{n=1}^{\infty} I^{n}$. Thus, $a \cdot b \cdot c \subseteq$ $I-I^{n}$ for some positive integer $n \geq 2$. Now, I is a $\phi_{n}-$ 2 -absorbing primary hyperideal of R implies that $a \bullet b \subseteq I$ or $b \cdot c \subseteq \sqrt{I}$ or $a \cdot c \subseteq \sqrt{I}$. The converse is clear from parts (1), (2).
(8) Proceed similar as (6).

Lemma 3.9 Let $(R,+, \bullet)$ be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, I be a ϕ-prime hyperideal of R and J be a subset of R. For any $a \in R, a \bullet J \subseteq$ $I-\phi(I)$ and $a \notin I$, implies that $J \subseteq I$.

Proof. Let $a \in R, a \bullet J \subseteq I-\phi(I)$ and $a \notin I$. Thus, $a \bullet J=$ U $a \cdot j_{i} \subseteq I-\phi(I)$ for all $j_{i} \in J$. Then, $a \bullet j_{i} \subseteq I-\phi(I)$ for all $j_{i} \in J$. Since I is a ϕ-prime hyperideal of R and $a \notin I$, we conclude that $j_{i} \in I$ for all $j_{i} \in J$. Therefore, $J \subseteq I$.

Now, we extend Lemma 3.9 to ϕ-primary case.
Lemma 3.10 Let $(R,+, \bullet)$ be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, I be a ϕ-primary hyperideal of R and P be a subset of R. For any $a \in R, a \bullet P \subseteq$ $I-\phi(I)$, then either $a \in I$ or $P \subseteq \sqrt{I}$.

Proof. Assume that $a \in R, a \bullet P \subseteq I-\phi(I)$ and $a \notin I$. Then, $a \bullet P=U \quad a \bullet J_{\alpha} \subseteq I-\phi(I)$ for all $J_{\alpha} \in P$. Thus, $a \bullet$ $J_{\alpha} \subseteq I-\phi(I)$ for all $J_{\alpha} \in P$. Since I is a ϕ-primary hyperideal of R and $a \notin I$, we conclude that $J_{\alpha} \in \sqrt{I}$ for all $J_{\alpha} \in P$. Therefore, $P \subseteq I$.

Theorem 3.11 Let $(R,+, \bullet)$ be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, I be a ϕ-prime hyperideal of R, and A and B are subsets of R. If $A \bullet B \subseteq I-$ $\phi(I)$, then $A \subseteq I$ or $B \subseteq I$.

Proof. Assume that $A \bullet B \subseteq I-\phi(I), A \nsubseteq I$, and $B \nsubseteq I$. Since, $A \cdot B=U \quad x_{i} \cdot y_{i} \subseteq I-\phi(I)$, then $x_{i} \cdot y_{i} \subseteq I-\phi(I)$ for all $x_{i} \in A$ and $y_{i} \in B$. Since, $A \nsubseteq I$ and $B \nsubseteq I$, then there exist $a, b \notin I$ for some $a \in A$ and $b \in B$. Thus, $a \bullet b \subseteq A \bullet B \subseteq$ $I-\phi(I)$. Since $a, b \notin I$ and I is a ϕ-prime hyperideal of R, then $a \bullet b \nsubseteq I$, a contradiction. Therefore, $A \subseteq I$ or $B \subseteq I$.

Theorem 3.12 LetI be a proper hyperideal of a multiplicative hyperring $(R,+, \bullet)$ and let $\phi: L(R) \rightarrow L(R) \cup\{\phi\}$ be a function. If I is a ϕ-prime hyperideal that is not prime, then $I^{2} \subseteq \phi(I)$. Hence, a ϕ-prime hyperideal I with $I^{2} \nsubseteq \phi(I)$ is prime.

Proof. Assume that $I^{2} \nsubseteq \phi(I)$, we show that I is prime hyperideal of R. Let $a, b \in R$ such that $a \bullet b \subseteq I$. If $a \bullet b \nsubseteq \phi(I)$, and since I is a ϕ-prime hyperideal, we have $a \in I$ or $b \in I$. So, assume that $a \cdot b \subseteq \phi(I)$. First, assume that $a \cdot I=U \quad a \bullet$ $j_{\alpha} \nsubseteq \phi(I)$ for all $j_{\alpha} \in I$. Thus, there exists $j_{\alpha} \in I$ such that $a \bullet$ $j_{\alpha} \nsubseteq \phi(I)$. Then, $a \bullet\left(b+j_{\alpha}\right) \subseteq I-\phi(I)$. So, $a \in I$ or $b+j_{\alpha} \in I$ and hence $a \in I$ or $b \in I$. So, we can assume that $a \cdot I=$ U $a \bullet j_{\alpha} \subseteq \phi(I)$ for all $j_{\alpha} \in I$. Then, $a \bullet j_{\alpha} \subseteq \phi(I)$ for all $j_{\alpha} \in I$. Likewise, we can assume that $b \cdot I=U \quad b \bullet j_{\beta} \subseteq \phi(I)$ for all $j_{\beta} \in I$. Then, $b \bullet j_{\beta} \subseteq \phi(I)$ for all $j_{\beta} \in I$. Since $I^{2}=U \quad j_{\alpha} \bullet j_{\beta} \nsubseteq$ $\phi(I)$ for all $j_{\alpha}, j_{\beta} \in I$, then there exist $j_{\alpha}, j_{\beta} \in I$ with $j_{\alpha} \bullet j_{\beta} \nsubseteq$ $\phi(I)$. Then, $\left(a+j_{\alpha}\right) \cdot\left(b+j_{\beta}\right) \subseteq I-\phi(I)$. Since I is a ϕ-prime hyperideal of R, we conclude that $a+j_{\alpha} \in I$ or $b+j_{\beta} \in I$, and hence $a \in I$ or $b \in I$. Thus, I is prime hyperideal of R.

