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Introduction 

The hypergroup notion was introduced in 1934 by Marty 

(Marty, 1934) at the 8th Congress of Scandinavian 

Mathematicians. He defined the hypergroups as a generalization 

of groups. Later on, many researchers have done many papers 

in this field. They investigated that the theory of hyperstructures 

have many applications in pure and applied mathematics, for 

more details, see (Corsinig, 1993), Cristea & Jancic-Rasovic, 

2013), (Davvaz & Leoreanu-Fotea, 2007) and (Omidi & Davvaz, 

2017). Similar to hypergroups, hyperrings are algebraic 

structures more general than rings. Hyperrings were introduced 

and studied by many authors, see for example (Ameri & Norouzi, 

2013), and (Asokkumar & Velrajan, 2012). There are many types 

of hyperrings. A well-known type of a hyperrig, called the Krasner 

hyperring, where the addition is a hyperoperation, while the 

multiplicative is an ordinary binary operation. For more study on 

this type of hyperrings, we refer to (Krasner, 1983), and (Rota, 

1982). Another important type of a hyperring, called the 

multiplicative hyperring, obtained by considering the 

multiplication as a hyperoperation while the addition is an 

operation. This type of hyperring was introduced by Rota (Rota, 

1982).  A general type of hyperring, where both the addition and 

multiplication are hypeoperations can be found in (Davvaz & 

Leoreanu-Fotea, 2007). The notion of primeness of hyperideal in 

a multiplicative hyperring was conceptualized by Procesi and 

Rota (Procesi & Rota, 1999). Dasgupta introduced the concepts 

of prime and primary hyperideals in multiplicative hyrerrings 

(Dasgupta, 2012). The notion of 2 −absorbing and 2 −absorbing 

primary hyperideals in multiplicative hyperrings have been 

introduced and studied by Anbarloei (Anbarloei, 2017). The 

objective of this paper is to construct more accurate results and 

concepts regarding multiplicative hyperrings. In fact the 

motivation of writing this paper is two folded: 

(1) To extend the concepts of prime, primary, 2 −absorbing and 

2 −absorbing primary hyperideals in multiplicative 

hyperrings to the concepts of 𝜙 −prime, 𝜙 −primary, 𝜙 −
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2 −absorbing, and 𝜙 − 2 −absorbing primary hyperideals 

respectively. 

(2) To introduce the concepts of hyperideals of direct product of 

multiplicative hyperrings and how to classify them among 

absorbing hyperideals. The remains of this paper are 

organized as follows: Section 2 concerns some basic 

definitions and results in the sequel of this paper. In section 

3, the main results concerning generalizations of 

2 −absorbing primary hyperideals will be given.  Section 4 

concerns the conclusion.  

Preliminary Notes 

In this section we state some basic concepts and results 

related to hyperring theory. We hope that this will improve the 

readability and understanding of this paper. 

In a classical algebraic structure, the composition of two 

elements is an element, while in an algebraic hyperstructure, the 

composition of two elements is a set.  Let 𝐻 be a non empty set 

and ℙ∗(𝐻) be the family of all nonempty subsets of 𝐻. As in 

(Davvaz & Leoreanu-Fotea, 2007),   a hyperoperation • on 𝐻 is 

a mapping •:𝐻 ×  𝐻 ⟶ ℙ∗(𝐻). The couple (𝐻,•) is called a 

hypergroupoid. If 𝐴, 𝐵 ∈ ℙ∗(𝐻) and 𝑥 ∈  𝐻, then we define 𝐴 •

 𝐵 = ⋃𝑎∈ 𝐴,𝑏∈ 𝐵 𝑎 •  𝑏, 𝐴 •  𝑥 = 𝐴 • {𝑥} and 𝑥 •  𝐵 = {𝑥} •  𝐵 . The 

notions of semihypergroups, quasihypergroups and 

hypergroups are defined in (Davvaz & Leoreanu-Fotea, 2007) as 

follows. A hypergroupoid (𝐻,•) is called a semihypergroup if for 

all 𝑎, 𝑏, 𝑐 of 𝐻 we have (𝑎 •  𝑏) •  𝑐 = 𝑎 • (𝑏 •  𝑐), which means 

that ⋃𝑢∈ 𝑎• 𝑏 𝑢 •  𝑐 = ⋃𝑣∈ 𝑏• 𝑐 𝑎 •  𝑣. A hypergroupoid (𝐻,•) is 

called a quasihypergroup if for all 𝑎 of 𝐻 we have 𝑎 •  𝐻 = 𝐻 =

𝐻 •  𝑎.(It is also called the reproduction axiom). A hypergroupoid 

(𝐻,•) which is both a semihypergroup and a quasihypergroup is 

called a hypergroup. Recall from (Davvaz & Leoreanu-Fotea, 

2007) that a triple (𝑅, +,•) is called a multiplicative hyperring if 

(1) (𝑅, +) is an abelian group; 

(2) (𝑅,•) is a semihypergroup; 
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(3) for all 𝑎, 𝑏, 𝑐 ∈  𝑅, we have 𝑎 • (𝑏 + 𝑐) ⊆  𝑎 •  𝑏 + 𝑎 •  𝑐 and 

(𝑏 + 𝑐) •  𝑎 ⊆  𝑏 •  𝑎 + 𝑐 •  𝑎; 

(4) for all 𝑎, 𝑏, 𝑐 ∈  𝑅, we have 𝑎 • (−𝑏) = (−𝑎) •  𝑏 = −(𝑎 •  𝑏). 

If in (3) we have equalities instead of inclusions, then we say 

that the multiplicative hyperring is strongly distributive. 

A multiplicative hyperring (𝑅,+,•) is said to be commutative 

if 𝑅 is commutative with respect to hyperoperation •. Throughout 

this paper all multiplicative hyperrings are assumed to be 

commutative with absorbing zero; i.e., there exists 0 ∈  𝑅 such 

that 𝑥 = 0 + 𝑥 and 0 ∈  𝑥 • 0 for all 𝑥 ∈  𝑅.  Recall from (Ameri et 

al., 2017), that if (𝑅,+,•) is a multiplicative hyperring, then an 

element 𝑒 ∈  𝑅 is called a left (resp. right) identity if 𝑎 ∈  𝑒 •  𝑎 

(resp. 𝑎 ∈  𝑎 •  𝑒) for 𝑎 ∈  𝑅.  𝑒 is called an identity element if it is 

both left and right identity element.  An element 𝑒 ∈  𝑅 is called a 

left (resp. right) scalar identity if 𝑎 = 𝑒 •  𝑎 (resp. 𝑎 = 𝑎 •  𝑒) for 

𝑎 ∈  𝑅.  𝑒 is called a scalar identity element if it is both left and 

right scalar identity element. If (𝑅, +,•) is a multiplicative 

hyperring with identity 𝑒, then 𝑎 ∈  𝑅 is called a left (resp. right) 