Theorem 3.13 Let $(R,+, \bullet)$ be a multiplicative hyperring, I be a ϕ-prime hyperideal of R for some ϕ, and $\phi(I) \subseteq \phi(J)$ for some hyperideal J of R such that $J=\sqrt{J}$ and $J \subset I$. Then, I is a prime hyperideal of R.

Proof. Assume that I is not a prime hyperideal of R. Then, $I^{2} \subseteq \phi(I)$ by Theorem 3.12. Hence $\sqrt{I}=\sqrt{\phi(I)}$. Since $\phi(I) \subseteq$ $\phi(J) \subseteq J=\sqrt{J}$, we have $\sqrt{I}=\sqrt{\phi(J)} \subseteq J$. Thus, $I \subseteq J$, a contradiction. Therefore, I is a prime hyperideal of R.

Theorem 3.14 Let ($R,+, \bullet$) be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\phi\}$ be a function, and I_{1} and I_{2} be ϕ-prime hyperideals of R. If $\phi\left(I_{1}\right)=\phi\left(I_{2}\right)=\phi\left(I_{1} \cap \quad I_{2}\right)$, then $I_{1} \cap \quad I_{2}$ is $a \phi-2$-absorbing hyperideal of R.

Proof. Let $a, b, c \in R$ such that $a \bullet b \cdot c \subseteq\left(I_{1} \cap I_{2}\right)-$ $\phi\left(I_{1} \cap \quad I_{2}\right)$, let $a \cdot b \nsubseteq I_{1} \cap \quad I_{2}$ and $b \cdot c \nsubseteq I_{1} \cap \quad I_{2}$. Then, $a, b, c \in I_{1} \cap \quad I_{2}$. If $a \in I_{1} \cap \quad I_{2}$, then $a \in I_{1}$ and $a \in I_{2}$. Since I_{1} and I_{2} are hyperideals, we have $a \bullet b \subseteq I_{1}$ and $a \bullet b \subseteq I_{2}$. Then, $a \bullet b \subseteq I_{1} \cap I_{2}$ which is a contradiction. Thus, $a \notin I_{1} \cap \quad I_{2}$. Similarly, $b \notin I_{1} \cap \quad I_{2}$ and $c \notin I_{1} \cap \quad I_{2}$. We have three cases:

Case (1): $a \notin I_{1}$ and $a \notin I_{2}$. Since, $c \notin I_{1} \cap I_{2}$, we have three cases again. Assume that $c \notin I_{1}$ and $c \notin I_{2}$. Since $a \bullet b \bullet$ $c \subseteq\left(I_{1} \cap \quad I_{2}\right)-\phi\left(I_{1} \cap \quad I_{2}\right)$. Then, $\quad a \bullet b \bullet c \subseteq I_{1}-\phi\left(I_{1}\right)$. Since I_{1} is a ϕ-prime hyperideal of R and $a \bullet c \nsubseteq I_{1}, a \bullet b \bullet c \subseteq$ $I_{1}-\phi\left(I_{1}\right)$, then $b \in I_{1}$ by Lemma 3.9. Thus, $a \bullet b \subseteq I_{1}$. Similarly, Since I_{2} is a ϕ-prime hyperideal of R and $a \bullet c \nsubseteq I_{2}$, $a \bullet b \bullet c \subseteq I_{2}-\phi\left(I_{2}\right)$, we have $b \in I_{2}$ by Lemma 3.9. Thus, $a \bullet$ $b \subseteq I_{2}$. Hence, $a \bullet b \subseteq I_{1} \cap \quad I_{2}$, a contradiction. Thus, $c \in I_{1}$ or $c \in I_{2}$. Now, assume that $c \notin I_{1}$ and $c \in I_{2}$. Since, I_{1} is a ϕ-prime hyperideal of R and $a \bullet c \nsubseteq I_{1}, a \bullet b \cdot c \subseteq I_{1}-\phi\left(I_{1}\right)$, we have $b \in I_{1}$. Thus, $b \bullet c \subseteq I_{1}$. Since, $c \in I_{2}$, then $b \bullet c \subseteq I_{2}$ and thus $b \bullet c \subseteq I_{1} \cap \quad I_{2}$, a contradiction. Similarly $c \notin I_{2}$ and $c \in I_{1}$ lead to a contradiction. Thus, if $a \notin I_{1} \cap \quad I_{2}$, then $a \in I_{1}$ or $a \in I_{2}$.

Case (2): $a \in I_{1}$ and $a \notin I_{2}$. We show that $c \in I_{2}$. Assume that $c \notin I_{2}$. Since I_{2} is a ϕ-prime hyperideal of R, we have $a \bullet$
$c \nsubseteq I_{2}$. Since, whenever $a \bullet b \bullet c \subseteq I_{2}-\phi\left(I_{2}\right), a \bullet c \nsubseteq I_{2}$ and also I_{2} is a ϕ-prime hyperideal of R, then $b \in I_{2}$ by Lemma 3.9. Thus, $a \bullet b \subseteq I_{1} \cap \quad I_{2}$, a contradiction. Thus, $c \in I_{2}$ and we get $c \notin I_{1}$. Therefore, $a \cdot c \subseteq I_{1} \cap I_{2}$.

Case (3): Assume that $a \in I_{2}$ and $a \notin I_{1}$, we show that $c \in$ I_{1}. Assume that $c \notin I_{1}$. Since I_{2} is a ϕ-prime hyperideal of R, then $a \bullet c \nsubseteq I_{1}$. Since, whenever $a \bullet b \bullet c \subseteq I_{1}-\phi\left(I_{1}\right), a \bullet c \nsubseteq$ I_{1} and I_{1} is a ϕ-prime hyperideal of R, then $b \in I_{1}$ by Lemma 3.9. Thus, $a \bullet b \subseteq I_{1} \cap \quad I_{2}$, a contradiction. Since, $c \in I_{1}$ and $c \notin I_{1} \cap \quad I_{2}$, we have $c \notin I_{2}$ and hence $a \cdot c \subseteq I_{1} \cap \quad I_{2}$. Thus, $I_{1} \cap \quad I_{2}$ is a $\phi-2$-absorbing hyperideal of R.

Example 3.15 Let $\left(\mathbb{Z}_{6}, \oplus, \odot\right)$ be a ring such that the binary operations \oplus, \odot defines as follows:
$\bar{a} \oplus \quad \bar{b}$ and $\bar{a} \odot \quad \bar{b}$ are remainder of $\frac{a+b}{6}$ and $\frac{a \cdot b}{6}$ where + and . are ordinary addition and multiplication for all $\bar{a}, \bar{b} \in \mathbb{Z}_{6}$. For $\bar{a}, \bar{b} \in \mathbb{Z}_{6}$, we define the hyperoperation $\bar{a} \cdot \bar{b}=$ $\{\overline{0}, \overline{a b}, \overline{2 a b}, \overline{3 a b}, \overline{4 a b}, \overline{5 a b}\}$. One can easily see that ($\left.\mathbb{Z}_{6}, \oplus, \bullet\right)$ is a commutative hyperring. Now, let $I_{1}=\{0\}$ and $I_{2}=\{\overline{0}, \overline{2}, \overline{4}\}$. Then, $I_{1} \cap I_{2}=\{\overline{0}\}$. Clearly, $\{\overline{0}\}$ is a $\phi_{n}-2$-absorbing hyperideal of $\left(\mathbb{Z}_{6}, \oplus, \bullet\right) \forall n \geq 2$, but it is not a $\phi_{n}-2$-prime hyperideal of $\left(\mathbb{Z}_{6}, \oplus, \bullet\right)$.

Theorem 3.16 Let J and P be proper hyperideals of a multiplicative hyperring ($R,+, \bullet$) such that $J \subseteq P$, and let $n \geq 2$ be positive integer. If P is a $\phi_{n}-2$-absorbing primary hyperideal of R, then P / J is a $\phi_{n}-2$-absorbing primary hyperideal of R / J.

Proof. Assume that P is a $\phi_{n}-2-$ absorbing primary hyperideal of R. Let $a, b, c \in R$ such that $(a+J) \star(b+J) \star(c+$ $J) \in P / J-(P / J)^{n}$. Since $J \subseteq P$, we have $a \bullet b \cdot c \subseteq P-P^{n}$. Thus, $a \bullet b \subseteq P$ or $a \bullet c \subseteq \sqrt{P}$ or $b \bullet c \subseteq \sqrt{P}$. Now, $J \subseteq P$ implies $\sqrt{P / J}=\sqrt{P} / J$. Thus, $(a+J) \star(b+J) \subseteq P / J$ or $(a+J) \star(c+J) \subseteq$ \sqrt{P} / J or $(b+J) \star(c+J) \subseteq \sqrt{P} / J$. Hence, P / J is a $\phi_{n}-$ 2 -absorbing primary hyperideal of R / J.

Theorem 3.17 Let $J \subseteq P$ be proper hyperideals of a multiplicative hyperring $(R,+, \bullet)$. If P is a $\phi_{w}-2$-absorbing primary hyperideal of R, then P / J is a $\phi_{w}-2$-absorbing primary hyperideal of R / J.

Proof. Proceed similar as Theorem 3.16.
Definition 3.18 Let ($R,+, \bullet$) be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\phi\}$ be a function, and $I \subseteq J$ be proper hyperideals of R. The proper hyperideal J / I of R / I is called a $\phi_{I}-2$-absorbing primary hyperideal of R / I if whenever $a, b, c \in$ R / I with $a \bullet b \bullet c \subseteq J / I-(\phi(J)+I) / I$ implies $a \bullet b \subseteq J / I$ or $a \cdot c \subseteq \sqrt{J / I}$ or $b \cdot c \subseteq \sqrt{J / I}$.

Theorem 3.19 Let ($R,+, \bullet$) be a strongly distributive multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\emptyset\}$ be a function, J be a proper hyperideal of R. Suppose that I is a proper hyperideal of R with $I \subseteq \phi(J)$. Then, the following assertions are equivalent.
(1) J is a $\phi-2$-absorbing primary hyperideal of R.
(2) J / I is a $\phi_{I}-2$-absorbing primary hyperideal of R / I.
(3) J / I^{n} is a $\phi_{I^{n}}-2$-absorbing primary hyperideal of R / I^{n} for every positive integer $n \geq 1$.

Proof. (1) \Rightarrow (2) Assume that J is a $\phi-2$-absorbing primary hyperideal of R, and let $a, b, c \in R$ such that $(a+I)$ * $(b+I) \star(c+I)=\{x+I: x \in a \cdot b \cdot c\} \subseteq J / I-(\phi(J)+I) / I$. Now, since R is a strongly distributive multiplicative hyperring and I is a hyperideal of R, then R / I is a ring by (Davvaz \&