invertible (with respect to 𝑒) if there exists 𝑥 ∈  𝑅 such that 𝑒 ∈

 𝑥 •  𝑎 (resp. 𝑒 ∈  𝑎 •  𝑥).  𝑎 is called invertible if it is both left and 

right invertible.  A multiplicative hyperring (𝑅, +,•) is called 

unitary if it contains an element 𝑢 such that 𝑎 •  𝑢 = 𝑢 •  𝑎 = {𝑎} 

for all 𝑎 ∈  𝑅.  A nonempty subset  𝐻  of a multiplicative hyperring 

(𝑅, +,•) is called a subhyperring of (𝑅, +,•) if (𝐻,+,•) is a 

multiplicative hyperring. In other words, 𝐻 is a subhyperring of 

(𝑅, +,•) if 𝐻 − 𝐻 ⊆  𝐻 and 𝑥 •  𝑦 ⊆  𝐻 for any 𝑥, 𝑦 ∈  𝐻.  A 

nonempty subset  𝐼  of a multiplicative hyperring (𝑅,+,•) is called 

a hyperideal of (𝑅, +,•) if 𝐼 − 𝐼 ⊆  𝐼 and 𝑥 •  𝑟 ⋃  𝑟 •  𝑥 ⊆  𝐼 for 

any 𝑥 ∈  𝐼 and 𝑟 ∈  𝑅. The intersection of two subhyperrings of a 

multiplicative hyperring (𝑅,+,•) is a subhyperring of 𝑅. The 

intersection of two hyperideals of a multiplicative hyperring 

(𝑅, +,•) is a hyperideal of 𝑅. Moreover any intersection of 

subhyperrings of a multiplicative hyperring is a subhyperring, 

and any intersection of hyperideals of a multiplicative hyperring 

is a hyperideal. The hyperideal generated by any subset 𝑆 of 

(𝑅, +,•) is the intersection of all hyperideals of 𝑅 containing 𝑆.  

From (Davvaz & Leoreanu-Fotea, 2007), and (Dasgupta, 2012), 

let 𝐴 and 𝐵 be non empty hyperideals of a multiplicative 

hyperring (𝑅,+,•). 

(1) The sum 𝐴 + 𝐵 is the hyperideal defined by 

𝐴 + 𝐵 = {𝑎 + 𝑏: 𝑎 ∈  𝐴, 𝑏 ∈  𝐵}. 

(2) The product 𝐴 •  𝐵 is the hyperideal defined by 

𝐴 •  𝐵 = ⋃ {∑𝑛𝑖=1  𝑎𝑖 •  𝑏𝑖: 𝑎𝑖 ∈  𝐴, 𝑏𝑖 ∈  𝐵, 𝑛 ∈ ℕ}.  

 (3) The principal hyperideal of 𝑅 generated by an element 𝑎 is 

given by 

< 𝑎 >= {𝑝𝑎: 𝑝 ∈ ℤ} + 

{∑𝑛𝑖=1 𝑥𝑖 +∑
𝑚
𝑗=1 𝑦𝑗 + ∑

𝑙
𝑘=1 𝑧𝑘: ∀ 𝑖, 𝑗, 𝑘, ∃ 𝑟𝑖 , 𝑠𝑗 , 𝑢𝑘 , 𝑡𝑘 ∈  𝑅, 𝑥𝑖 ∈

 𝑟𝑖 •  𝑎, 𝑦𝑗 ∈  𝑎 •  𝑠𝑗 , 𝑧𝑘 ∈  𝑡𝑘 •  𝑎 •  𝑢𝑘}. 

(4) The zero hyperideal is the hyperideal generated by the 

additive identity zero denoted by < 0 > and we have < 0 >=

{∑𝑛𝑖=1 𝑥𝑖 +∑
𝑚
𝑗=1 𝑦𝑗 + ∑

𝑙
𝑘=1 𝑧𝑘: ∀ 𝑖, 𝑗, 𝑘, ∃ 𝑟𝑖 , 𝑠𝑗 , 𝑢𝑘 , 𝑡𝑘 ∈  𝑅, 𝑥𝑖 ∈  𝑟𝑖 •

0, 𝑦𝑗 ∈ 0 • 𝑠𝑗 , 𝑧𝑘 ∈  𝑡𝑘 • 0 •  𝑢𝑘}. 

Recall from (Procesi & Rota, 1999) that a prober hyperideal 

𝐼 of a multiplicative hyperring (𝑅, +,•) is called a prime hyperideal 

of 𝑅 if for any 𝑎, 𝑏 ∈  𝑅, 𝑎 •  𝑏 ⊆  𝐼, then 𝑎 ∈  𝐼 or 𝑏 ∈  𝐼.  From 

(Dasgupta, 2012), let 𝐶 be the class of all finite products of 

elements of a multiplicative hyperring (𝑅, +,•), i.e., 𝐶 = {𝑟1 •  𝑟2 •

. . .•  𝑟𝑛: 𝑟𝑖 ∈  𝑅, 𝑛 ∈ ℕ} ⊆ ℙ
∗(𝑅).  A hyperideal 𝐼 of 𝑅 is called a 

𝐶 −ideal of 𝑅 if  for any 𝐴 ∈  𝐶, 𝐴⋂  𝐼 ≠ ∅ ⟹  𝐴 ⊆  𝐼. The radical 

of 𝐼 denoted by 𝑅𝑎𝑑(𝐼) is the intersection of all prime hyperideals 

of 𝑅 containing 𝐼. If 𝑅 does not have any prime hyperideal 

containing 𝐼, then 𝑅𝑎𝑑(𝐼) = 𝑅. 

Let √𝐼 defined as √𝐼 = {𝑟 ∈  𝑅: 𝑟𝑛 ⊆  𝐼 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℕ}, 

where 𝑟𝑛 = 𝑟 •  𝑟 •. . .•  𝑟⏟        
𝑛−𝑡𝑖𝑚𝑒𝑠

 for any positive integer 𝑛 > 1 and 𝑟1 =

{𝑟}, then by Proposition 3.2. in (Dasgupta, 2012), √𝐼 ⊆  𝑅𝑎𝑑(𝐼). 

The equality holds when 𝐼 is a 𝐶 −ideal of 𝑅.  A hyperideal 𝐼 ≠  𝑅 

of a multiplicative hyperring (𝑅, +,•) is called a primary 

hyperideal of 𝑅 if for any 𝑎, 𝑏 ∈  𝑅, 𝑎 •  𝑏 ⊆  𝐼, then 𝑎 ∈  𝐼 or 𝑏 ∈

√𝐼.  

Recall from (Davvaz & Leoreanu-Fotea, 2007) that a 

homomorphism (resp. good homomorphism) between two 

multiplicative hyperrings (𝑅, +,•) and (𝑅′,+′,• ′) is a map 𝑓: 𝑅 ⟶

 𝑅′ such that for all 𝑥, 𝑦 of 𝑅, we have 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + ′𝑓(𝑦) 

and 𝑓(𝑥 •  𝑦) ⊆  𝑓(𝑥) • ′𝑓(𝑦) (resp. 𝑓(𝑥 •  𝑦) = 𝑓(𝑥) • ′𝑓(𝑦)).  

 The kernel of 𝑓 is the inverse image of < 0 >, the hyperideal 

generated by the zero in 𝑅′ and is denoted by 𝐾𝑒𝑟(𝑓).  From 

(Davvaz & Leoreanu-Fotea, 2007), let (𝑅, +,•) be a multiplicative 

hyperring and 𝐼 be a hyperideal of 𝑅. The usual addition of cosets 

and multiplication defined as: 

(𝑎 + 𝐼) ⋆ (𝑏 + 𝐼) = {𝑐 + 𝐼: 𝑐 ∈  𝑎 •  𝑏} on the set 𝑅/𝐼 = {𝑎 +

𝐼: 𝑎 ∈  𝑅} of all cosets of 𝐼. Then, (𝑅/𝐼, +,⋆) is a multiplicative 

hyperring and it is strongly distributive if 𝑅 is so.  

Recall from (Anbarloei, 2017) that a prober hyperideal 𝐼 of a 

multiplicative hyperring (𝑅,+,•) is called a 2 −absorbing 

(resp. 2 −absorbing primary) hyperideal of 𝑅 if 𝑎 •  𝑏 •  𝑐 ⊆  𝐼, 

then 𝑎 •  𝑏 ⊆  𝐼 or 𝑏 •  𝑐 ⊆  𝐼 or 𝑎 •  𝑐 ⊆  𝐼 (resp. 𝑎 •  𝑏 ⊆  𝐼 or 𝑏 •

 𝑐 ⊆ √𝐼 or 𝑎 •  𝑐 ⊆ √𝐼 ) for any 𝑎, 𝑏, 𝑐 ∈  𝑅.  

Results and Discussion 

We start by the following definitions.  

Definition 3.1 Let (𝑅, +,•) be a multiplicative hyperring , 

𝐿(𝑅) be the lattice of all hyperideals of 𝑅 and 𝜙: 𝐿(𝑅) ⟶

 𝐿(𝑅)⋃ {∅} be a function.   

(1) A proper hyperideal 𝐼 of 𝑅 is called a 𝜙 −prime hyperideal 

of 𝑅 if whenever 𝑎, 𝑏 ∈  𝑅 with 𝑎 •  𝑏 ⊆  𝐼 − 𝜙(𝐼),  then 𝑎 ∈  𝐼 or 

𝑏 ∈  𝐼. 

(2) A proper hyperideal 𝐼 of 𝑅 is called a 𝜙 −primary 

hyperideal of 𝑅 if whenever 𝑎, 𝑏 ∈  𝑅 with 𝑎 •  𝑏 ⊆  𝐼 − 𝜙(𝐼),  then 

𝑎 ∈  𝐼 or 𝑏 ∈  √𝐼. 

 (3) A proper hyperideal 𝐼 of 𝑅 is called a 𝜙 − 2 −absorbing 

hyperideal of 𝑅 if whenever 𝑎, 𝑏, 𝑐 ∈  𝑅 with •  𝑏 •  𝑐 ⊆  𝐼 − 𝜙(𝐼) , 

then 𝑎 •  𝑏 ⊆  𝐼 or 𝑎 •  𝑐 ⊆  𝐼 or 𝑏 •  𝑐 ⊆  𝐼. 

(4) A proper hyperideal 𝐼 of 𝑅 is called a 𝜙 − 2−absorbing 

primary hyperideal of 𝑅 if whenever 𝑎, 𝑏, 𝑐 ∈  𝑅 with 𝑎 •  𝑏 •  𝑐 ⊆

 𝐼 − 𝜙(𝐼), then 𝑎 •  𝑏 ⊆  𝐼 or 𝑎 •  𝑐 ⊆ √𝐼 or 𝑏 •  𝑐 ⊆ √𝐼.  

Definition 3.2 Let (𝑅, +,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅) ⟶  𝐿(𝑅)⋃ {∅} be a function, and 𝐼 be a 𝜙 −

2 −absorbing primary hyperideal of 𝑅. Then,   

(1) If 𝜙(𝑃) = ∅ for every 𝑃 ∈  𝐿(𝑅), then we say that 𝜙 = 𝜙∅, 

and 𝐼 is called a 𝜙∅ − 2 −absorbing primary hyperideal of 𝑅, and 

hence 𝐼 is a 2 −absorbing primary hyperideal of 𝑅. 

(2) If 𝜙(𝑃) = 𝑃 for every 𝑃 ∈  𝐿(𝑅), then we say that 𝜙 = 𝜙1 

and 𝐼 is called a 𝜙1 − 2 −absorbing primary hyperideal of 𝑅. 

(3) If 𝑛 ≥ 2 a positive integer and 𝜙(𝑃) = 𝑃𝑛 for every 𝑃 ∈

 𝐿(𝑅), then we say that 𝜙 = 𝜙𝑛 and 𝐼 is called a 𝜙𝑛 −
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2 −absorbing primary hyperideal of 𝑅. In the case that 𝑛 = 2, we 

say that 𝜙 = 𝜙2 and 𝐼 is called an almost−2 −absorbing primary 

hyperideal of 𝑅. 

(4) If 𝜙(𝑃) = ⋂∞𝑛=1  𝑃
𝑛 for every 𝑃 ∈  𝐿(𝑅), then we say that 

𝜙 = 𝜙𝑤 and 𝐼 is called a 𝜙𝑤 − 2 −absorbing primary hyperideal 

of 𝑅.  

Remark 3.3   

(1) As 𝐼 − 𝜙(𝐼) = 𝐼 − (𝐼 ⋂ 𝜙(𝐼)), so we may assume that 

𝜙(𝐼) ⊆  𝐼. 

(2) Given two functions 𝜓1, 𝜓2: 𝐿(𝑅) ⟶  𝐿(𝑅)⋃ {∅}, we say 

that 𝜓1 ≤ 𝜓2 if 𝜓1(𝑃) ⊆ 𝜓2(𝑃) for each 𝑃 ∈  𝐿(𝑅). Thus, one can 

be easily seen that 𝜙∅ ≤ 𝜙𝑤 ≤. . . ≤ 𝜙𝑛+1 ≤ 𝜙𝑛 ≤. . . ≤ 𝜙2 ≤ 𝜙1. 

(3) Every 𝜙 −prime hyperideal of a multiplicative hyperring 𝑅 

is 𝜙 −primary hyperideal of 𝑅. 

(4) It is clear that every 𝜙 − 2 −absorbing hyperideal is a 𝜙 −

2 −absorbing primary hyperideal. 