Leoreanu-Fotea, 2007, Corollary 4.3.6). Thus, $(a+I) \star(b+I) \star$ $(c+I)=a \bullet b \cdot c+I \subseteq J / I-(\phi(J)+I) / I$. Thus, $a \bullet b \bullet c \subseteq$ $J-\phi(J)$. Thus, $a \bullet b \subseteq J$ or $a \bullet c \subseteq \sqrt{J}$ or $b \bullet c \subseteq \sqrt{J}$. Since, $I \subseteq$ $\phi(J) \subseteq J$, we have $\sqrt{J / I}=\sqrt{J} / I$. Thus, $(a+I) \star(b+I) \subseteq J / I$ or $(a+I) \star(c+I) \subseteq \sqrt{J} / I$ or $(b+I) \star(c+I) \subseteq \sqrt{J} / I$. Hence, J / I is a $\phi_{I}-2$-absorbing primary hyperideal of R / I.
(2) \Rightarrow (3) Assume that (2) hold and let $n \geq 1$ be positive integer. Since $I \subseteq \phi(J)$, we have $I^{n} \subseteq I \subseteq \phi(J)$. Suppose that $a, b, c \in R$ with $\left(a+I^{n}\right) \star\left(b+I^{n}\right) \star\left(c+I^{n}\right)=\left\{y+I^{n}: y \in a \bullet\right.$ $b \bullet c\} \subseteq J / I^{n}-\phi\left(J+I^{n}\right) / I^{n}$. Thus, $a \bullet b \cdot c \nsubseteq \phi(J)$. Since $I \subseteq$ $\phi(J)$ and $a \bullet b \cdot c \nsubseteq \phi(J)$, we have $a \bullet b \bullet c \nsubseteq I$. Thus, $(a+I)$ * $(b+I) \star(c+I) \subseteq J / I-\phi(J+I) / I$. Since $\sqrt{J} / I=\sqrt{J / I^{n}}=\sqrt{J} /$ I^{n} and J / I is a $\phi_{I}-2$-absorbing primary hyperideal of R, we conclude that $a \bullet b \subseteq J$ or $a \bullet c \subseteq \sqrt{J}$ or $b \bullet c \subseteq \sqrt{J}$. Thus, $a \bullet$ $b+I^{n} \subseteq J / I^{n}$ or $a \cdot c+I^{n} \subseteq \sqrt{J} / I^{n}$ or $b \cdot c+I^{n} \subseteq \sqrt{J} / I^{n}$. Note that I^{n} is a hyperideal of R and R is a strongly distributive multiplicative hyperring, so R / I^{n} is a ring.
(3) \Rightarrow (1) Assume that (3) hold and let $n=1$. Assume that $a, b, c \in R$ with $a \bullet b \bullet c \subseteq J-\phi(J)$. Since, $I \subseteq \phi(J)$, then $a \bullet$ $b \cdot c \nsubseteq I$. Since, $I \subseteq \phi(J) \subset J$, we have $(a+I) \star(b+I) \star(c+$ $I)=a \bullet b \cdot c+I \subseteq J / I-\phi(J) / I$. Since, $\sqrt{J / I}=\sqrt{J} / I$ and J / I is a $\phi_{I}-2$-absorbing primary hyperideal of R, we conclude that $a \cdot b \subseteq J$ or $a \bullet c \subseteq \sqrt{J}$ or $b \cdot c \subseteq \sqrt{J}$. Hence, J is a $\phi-$ 2 -absorbing primary hyperideal of R.

The proof of the next result is easily verified, and thus we omit the proof.

Lemma 3.20 Let ($R,+, \bullet$) be a strongly distributive multiplicative hyperring and $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function. Set $R /\{\varnothing\}=R$, and let J be a proper hyperideal of R. Then, J is a prime (primary, 2 -absorbing primary, respectively) hyperideal of R if and only if $J / \phi(J)$ is a prime (primary, 2 -absorbing primary, respectively) hyperideal of $R / \phi(J)$.

Theorem 3.21 Let $(R,+, \bullet)$ be a multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, and I be a proper hyperideal of R. Then, the following assertions are equivalent.
(1) I is a ϕ-primary hyperideal of R.
(2) For each $a \in R-\sqrt{I},\left(I:_{R} a\right)=I \cup \quad\left(\phi(I):_{R} a\right)$.
(3) For each $a \in R-\sqrt{I}$, either $\left(I I_{R} a\right)=I$ or $\left(I I_{R} a\right)=$ $\left(\phi(I):_{R} a\right)$.

Proof. (1) \Rightarrow (2) Assume that I is a ϕ-primary hyperideal of R. Clearly, $I \cup\left(\phi(I):_{R} a\right) \subseteq\left(I:_{R} a\right)$. On the other hand, for every $x \in\left(I:_{R} a\right)$, if $x \cdot a \subseteq \phi(I)$, then $x \in\left(\phi(I):_{R} a\right)$. Otherwise, from $x \bullet a \subseteq I-\phi(I)$ and $a \notin \sqrt{I}$, we get $x \in I$. Hence, $\left(I_{R} a\right) \subseteq$ $I \cup \quad\left(\phi(I):_{R} a\right)$.
(2) \Rightarrow (3) It is clear since $\left(I_{R} a\right)$ is a hyperideal of R.
(3) \Rightarrow (1) Assume that $a, b \in R$ with $a \bullet b \subseteq I-\phi(I)$. Obviously, $\left(I_{:_{R}} a\right) \neq\left(\phi(I):_{R} a\right)$. If $a \notin \sqrt{I}$, then by (3), we have $\left(I_{R} a\right)=I$. This implies that $b \in I$, that is I is ϕ-primary hyperideal of R.

Theorem 3.22 Let $(R,+, \bullet)$ be a strongly distributive multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, I be a $\phi-2$-absorbing primary hyperideal of R and P be a hyperideal of R. If $a \bullet b \cdot P \subseteq I-\phi(I)$ and $a \bullet b \nsubseteq I$ for any $a, b \in R$, then $a \cdot P \subseteq \sqrt{I}$ or $b \bullet P \subseteq \sqrt{I}$.

Proof. Assume that $a \bullet P \nsubseteq \sqrt{I}$ and $b \cdot P \nsubseteq \sqrt{I}$ for some $a, b \in R$. Since, $a \bullet P=U \quad a \bullet j_{\alpha} \nsubseteq \sqrt{I}$ and $b \bullet P=U \quad b \bullet$
$j_{\alpha} \nsubseteq \sqrt{I}$ for all $j_{\alpha} \in P$, then there exists j_{α} such that $a \bullet j_{\alpha} \nsubseteq \sqrt{I}$ and $b \bullet j_{\alpha} \nsubseteq \sqrt{I}$. We may assume that $a \bullet j_{1} \nsubseteq \sqrt{I}$ and $b \bullet j_{2} \nsubseteq$ \sqrt{I} for some $j_{1}, j_{2} \in P$. Also, for all j_{α} we have $a \bullet b \bullet j_{\alpha} \subseteq I-$ $\phi(I)$. Since $a \bullet b \bullet j_{1} \subseteq I-\phi(I), a \bullet b \nsubseteq I$ and $a \bullet j_{1} \nsubseteq \sqrt{I}$, we have $b \bullet j_{1} \subseteq \sqrt{I}$. Similarly, since $a \bullet b \bullet j_{2} \subseteq I-\phi(I), a \bullet b \nsubseteq$ I and $b \bullet j_{2} \nsubseteq \sqrt{I}$, we have $a \bullet j_{2} \subseteq \sqrt{I}$. Now, since I is a $\phi-$ 2 -absorbing primary hyperideal of R, whenever $a \bullet b\left(j_{1}+j_{2}\right) \subseteq$ $I-\phi(I)$ and $a \bullet b \nsubseteq I$, we have $a \bullet\left(j_{1}+j_{2}\right) \subseteq \sqrt{I}$ or $b \bullet\left(j_{1}+\right.$ $\left.j_{2}\right) \subseteq \sqrt{I}$. Assume that $a \bullet\left(j_{1}+j_{2}\right)=a \bullet j_{1}+a \bullet j_{2} \subseteq \sqrt{I}$. Since $a \bullet j_{2} \subseteq \sqrt{I}$, we have $a \bullet j_{1} \subseteq \sqrt{I}$ a contradiction. Similarly, let $b \bullet$ $\left(j_{1}+j_{2}\right)=b j_{1}+b \bullet j_{2} \subseteq \sqrt{I}$. Since $b \bullet j_{1} \subseteq \sqrt{I}$, we have $b \bullet j_{2} \subseteq$ \sqrt{I}, a contradiction. Thus, $a \bullet P \subseteq \sqrt{I}$ or $b \bullet P \subseteq \sqrt{I}$.

Theorem 3.23 Let $(R,+, \bullet)$ be a strongly distributive multiplicative hyperring, $\phi: L(R) \rightarrow L(R) \cup\{\varnothing\}$ be a function, and I be a proper hyperieal of R. Then, I is a $\phi-2$-absorbing primary hyperideal of R if and only if $I_{1} \bullet I_{2} \bullet I_{3} \subseteq I-\phi(I)$, then $I_{1} \bullet I_{2} \subseteq I$ or $I_{2} \cdot I_{3} \subseteq \sqrt{I}$ or $I_{1} \cdot I_{3} \subseteq \sqrt{I}$ for any hyperideals I_{1}, I_{2}, I_{3} of R.

Proof. Let I be a $\phi-2$-absorbing primary hyperideal of R, $I_{1} \bullet I_{2} \bullet I_{3} \subseteq I-\phi(I)$ and $I_{1} \bullet I_{2} \nsubseteq I$. Claim that $I_{2} \bullet I_{3} \subseteq \sqrt{I}$ or $I_{1} \bullet I_{3} \subseteq \sqrt{I}$. Assume that $I_{1} \bullet I_{3} \nsubseteq \sqrt{I}$ and $I_{2} \bullet I_{3} \nsubseteq \sqrt{I}$. Thus, there exist $j_{1} \in I_{1}$ and $j_{2} \in I_{2}$ such that $j_{1} \bullet I_{3} \nsubseteq \sqrt{I}$ and $j_{2} \bullet I_{3} \nsubseteq$ \sqrt{I}. By Theorem 3.22, we get $j_{1} \bullet j_{2} \subseteq I$. Since $I_{1} \bullet I_{2} \nsubseteq I$, we have $a \bullet b \nsubseteq I$ for some $a \in I_{1}$ and $b \in I_{2}$. Since $a \bullet b \bullet I_{3} \subseteq$ $I_{1} \bullet I_{2} \bullet I_{3} \subseteq I-\phi(I)$ and $a \bullet b \nsubseteq I$, then by Theorem 3.22, $a \bullet$ $I_{3} \subseteq \sqrt{I}$ or $b \cdot I_{3} \subseteq \sqrt{I}$.

Case (1): Assume that $a \bullet I_{3} \subseteq \sqrt{I}$ and $b \bullet I_{3} \nsubseteq \sqrt{I}$. Since $j_{1} \bullet$ $b \bullet I_{3} \subseteq I_{1} \bullet I_{2} \bullet I_{3} \subseteq I-\phi(I), b \bullet I_{3} \nsubseteq \sqrt{I}$ and $j_{1} \bullet I_{3} \nsubseteq \sqrt{I}$, we have $j_{1} \bullet b \subseteq I$ by Theorem 3.22. Since $\left(a+j_{1}\right) \bullet b \bullet I_{3} \subseteq I_{1} \bullet$ $I_{2} \cdot I_{3} \subseteq I-\phi(I)$ and $b \cdot I_{3} \nsubseteq \sqrt{I}$, we have $\left(a+j_{1}\right) \cdot I_{3} \subseteq \sqrt{I}$ or $\left(a+j_{1}\right) \cdot b \subseteq I$ by Theorem 3.22. Assume that $\left(a+j_{1}\right) \cdot I_{3} \subseteq$ \sqrt{I}. Then for every $j_{3} \in I_{3}$, since R is strongly distributive, we conclude that $\left(a+j_{1}\right) \cdot I_{3}=U\left(a+j_{1}\right) \cdot j_{3}=a \bullet j_{3}+j_{1} \bullet j_{3}=$ $a \bullet I_{3}+j_{1} \bullet I_{3} \subseteq \sqrt{I}$. Since \sqrt{I} is a hyperideal and $a \bullet I_{3} \subseteq \sqrt{I}$, we get $j_{1} \bullet I_{3} \subseteq \sqrt{I}$, a contradiction. Now, suppose that $\left(a+j_{1}\right) \cdot$ $b=a \bullet b+j_{1} \cdot b \subseteq I$. Since I is a hyperideal and $j_{1} \cdot b \subseteq I$, we have $a \bullet b \subseteq I$, a contradiction.