(5) It is clear that every 𝜙 −primary hyperideal is a 𝜙 −

2 −absorbing primary hyperideal.  

The following example shows that a 𝜙 − 2 −absorbing 

primary hyperideal need not be 𝜙 − 2 −absorbing hyperideal.  

Example 3.4  Let 𝑅 be the ring 𝑍 under ordinary addition and 

multiplication. For any 𝑎, 𝑏 ∈  𝑅, we define the hyperoperation 𝑎 •

 𝑏 = {2𝑎𝑏, 3𝑎𝑏}. Then, 𝑅 = (ℤ,+,•) is a multiplicative hyperring. 

Let 𝐻 = 12ℤ = {12𝑛: 𝑛 ∈ ℤ} be a subset of 𝑅. Then, 𝐻 is a 𝜙𝑛 −

2 −absorbing primary hyperideal of 𝑅 that is not 𝜙𝑛 −

2 −absorbing hyperideal of  ∀ 𝑛 ≥ 2. 

The following example shows that a 𝜙 − 2 −absorbing 

primary hyperideal need not be 𝜙 −primary hyperideal.  

Example 3.5 Consider the multiplicative hyperring ℤ define 

in Example 3.4.The hyperideal 12ℤ = {12𝑛: 𝑛 ∈ ℤ} is a 𝜙𝑛 −

2 −absorbing primary hyperideal of ℤ ∀ 𝑛 ≥ 2. However, 12ℤ is 

not 𝜙𝑛 −primary hyperideal of ℤ. 4 • 3 ⊆ 12ℤ − 𝜙∅(12ℤ) = 12ℤ 

and 4 ∈ 12ℤ, 3𝑛 ⊈ 12ℤ∀ 𝑛 ≥ 2. Also, 3 ∈ 12ℤ, 4𝑛 ⊆ 12ℤ∀ 𝑛 ≥ 2. 

Therefore, 12ℤ is not 𝜙𝑛 −primary hyperideal of ℤ. 

Now, we give the following diagram which clarifies the place 

of 𝜙 − 2−absorbing primary hyperideal in the lattice of all 

hyperideals 𝐿(𝑅) of 𝑅. 

prime hyperideal ⟹ 𝜙 −prime hyperideal ⟹ 𝜙 −

2 −absorbing hyperideal ⟹ 𝜙 − 2−absorbing primary 

hyperideal.  

Proposition 3.6 Let 𝐼 be a proper hyperideal of a 

multiplicative hyperring (𝑅,+,•) and let 𝜓1, 𝜓2: 𝐿(𝑅) ⟶

 𝐿(𝑅)⋃ {∅} with 𝜓1 ≤ 𝜓2. If 𝐼 is a 𝜓1 − 2 −absorbing primary 

hyperideal of 𝑅, then 𝐼 is a 𝜓2 − 2 −absorbing primary hyperideal 

of 𝑅.  

Proof. Assume that 𝐼 is a 𝜓1 − 2 −absorbing primary 

hyperideal of 𝑅 and let 𝑎, 𝑏, 𝑐 ∈  𝑅 with 𝑎 •  𝑏 •  𝑐 ⊆  𝐼 − 𝜓2(𝐼). 

Now, 𝑎 •  𝑏 •  𝑐 ⊆  𝐼 − 𝜓2(𝐼) ⊆  𝐼 − 𝜓1(𝐼). Therefore, 𝐼 is a 𝜓2 −

2 −absorbing primary hyperideal of 𝑅.  

 Now, we need the following definition.  

Definition 3.7 A proper hyperideal 𝐼 of a multiplicative 

hyperring (𝑅,+,•) is called an idempotent if 𝐼 = 𝐼2.  

Theorem 3.8 Let 𝐼 be a proper hyperideal of a multiplicative 

hyperring (𝑅,+,•). Then the following assertions hold. 

(1) If 𝐼 is a 2 −absorbing primary hyperideal of 𝑅, then 𝐼 is a 

𝜙𝑤 − 2 −absorbing primary hyperideal of 𝑅.  

(2) If 𝐼 is a 𝜙𝑤 − 2−absorbing primary hyperideal of 𝑅, then 

𝐼 is a 𝜙𝑛+1 − 2 −absorbing primary hyperideal of 𝑅 for every 

positive integer 𝑛 ≥ 2. 

(3) If 𝐼 is a 𝜙𝑛+1 − 2 −absorbing primary hyperideal of 𝑅, then 

𝐼 is a 𝜙𝑛 − 2 −absorbing primary hyperideal of 𝑅 for every 

positive integer 𝑛 ≥ 2. 

(4) If 𝐼 is a 𝜙𝑛 − 2 −absorbing primary hyperideal of 𝑅 for 

every positive integer 𝑛 ≥ 2, then 𝐼 is almost 2 −absorbing 

primary hyperideal of 𝑅. 

(5) If 𝐼 is an idempotent hyperideal of 𝑅, 𝑡ℎ𝑒𝑛  𝐼 is a 𝜙𝑤 −

2 −absorbing primary hyperideal of 𝑅 and 𝐼 is a 𝜙𝑛 −

2 −absorbing primary hyperideal of 𝑅 for every positive integer 

𝑛 ≥ 1. 

(6) If 𝐼 = √𝐼, then 𝐼 is a 𝜙𝑛 − 2 −absorbing primary 

hyperideal of 𝑅 if and only if 𝐼 is a 𝜙𝑛 − 2 −absorbing hyperideal 

of 𝑅. 

(7) 𝐼 is a 𝜙𝑛 − 2 −absorbing primary hyperideal of 𝑅 for every 

positive integer 𝑛 ≥ 2 if and only if 𝐼 is a 𝜙𝑤 − 2 −absorbing 

primary hyperideal of 𝑅. 

(8) If 𝐼 is a 𝜙 − primary hyperideal of 𝑅 and 𝜙(√𝐼) = √𝜙(𝐼), 

then √𝐼 is a 𝜙 −prime hyperideal of 𝑅. 

  Proof.   

(1-4) Follow directly from Proposition 3.6. 

(5) Assume that 𝐼 is an idempotent hyperideal of 𝑅. Then, 

𝐼 = 𝐼𝑛 for every positive integer 𝑛 ≥ 1. Thus, 𝜙𝑤(𝐼) = ⋂
∞
𝑛=1  𝐼

𝑛 =

𝐼. Thus, we are done. 

(6) Since, √√𝐼 = √𝐼, we are done. 