Case (2): Assume that $a \bullet I_{3} \nsubseteq \sqrt{I}$ and $b \bullet I_{3} \subseteq \sqrt{I}$. Then, $a \bullet$ $j_{2} \subseteq I$ by Theorem 3.22. Since $a \bullet\left(b+j_{2}\right) \bullet I_{3} \subseteq I_{1} \cdot I_{2} \bullet I_{3} \subseteq$ $I-\phi(I), a \bullet I_{3} \nsubseteq \sqrt{I}$, we have $a \bullet\left(b+j_{2}\right) \subseteq I$ or $\left(b+j_{2}\right) \cdot I_{3} \subseteq$ \sqrt{I} by Theorem 3.22. Assume that $\left(b+j_{2}\right) \cdot I_{3} \subseteq \sqrt{I}$. Since R strongly distributive, we have $\left(b+j_{2}\right) \cdot I_{3}=U\left(b+j_{2}\right) \cdot j_{3}=$ $b \bullet j_{3}+j_{2} \bullet j_{3}=b \bullet I_{3}+j_{2} \bullet I_{3} \subseteq \sqrt{I}$ for every $j_{3} \in I_{3}$. Since \sqrt{I} is a hyperideal and $b \bullet I_{3} \subseteq \sqrt{I}$, we have $j_{2} \bullet I_{3} \subseteq \sqrt{I}$, a contradiction. Now, assume that $a \bullet\left(b+j_{2}\right)=a \bullet b+a \bullet j_{2} \subseteq$ I. Similarly, since I is a hyperideal and $a \bullet j_{2} \subseteq I$, we have $a \bullet$ $b \subseteq I$, a contradiction.

Case (3): Assume that $a \cdot I_{3} \subseteq \sqrt{I}$ and $b \bullet I_{3} \subseteq \sqrt{I}$. Since $b \bullet$ $I_{3} \subseteq \sqrt{I}$ and $j_{2} \cdot I_{3} \nsubseteq \sqrt{I}$, we have $\left(b+j_{2}\right) \cdot I_{3} \nsubseteq \sqrt{I}$. By Theorem 3.22, we conclude that $j_{1} \bullet\left(b+j_{2}\right)=j_{1} \bullet b+j_{1} \bullet j_{2} \subseteq$ I. Since $j_{1} \bullet j_{2} \subseteq I$ and $j_{1} \bullet b+j_{1} \bullet j_{2} \subseteq I$, we get $b \bullet j_{1} \subseteq I$. Since $a \bullet I_{3} \subseteq \sqrt{I}$ and $j_{1} \bullet I_{3} \nsubseteq \sqrt{I}$, we conclude that $\left(a+j_{1}\right) \cdot$ $I_{3} \nsubseteq \sqrt{I}$. Hence $\left(a+j_{1}\right) \cdot j_{2}=a \bullet j_{2}+j_{1} \bullet j_{2} \subseteq I$ by Theorem 3.22. Since $j_{1} \bullet j_{2} \subseteq I$ and $a \bullet j_{2}+j_{1} \bullet j_{2} \subseteq I$, we have $a \bullet j_{2} \subseteq$ I. Thus, $\left(a+j_{1}\right) \bullet\left(b+j_{2}\right)=a \bullet b+a \bullet j_{2}+b \bullet j_{1}+j_{1} \bullet j_{2} \subseteq I$ which leads to $a \bullet b \subseteq I$ that is a contradiction.

Let $\left(R_{1},+_{1}, \bullet_{1}\right)$ and ($R_{2},+_{2}, \bullet_{2}$) be two multiplicative hyperrings. Recall from (Ardekani \& Davvaz, 2014) that ($R=$ $\left.R_{1} \times R_{2},+, \bullet\right)$ is a multiplicative hyperrings with the operation + and the hyperoperatin - are defined respectively as $(x, y)+$ $(z, t)=\left(x+{ }_{1} z, y+{ }_{2} t\right) \quad$ and $\quad(x, y) \cdot(z, t)=\{(a, b) \in R: a \in$ $\left.x \cdot{ }_{1} z, b \in y \bullet_{2} t\right\}$ for all $(x, y),(z, t) \in R$. Note that each hyperideal of R is the cartesian product of hyperideals of R_{1} and R_{2}, respectively.

Remark 3.24 Let $\left(R_{1},+_{1}, \bullet_{1}\right)$ and $\left(R_{2},+_{2}, \bullet_{2}\right)$ be two multiplicative hyperrings, $\quad R=R_{1} \times R_{2}, \quad \psi_{1}: L\left(R_{1}\right) \rightarrow$ $L\left(R_{2}\right) \cup\{\phi\}$ and $\psi_{2}: L\left(R_{2}\right) \rightarrow L\left(R_{2}\right) \cup\{\phi\}$ be functions, and $\phi=\psi_{1} \times \psi_{2}$. Let $I=I_{1} \times I_{2}$ be a hyperideal of R, where I_{1} and I_{2} are hyperideals of R_{1} and R_{2}, respectively. Suppose that $\psi_{i}\left(I_{i}\right)=\varnothing$ for some $i, 1 \leq i \leq 2$. Then $I-\phi(I)=I$. Hence, $\phi(I)=\emptyset$ if and only if $\psi_{i}\left(I_{i}\right)=\varnothing$ for some $i, 1 \leq i \leq 2$. If $\phi(I)=$ \emptyset, then we set $R / \phi(I)=R$.