(7) Assume that 𝐼 is a 𝜙𝑛 − 2 −absorbing hyperideal of 𝑅 and 

let 𝑎, 𝑏, 𝑐 ∈  𝑅 with 𝑎 •  𝑏 •  𝑐 ⊆  𝐼 − ⋂∞𝑛=1  𝐼
𝑛. Thus, 𝑎 •  𝑏 •  𝑐 ⊆

 𝐼 − 𝐼𝑛 for some positive integer 𝑛 ≥ 2. Now, 𝐼 is a 𝜙𝑛 −

2 −absorbing primary hyperideal of 𝑅 implies that 𝑎 •  𝑏 ⊆  𝐼 or 

𝑏 •  𝑐 ⊆ √𝐼 or 𝑎 •  𝑐 ⊆ √𝐼. The converse is clear from parts 

(1), (2). 

(8) Proceed similar as (6).  

  Lemma 3.9 Let (𝑅, +,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, 𝐼 be a 𝜙 −prime 

hyperideal of 𝑅 and 𝐽 be a subset of 𝑅. For any 𝑎 ∈  𝑅, 𝑎 •  𝐽 ⊆

 𝐼 − 𝜙(𝐼) and 𝑎 ∈  𝐼, implies that 𝐽 ⊆  𝐼.  

Proof. Let 𝑎 ∈  𝑅, 𝑎 •  𝐽 ⊆  𝐼 − 𝜙(𝐼) and 𝑎 ∈  𝐼. Thus, 𝑎 •  𝐽 =

⋃  𝑎 •  𝑗𝑖 ⊆  𝐼 − 𝜙(𝐼) for all 𝑗𝑖 ∈  𝐽. Then, 𝑎 •  𝑗𝑖 ⊆  𝐼 − 𝜙(𝐼) for all 

𝑗𝑖 ∈  𝐽. Since 𝐼 is a 𝜙 −prime hyperideal of 𝑅 and 𝑎 ∈  𝐼, we 

conclude that 𝑗𝑖 ∈  𝐼 for all 𝑗𝑖 ∈  𝐽. Therefore, 𝐽 ⊆  𝐼.  

 Now, we extend Lemma 3.9 to 𝜙 −primary case.  

Lemma 3.10 Let (𝑅,+,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, 𝐼 be a 𝜙 −primary 

hyperideal of 𝑅 and 𝑃 be a subset of 𝑅. For any 𝑎 ∈  𝑅, 𝑎 •  𝑃 ⊆

 𝐼 − 𝜙(𝐼), then either 𝑎 ∈  𝐼 or 𝑃 ⊆ √𝐼.  

Proof. Assume that 𝑎 ∈  𝑅, 𝑎 •  𝑃 ⊆  𝐼 − 𝜙(𝐼) and 𝑎 ∈  𝐼. 

Then, 𝑎 •  𝑃 = ⋃  𝑎 •  𝐽𝛼 ⊆  𝐼 − 𝜙(𝐼) for all 𝐽𝛼 ∈  𝑃. Thus, 𝑎 •

 𝐽𝛼 ⊆  𝐼 − 𝜙(𝐼) for all 𝐽𝛼 ∈  𝑃. Since 𝐼 is a 𝜙 −primary hyperideal 

of 𝑅 and 𝑎 ∈  𝐼, we conclude that 𝐽𝛼 ∈ √𝐼 for all 𝐽𝛼 ∈  𝑃. Therefore, 

𝑃 ⊆  𝐼.  

Theorem 3.11 Let (𝑅,+,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, 𝐼 be a 𝜙 −prime 

hyperideal of 𝑅, and 𝐴 and 𝐵 are subsets of 𝑅. If 𝐴 •  𝐵 ⊆  𝐼 −

𝜙(𝐼), then 𝐴 ⊆  𝐼 or 𝐵 ⊆  𝐼.  
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Proof. Assume that 𝐴 •  𝐵 ⊆  𝐼 − 𝜙(𝐼), 𝐴 ⊈  𝐼, and 𝐵 ⊈  𝐼. 

Since, 𝐴 •  𝐵 = ⋃  𝑥𝑖 •  𝑦𝑖 ⊆  𝐼 − 𝜙(𝐼), then 𝑥𝑖 • 𝑦𝑖 ⊆  𝐼 − 𝜙(𝐼) 

for all 𝑥𝑖 ∈  𝐴 and 𝑦𝑖 ∈  𝐵. Since, 𝐴 ⊈  𝐼 and 𝐵 ⊈  𝐼, then there 

exist 𝑎, 𝑏 ∈  𝐼 for some 𝑎 ∈  𝐴 and 𝑏 ∈  𝐵. Thus, 𝑎 •  𝑏 ⊆  𝐴 •  𝐵 ⊆

 𝐼 − 𝜙(𝐼). Since 𝑎, 𝑏 ∈  𝐼 and 𝐼 is a 𝜙 −prime hyperideal of 𝑅, then 

𝑎 •  𝑏 ⊈  𝐼, a contradiction. Therefore, 𝐴 ⊆  𝐼 or 𝐵 ⊆  𝐼.  

Theorem 3.12 Let 𝐼 be a proper hyperideal of a multiplicative 

hyperring (𝑅,+,•) and let 𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function. 

If 𝐼 is a 𝜙 −prime hyperideal that is not prime, then 𝐼2 ⊆ 𝜙(𝐼). 

Hence, a 𝜙 −prime hyperideal 𝐼 with 𝐼2 ⊈ 𝜙(𝐼) is prime.  

Proof. Assume that 𝐼2 ⊈ 𝜙(𝐼), we show that 𝐼 is prime 

hyperideal of 𝑅. Let 𝑎, 𝑏 ∈  𝑅 such that 𝑎 •  𝑏 ⊆  𝐼. If 𝑎 •  𝑏 ⊈ 𝜙(𝐼), 

and since 𝐼 is a 𝜙 −prime hyperideal, we have 𝑎 ∈  𝐼 or 𝑏 ∈  𝐼. 

So, assume that 𝑎 •  𝑏 ⊆ 𝜙(𝐼). First, assume that 𝑎 •  𝐼 = ⋃  𝑎 •

 𝑗𝛼 ⊈ 𝜙(𝐼) for all 𝑗𝛼 ∈  𝐼. Thus, there exists 𝑗𝛼 ∈  𝐼 such that 𝑎 •

 𝑗𝛼 ⊈ 𝜙(𝐼). Then, 𝑎 • (𝑏 + 𝑗𝛼) ⊆  𝐼 − 𝜙(𝐼). So, 𝑎 ∈  𝐼 or 𝑏 + 𝑗𝛼 ∈  𝐼 

and hence 𝑎 ∈  𝐼 or 𝑏 ∈  𝐼. So, we can assume that 𝑎 •  𝐼 =

⋃  𝑎 •  𝑗𝛼 ⊆ 𝜙(𝐼) for all 𝑗𝛼 ∈  𝐼. Then, 𝑎 •  𝑗𝛼 ⊆ 𝜙(𝐼) for all 𝑗𝛼 ∈  𝐼. 

Likewise, we can assume that 𝑏 •  𝐼 = ⋃  𝑏 •  𝑗𝛽 ⊆ 𝜙(𝐼) for all 

𝑗𝛽 ∈  𝐼. Then, 𝑏 •  𝑗𝛽 ⊆ 𝜙(𝐼) for all 𝑗𝛽 ∈  𝐼. Since 𝐼2 = ⋃  𝑗𝛼 •  𝑗𝛽 ⊈

𝜙(𝐼) for all 𝑗𝛼 , 𝑗𝛽 ∈  𝐼, then there exist 𝑗𝛼 , 𝑗𝛽 ∈  𝐼 with 𝑗𝛼 •  𝑗𝛽 ⊈

𝜙(𝐼). Then, (𝑎 + 𝑗𝛼) • (𝑏 + 𝑗𝛽) ⊆  𝐼 − 𝜙(𝐼). Since 𝐼 is a 𝜙 −prime 

hyperideal of 𝑅, we conclude that 𝑎 + 𝑗𝛼 ∈  𝐼 or 𝑏 + 𝑗𝛽 ∈  𝐼, and 

hence 𝑎 ∈  𝐼 or 𝑏 ∈  𝐼. Thus, 𝐼 is prime hyperideal of 𝑅.  

Theorem 3.13 Let (𝑅,+,•) be a multiplicative hyperring, 𝐼 be 

a 𝜙 −prime hyperideal of 𝑅 for some 𝜙, and 𝜙(𝐼) ⊆ 𝜙(𝐽) for some 

hyperideal 𝐽 of 𝑅 such that 𝐽 = √𝐽 and 𝐽 ⊂  𝐼. Then, 𝐼 is a prime 

hyperideal of 𝑅.  

Proof. Assume that 𝐼 is not a prime hyperideal of 𝑅. Then, 

𝐼2 ⊆ 𝜙(𝐼) by Theorem 3.12. Hence √𝐼 = √𝜙(𝐼). Since 𝜙(𝐼) ⊆

𝜙(𝐽) ⊆  𝐽 = √𝐽, we have √𝐼 = √𝜙(𝐽) ⊆  𝐽. Thus, 𝐼 ⊆  𝐽, a 

contradiction. Therefore, 𝐼 is a prime hyperideal of 𝑅.  

Theorem 3.14 Let (𝑅,+,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, and 𝐼1 and 𝐼2 be 𝜙 −prime 

hyperideals of 𝑅. If 𝜙(𝐼1) = 𝜙(𝐼2) = 𝜙(𝐼1⋂  𝐼2), then 𝐼1⋂  𝐼2 is 

a 𝜙 − 2 −absorbing hyperideal of 𝑅.  

Proof. Let 𝑎, 𝑏, 𝑐 ∈  𝑅 such that 𝑎 •  𝑏 •  𝑐 ⊆ (𝐼1⋂  𝐼2) −

𝜙(𝐼1⋂  𝐼2), let 𝑎 •  𝑏 ⊈  𝐼1⋂  𝐼2 and 𝑏 •  𝑐 ⊈  𝐼1⋂  𝐼2. Then, 

𝑎, 𝑏, 𝑐 ∈  𝐼1⋂  𝐼2. If 𝑎 ∈  𝐼1⋂  𝐼2, then 𝑎 ∈  𝐼1 and 𝑎 ∈  𝐼2. Since 

𝐼1 and 𝐼2 are hyperideals, we have 𝑎 •  𝑏 ⊆  𝐼1 and 𝑎 •  𝑏 ⊆  𝐼2. 

Then, 𝑎 •  𝑏 ⊆  𝐼1⋂  𝐼2 which is a contradiction. Thus, 

𝑎 ∈  𝐼1⋂  𝐼2. Similarly, 𝑏 ∈  𝐼1⋂  𝐼2 and 𝑐 ∈  𝐼1⋂  𝐼2. We have 

three cases: 

Case (1): 𝑎 ∈  𝐼1 and 𝑎 ∈  𝐼2. Since, 𝑐 ∈  𝐼1⋂  𝐼2, we have 

three cases again. Assume that 𝑐 ∈  𝐼1 and 𝑐 ∈  𝐼2. Since 𝑎 •  𝑏 •

 𝑐 ⊆ (𝐼1⋂  𝐼2) − 𝜙(𝐼1⋂  𝐼2). Then, 𝑎 •  𝑏 •  𝑐 ⊆  𝐼1 − 𝜙(𝐼1). 

Since 𝐼1 is a 𝜙 −prime hyperideal of 𝑅 and 𝑎 •  𝑐 ⊈  𝐼1, 𝑎 •  𝑏 •  𝑐 ⊆

 𝐼1 −𝜙(𝐼1), then 𝑏 ∈  𝐼1 by Lemma 3.9. Thus, 𝑎 •  𝑏 ⊆  𝐼1. 

Similarly, Since 𝐼2 is a 𝜙 −prime hyperideal of 𝑅 and 𝑎 •  𝑐 ⊈  𝐼2, 

𝑎 •  𝑏 •  𝑐 ⊆  𝐼2 −𝜙(𝐼2), we have 𝑏 ∈  𝐼2 by Lemma 3.9. Thus, 𝑎 •

 𝑏 ⊆  𝐼2. Hence, 𝑎 •  𝑏 ⊆  𝐼1⋂  𝐼2, a contradiction. Thus, 𝑐 ∈  𝐼1 

or 𝑐 ∈  𝐼2. Now, assume that 𝑐 ∈  𝐼1 and 𝑐 ∈  𝐼2. Since, 𝐼1 is a 

𝜙 −prime hyperideal of 𝑅 and 𝑎 •  𝑐 ⊈  𝐼1, 𝑎 •  𝑏 •  𝑐 ⊆  𝐼1 − 𝜙(𝐼1), 

we have 𝑏 ∈  𝐼1. Thus, 𝑏 •  𝑐 ⊆  𝐼1. Since, 𝑐 ∈  𝐼2, then 𝑏 •  𝑐 ⊆  𝐼2 

and thus 𝑏 •  𝑐 ⊆  𝐼1⋂  𝐼2, a contradiction. Similarly 𝑐 ∈  𝐼2 and 

𝑐 ∈  𝐼1 lead to a contradiction. Thus, if 𝑎 ∈  𝐼1⋂  𝐼2, then 𝑎 ∈  𝐼1 

or 𝑎 ∈  𝐼2. 

Case (2): 𝑎 ∈  𝐼1 and 𝑎 ∈  𝐼2. We show that 𝑐 ∈  𝐼2. Assume 

that 𝑐 ∈  𝐼2. Since 𝐼2 is a 𝜙 −prime hyperideal of 𝑅, we have 𝑎 •

 𝑐 ⊈  𝐼2. Since, whenever 𝑎 •  𝑏 •  𝑐 ⊆  𝐼2 −𝜙(𝐼2), 𝑎 •  𝑐 ⊈  𝐼2 and 

also 𝐼2 is a 𝜙 −prime hyperideal of 𝑅, then 𝑏 ∈  𝐼2 by Lemma 3.9. 