Theorem 3.25 Let $\left(R_{1},+_{1}, \bullet_{1}\right)$ and $\left(R_{2},+_{2}, \bullet_{2}\right)$ be two multiplicative hyperrings, $\quad R=R_{1} \times R_{2}, \quad \psi_{1}: L\left(R_{1}\right) \rightarrow$ $L\left(R_{2}\right) \cup\{\varnothing\}$ and $\psi_{2}: L\left(R_{2}\right) \rightarrow L\left(R_{2}\right) \cup\{\varnothing\}$ be functions such that $\psi_{2}\left(R_{2}\right) \neq R_{2}$, and let $\phi=\psi_{1} \times \psi_{2}$. Then, the following assertions are equivalent.
(1) $I_{1} \times R_{2}$ is a $\phi-2$-absorbing primary hyperideal of R.
(2) $I_{1} \times R_{2}$ is a 2 -absorbing primary hyperideal of R.
(3) I_{1} is a 2 -absorbing primary hyperideal of R_{1}.

Proof. Assume that $\psi_{1}\left(I_{1}\right)=\varnothing$ or $\psi_{2}\left(R_{2}\right)=\emptyset$. Then, $\phi\left(I_{1} \times\right.$ $\left.R_{2}\right)=\emptyset$ by Remark 3.24. Hence, (1) $\Leftrightarrow(2) \Leftrightarrow(3)$. Thus, assume that $\phi\left(I_{1} \times R_{2}\right) \neq \emptyset$ and hence, $\psi_{1}\left(I_{1}\right) \neq \emptyset, \psi_{2}\left(R_{2}\right) \neq \emptyset$.
(1) \Rightarrow (2) It is clear that I_{1} is a $\psi_{1}-2$-absorbing primary hyperideal of R_{1}. If I_{1} is a 2 -absorbing primary hyperideal of R_{1}, then we are done. Thus, assume that I_{1} is not a 2 -absorbing hyperideal of R_{1}. Thus, there exist $a, b, c \in R_{1}$ with $a \bullet_{1} b \bullet_{1} c \subseteq$ $\psi_{1}\left(I_{1}\right), a \bullet_{1} b \nsubseteq I_{1}, a \bullet_{1} c \nsubseteq \sqrt{I_{1}}$ and $b \bullet_{1} c \nsubseteq \sqrt{I_{1}}$. Since $\psi_{2}\left(R_{2}\right) \neq$ R_{2}, we have $\left(a, 1_{R_{2}}\right) \cdot\left(b, 1_{R_{2}}\right) \cdot\left(c, 1_{R_{2}}\right) \subseteq I_{1} \times R_{2}-\psi_{1}\left(I_{1}\right) \times$ $\psi_{2}\left(R_{2}\right)$. Then, $a \bullet_{1} b \bullet_{1} c \subseteq I_{1}$. Thus, $a \bullet_{1} b \subseteq I_{1}$ or $a \bullet_{1} c \subseteq \sqrt{I_{1}}$ or $b \bullet_{1} c \subseteq \sqrt{I_{1}}$, a contradiction. Thus, I_{1} is a 2 -absorbing primary hyperideal of R_{1}. Thus, $I_{1} \times R_{2}$ is a 2 -absorbing primary hyperideal of R.
$(2) \Rightarrow(3)$ It is clear.
$(3) \Rightarrow(1)$ It is clear.
Theorem 3.26 Let $\left(R_{1},+_{1}, \bullet_{1}\right)$ and $\left(R_{2},+_{2}, \bullet_{2}\right)$ be two multiplicative hyperrings, $\quad R=R_{1} \times R_{2}, \quad \psi_{1}: L\left(R_{1}\right) \rightarrow$ $L\left(R_{2}\right) \cup\{\varnothing\}$ and $\psi_{2}: L\left(R_{2}\right) \rightarrow L\left(R_{2}\right) \cup\{\varnothing\}$ be functions. Then the ϕ-primes of R have exactly one of the following three types:
(1) $I_{1} \times I_{2}$, where I_{1} is a proper hyperideal of R_{1} with $\psi_{1}\left(I_{1}\right)=I_{1}$ and I_{2} is a proper hyperideal of R_{2} with $\psi_{2}\left(I_{2}\right)=I_{2}$;
(2) $I_{1} \times R_{2}$, where I_{1} is a ψ_{1}-prime hyperideal of R_{1} which must be prime hyperideal if $\psi_{2}\left(R_{2}\right) \neq R_{2}$;
(3) $R_{1} \times I_{2}$, where I_{2} is a ψ_{2}-prime hyperideal of R_{2} which must be prime hyperideal if $\psi_{1}\left(R_{1}\right) \neq R_{1}$.