Thus, 𝑎 •  𝑏 ⊆  𝐼1⋂  𝐼2, a contradiction. Thus, 𝑐 ∈  𝐼2 and we get 

𝑐 ∈  𝐼1. Therefore, 𝑎 •  𝑐 ⊆  𝐼1  ⋂  𝐼2. 

Case (3): Assume that 𝑎 ∈  𝐼2 and 𝑎 ∈  𝐼1, we show that 𝑐 ∈

 𝐼1. Assume that 𝑐 ∈  𝐼1. Since 𝐼2 is a 𝜙 −prime hyperideal of 𝑅, 

then 𝑎 •  𝑐 ⊈  𝐼1. Since, whenever 𝑎 •  𝑏 •  𝑐 ⊆  𝐼1 − 𝜙(𝐼1), 𝑎 •  𝑐 ⊈

 𝐼1 and 𝐼1 is a 𝜙 −prime hyperideal of 𝑅, then 𝑏 ∈  𝐼1 by Lemma 

3.9. Thus, 𝑎 •  𝑏 ⊆  𝐼1⋂  𝐼2, a contradiction. Since, 𝑐 ∈  𝐼1 and 

𝑐 ∈  𝐼1⋂  𝐼2, we have 𝑐 ∈  𝐼2 and hence 𝑎 •  𝑐 ⊆  𝐼1⋂  𝐼2. Thus, 

𝐼1⋂  𝐼2 is a 𝜙 − 2−absorbing hyperideal of 𝑅.  

Example 3.15 Let (ℤ6,⊕ ,⊙ ) be a ring such that the binary 

operations ⊕ ,⊙  defines as follows: 

𝑎 ⊕ 𝑏 and 𝑎 ⊙ 𝑏 are remainder of 
𝑎+𝑏

6
 and 

𝑎.𝑏

6
 where + 

and . are ordinary addition and multiplication for all 𝑎, 𝑏 ∈ ℤ6. For 

𝑎, 𝑏 ∈ ℤ6, we define the hyperoperation 𝑎 • 𝑏 =

{0, 𝑎𝑏, 2𝑎𝑏, 3𝑎𝑏, 4𝑎𝑏, 5𝑎𝑏}. One can easily see that (ℤ6,⊕ ,•) is a 

commutative hyperring. Now, let 𝐼1 = {0} and 𝐼2 = {0, 2, 4}. Then, 

𝐼1⋂  𝐼2 = {0}. Clearly, {0} is a 𝜙𝑛 − 2 −absorbing hyperideal of 

(ℤ6,⊕ ,•) ∀ 𝑛 ≥ 2, but it is not a 𝜙𝑛 − 2−prime hyperideal of 

(ℤ6,⊕ ,•).  

Theorem 3.16 Let 𝐽 and 𝑃 be proper hyperideals of a 

multiplicative hyperring (𝑅,+,•) such that 𝐽 ⊆  𝑃, and let 𝑛 ≥ 2 be 

positive integer. If 𝑃 is a 𝜙𝑛 − 2 −absorbing primary hyperideal 

of 𝑅, then 𝑃/𝐽 is a 𝜙𝑛 − 2−absorbing primary hyperideal of 𝑅/𝐽.  

Proof. Assume that 𝑃 is a 𝜙𝑛 − 2 −absorbing primary 

hyperideal of 𝑅. Let 𝑎, 𝑏, 𝑐 ∈  𝑅 such that (𝑎 + 𝐽) ⋆ (𝑏 + 𝐽) ⋆ (𝑐 +

𝐽) ∈  𝑃/𝐽 − (𝑃/𝐽)𝑛. Since 𝐽 ⊆  𝑃, we have 𝑎 •  𝑏 •  𝑐 ⊆  𝑃 − 𝑃𝑛. 

Thus, 𝑎 •  𝑏 ⊆  𝑃 or 𝑎 •  𝑐 ⊆ √𝑃 or 𝑏 •  𝑐 ⊆ √𝑃. Now, 𝐽 ⊆  𝑃 implies 

√𝑃/𝐽 = √𝑃/𝐽. Thus, (𝑎 + 𝐽) ⋆ (𝑏 + 𝐽) ⊆  𝑃/𝐽 or (𝑎 + 𝐽) ⋆ (𝑐 + 𝐽) ⊆

√𝑃/𝐽 or (𝑏 + 𝐽) ⋆ (𝑐 + 𝐽) ⊆ √𝑃/𝐽. Hence, 𝑃/𝐽 is a 𝜙𝑛 −

2 −absorbing primary hyperideal of 𝑅/𝐽.  

Theorem 3.17 Let 𝐽 ⊆  𝑃 be proper hyperideals of a 

multiplicative hyperring (𝑅,+,•). If 𝑃 is a 𝜙𝑤 − 2 −absorbing 

primary hyperideal of 𝑅, then 𝑃/𝐽 is a 𝜙𝑤 − 2 −absorbing primary 

hyperideal of 𝑅/𝐽.  

Proof. Proceed similar as Theorem 3.16.  

Definition 3.18 Let (𝑅, +,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, and 𝐼 ⊆  𝐽 be proper 

hyperideals of 𝑅. The proper hyperideal 𝐽/𝐼 of 𝑅/𝐼 is called a 

𝜙𝐼 − 2 −absorbing primary hyperideal of 𝑅/𝐼 if whenever 𝑎, 𝑏, 𝑐 ∈

 𝑅/𝐼 with 𝑎 •  𝑏 •  𝑐 ⊆  𝐽/𝐼 − (𝜙(𝐽) + 𝐼)/𝐼 implies 𝑎 •  𝑏 ⊆  𝐽/𝐼 or 

𝑎 •  𝑐 ⊆ √𝐽/𝐼 or 𝑏 •  𝑐 ⊆ √𝐽/𝐼.  

Theorem 3.19 Let (𝑅,+,•) be a strongly distributive 

multiplicative hyperring, 𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, 𝐽 

be a proper hyperideal of 𝑅. Suppose that 𝐼 is a proper 

hyperideal of 𝑅 with 𝐼 ⊆ 𝜙(𝐽). Then, the following assertions are 

equivalent.   

(1) 𝐽 is a 𝜙 − 2 −absorbing primary hyperideal of 𝑅. 

(2) 𝐽/𝐼 is a 𝜙𝐼 − 2−absorbing primary hyperideal of 𝑅/𝐼. 

(3) 𝐽/𝐼𝑛 is a 𝜙𝐼𝑛 − 2 −absorbing primary hyperideal of 𝑅/𝐼𝑛 

for every positive integer 𝑛 ≥ 1.  