Proof. First of all, note that a hyperideal of R having one of these three types is a ϕ-prime hyperideal of R. Case(1) is clear since $I_{1} \times I_{2}-\phi\left(I_{1} \times I_{2}\right)=\emptyset$. If I_{1} is a prime hyperideal of R_{1}, then $I_{1} \times R_{2}$ is a prime hyperideal of R and hence $I_{1} \times R_{2}$ is a ϕ-prime hyperideal of R. So, assume that I_{1} is a ψ_{1}-prime hyperideal of R_{1} and $\psi_{2}\left(R_{2}\right) \neq R_{2}$. Suppose that $\left(a_{1}, a_{2}\right) \cdot$ $\left(b_{1}, b_{2}\right) \subseteq I_{1} \times R_{2}-\psi_{1}\left(I_{1}\right) \times \psi_{2}\left(R_{2}\right)=I_{1} \times R_{2}-\psi_{1}\left(I_{1}\right) \times R_{2}=$ $\left(I_{1}-\psi_{1}\left(I_{1}\right)\right) \times R_{2} . \quad$ Then, $\quad a_{1} \bullet_{1} b_{1} \subseteq I_{1}-\psi_{1}\left(I_{1}\right) \Rightarrow a_{1} \in$
I_{1} or $b_{1} \in I_{1}$, so $\left(a_{1}, a_{2}\right) \subseteq I_{1} \times R_{2}$ or $\left(b_{1}, b_{2}\right) \subseteq I_{1} \times R_{2}$. Thus, $I_{1} \times R_{2}$ is a ϕ-prime hyperideal of R. The proof of case (3) is similar. Next, assume that $I_{1} \times I_{2}$ is a ϕ-prime hyperideal of R. Let $a \cdot \bullet_{1} \subseteq I_{1}-\psi_{1}\left(I_{1}\right)$. Then, $\left(a, 0_{R_{1}}\right) \cdot\left(b, 0_{R_{2}}\right)=\left(a \cdot{ }_{1} b, 0_{R_{2}}\right) \subseteq$ $I_{1} \times I_{2}-\phi\left(I_{1} \times I_{2}\right)$. Thus, $\left(a, 0_{R_{1}}\right) \subseteq I_{1} \times I_{2}$ or $\left(b, 0_{R_{2}}\right) \subseteq I_{1} \times$ I_{2}, i.e., $a \in I_{1}$ or $b \in I_{1}$. Thus, I_{1} is a ψ_{1}-prime hyperideal of R_{1}. Likewise, I_{2} is a ψ_{2}-prime hyperideal of R_{2}. Assume that $I_{1} \times$ $I_{2} \neq \psi_{1}\left(I_{1}\right) \times \psi_{2}\left(I_{2}\right)$. Say $I_{1} \neq \psi_{1}\left(I_{1}\right)$. Let $x \in I_{1}-\psi_{1}\left(I_{1}\right)$. Let $y \in I_{2}$. Then, $\left(x, 1_{R_{2}}\right) \bullet\left(1_{R_{1}}, y\right) \subseteq I_{1} \times I_{2}$. Thus, $\left(x, 1_{R_{2}}\right) \subseteq I_{1} \times$ I_{2} or $\left(1_{R_{1}}, y\right) \subseteq I_{1} \times I_{2}$. Hence $I_{2}=R_{2}$ or $I_{1}=R_{1}$. Assume that $I_{2}=R_{2}$. So, $I_{1} \times R_{2}$ is a ϕ-prime hyperideal of R, where I_{1} is a ψ_{1}-prime hyperideal of R_{1}. It remains to show that if $\psi_{2}\left(R_{2}\right) \neq$ R_{2}, then I_{1} is actually prime hyperideal of R_{1}. Let $a \bullet_{1} b \subseteq I_{1}$. Now $1_{R_{2}} \not \psi_{2}\left(R_{2}\right)$. Then, $\left(a, 1_{R_{2}}\right) \cdot\left(b, 1_{R_{2}}\right) \subseteq I_{1} \times I_{2}-\phi\left(I_{1} \times\right.$ I_{2}), so $\left(a, 1_{R_{2}}\right) \subseteq I_{1} \times I_{2}$ or $\left(b, 1_{R_{2}}\right) \subseteq I_{1} \times I_{2}$, that is, $a \in I_{1}$ or $b \in I_{2}$.

Conclusion

Here, we represented a new form of multiplicative hyperring theory. We discussed and proved new theorems in this area. We investigated the relation between the $\phi-2$-absorbing primary hyperideals and the 2 -absorbing primary hyperideals. Also, we dedicated the study to hyperideals of product of multiplicative hyperrings. We can extend the notion of $\phi-2$-absorbing primary hyperideals to the notion of $\phi-2$-absorbing quasi primary hyperideals in the next work.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The author declares that there is no conflict of interest regarding the publication of this article.

Acknowledgements

The author is grateful to the anonymous referee for his/her helpful comments and suggestions aimed at improving this paper.

References

Ameri, R., \& Norouzi, M. (2013), New fundamental relation of hyperrings, European Journal of Combinatorics, 34(5), 884-891.

Ameri, R., Kordi, A. \& Hoskova-Mayerova, S. (2017), Multiplicative hyperring of fractions and coprime hyperideals, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 25(1), 5-23.

Anbarloei, M. (2017), On 2 -absorbing and 2 -absorbing primary hyperideals of a multiplicative hyperring, Cogent Mathematics, 4, 1-8.
Ardekani, L. K. \& Davvaz, B. (2014), Differential multiplicative hyperrings, Journal of Algebraic Systems, 2(1), 21-35.
Asokkumar, A. \& Velrajan, M. (2012), A radical property of hyperrings, Italian Journal of Pure and Applied Mathematics, 29, 301-308.

Corsinig, S. (1993), Prolegomena of hypergroup theory, second edition, Italy: Aviani editor.

Cristea, I. \& Jancic-Rasovic, S. (2013), Composition hyperrings, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 21 (2), 81-94.
Dasgupta, U. (2012), On prime and primary hyperideals of a multiplicative hyperring, Analele stiintifice ale Universitatii "Alexandru loan Cuza" din lasi. Matematica (SERIE NOUA), 58(1), 19-36.
Davvaz, B. \& Leoreanu-Fotea, V. (2007), Hyperring theory and applications, U.S.A.: International Academic Press.
Krasner, M. (1983), A class of hyperrings and hyperfields, International Journal of Mathematics and Mathematical Sciences, 6(2), 307-312.
Marty, F. (1934), Sur une generalization de la notion de groupe, eighth congres des Mathematiciens Scandivanes, Stockholm, 45-49.
Omidi, S. \& Davvaz, B. (2017), Contribution to study special kinds of hyperideals in ordered semihyperrings, Journal of Taibah University for Science, 11(6), 1083-1094.

Procesi, R. \& Rota, R. (1999), On some classes of hyperstructures, Discrete Mathematics, Vol. 208/209, 485-497.
Rota, R. (1990), Strongly distributive multiplicative hyperrings, Journal of Geometry, 39, 130-138.
Rota, R. (1982), Sugli iperanelli moltiplicativi, Rend. Di Mat., Series VII, 2(4), 711-724.

[^0]: 1 Department of Mathematics, Faculty of Applied Science, Al-Aqsa University, Gaza, Palestine
 *Corresponding author: ma.hmodeh@alaqsa.edu.ps