 Proof. (1) ⟹ (2) Assume that 𝐽 is a 𝜙 − 2 −absorbing 

primary hyperideal of 𝑅, and let 𝑎, 𝑏, 𝑐 ∈  𝑅 such that (𝑎 + 𝐼) ⋆

(𝑏 + 𝐼) ⋆ (𝑐 + 𝐼) = {𝑥 + 𝐼: 𝑥 ∈  𝑎 •  𝑏 •  𝑐} ⊆  𝐽/𝐼 − (𝜙(𝐽) + 𝐼)/𝐼. 

Now, since 𝑅 is a strongly distributive multiplicative hyperring 

and 𝐼 is a hyperideal of 𝑅, then 𝑅/𝐼 is a ring by (Davvaz & 
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Leoreanu-Fotea, 2007, Corollary 4.3.6). Thus, (𝑎 + 𝐼) ⋆ (𝑏 + 𝐼) ⋆

(𝑐 + 𝐼) = 𝑎 •  𝑏 •  𝑐 + 𝐼 ⊆  𝐽/𝐼 − (𝜙(𝐽) + 𝐼)/𝐼. Thus, 𝑎 •  𝑏 •  𝑐 ⊆

 𝐽 − 𝜙(𝐽). Thus, 𝑎 •  𝑏 ⊆  𝐽 or 𝑎 •  𝑐 ⊆ √𝐽 or 𝑏 •  𝑐 ⊆ √𝐽. Since, 𝐼 ⊆

𝜙(𝐽) ⊆  𝐽, we have √𝐽/𝐼 = √𝐽/𝐼. Thus, (𝑎 + 𝐼) ⋆ (𝑏 + 𝐼) ⊆  𝐽/𝐼 or 

(𝑎 + 𝐼) ⋆ (𝑐 + 𝐼) ⊆ √𝐽/𝐼 or (𝑏 + 𝐼) ⋆ (𝑐 + 𝐼) ⊆ √𝐽/𝐼. Hence, 𝐽/𝐼 is 

a 𝜙𝐼 − 2−absorbing primary hyperideal of 𝑅/𝐼. 

(2) ⟹ (3) Assume that (2) hold and let 𝑛 ≥ 1 be positive 

integer. Since 𝐼 ⊆ 𝜙(𝐽), we have 𝐼𝑛 ⊆  𝐼 ⊆ 𝜙(𝐽). Suppose that 

𝑎, 𝑏, 𝑐 ∈  𝑅 with (𝑎 + 𝐼𝑛) ⋆ (𝑏 + 𝐼𝑛) ⋆ (𝑐 + 𝐼𝑛) = {𝑦 + 𝐼𝑛: 𝑦 ∈  𝑎 •

 𝑏 •  𝑐} ⊆  𝐽/𝐼𝑛 − 𝜙(𝐽 + 𝐼𝑛)/𝐼𝑛. Thus, 𝑎 •  𝑏 •  𝑐 ⊈ 𝜙(𝐽). Since 𝐼 ⊆

𝜙(𝐽) and 𝑎 •  𝑏 •  𝑐 ⊈ 𝜙(𝐽), we have 𝑎 •  𝑏 •  𝑐 ⊈  𝐼. Thus, (𝑎 + 𝐼) ⋆

(𝑏 + 𝐼) ⋆ (𝑐 + 𝐼) ⊆  𝐽/𝐼 − 𝜙(𝐽 + 𝐼)/𝐼. Since √𝐽/𝐼 = √𝐽/𝐼𝑛 = √𝐽/

𝐼𝑛 and 𝐽/𝐼 is a 𝜙𝐼 − 2−absorbing primary hyperideal of 𝑅, we 

conclude that 𝑎 •  𝑏 ⊆  𝐽 or 𝑎 •  𝑐 ⊆ √𝐽 or 𝑏 •  𝑐 ⊆ √𝐽. Thus, 𝑎 •

 𝑏 + 𝐼𝑛 ⊆  𝐽/𝐼𝑛 or 𝑎 •  𝑐 + 𝐼𝑛 ⊆ √𝐽/𝐼𝑛 or 𝑏 •  𝑐 + 𝐼𝑛 ⊆ √𝐽/𝐼𝑛. Note 

that 𝐼𝑛 is a hyperideal of 𝑅 and 𝑅 is a strongly distributive 

multiplicative hyperring, so 𝑅/𝐼𝑛 is a ring. 

(3) ⟹ (1) Assume that (3) hold and let 𝑛 = 1. Assume that 

𝑎, 𝑏, 𝑐 ∈  𝑅 with 𝑎 •  𝑏 •  𝑐 ⊆  𝐽 − 𝜙(𝐽). Since, 𝐼 ⊆ 𝜙(𝐽), then 𝑎 •

 𝑏 •  𝑐 ⊈  𝐼. Since, 𝐼 ⊆ 𝜙(𝐽) ⊂  𝐽, we have (𝑎 + 𝐼) ⋆ (𝑏 + 𝐼) ⋆ (𝑐 +

𝐼) = 𝑎 •  𝑏 •  𝑐 + 𝐼 ⊆  𝐽/𝐼 − 𝜙(𝐽)/𝐼. Since, √𝐽/𝐼 = √𝐽/𝐼 and 𝐽/𝐼 is 

a 𝜙𝐼 − 2−absorbing primary hyperideal of 𝑅, we conclude that 

𝑎 •  𝑏 ⊆  𝐽 or 𝑎 •  𝑐 ⊆ √𝐽 or 𝑏 •  𝑐 ⊆ √𝐽. Hence, 𝐽 is a 𝜙 −

2 −absorbing primary hyperideal of 𝑅.  

The proof of the next result is easily verified, and thus we 

omit the proof.  

Lemma 3.20 Let (𝑅,+,•) be a strongly distributive 

multiplicative hyperring and 𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a 

function. Set 𝑅/{∅} = 𝑅, and let 𝐽 be a proper hyperideal of 𝑅. 

Then, 𝐽 is a prime (primary, 2 −absorbing primary, respectively) 

hyperideal of 𝑅 if and only if 𝐽/𝜙(𝐽) is a prime (primary, 

2 −absorbing primary, respectively) hyperideal of 𝑅/𝜙(𝐽).  

Theorem 3.21 Let (𝑅,+,•) be a multiplicative hyperring, 

𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, and 𝐼 be a proper 

hyperideal of 𝑅. Then, the following assertions are equivalent.   

 (1) 𝐼 is a 𝜙 −primary hyperideal of 𝑅. 

(2) For each 𝑎 ∈  𝑅 − √𝐼, (𝐼:𝑅 𝑎) = 𝐼⋃ (𝜙(𝐼):𝑅 𝑎). 

(3) For each 𝑎 ∈  𝑅 − √𝐼, either (𝐼:𝑅 𝑎) = 𝐼 or (𝐼:𝑅 𝑎) =

(𝜙(𝐼):𝑅 𝑎).  

 Proof. (1) ⟹ (2) Assume that 𝐼 is a 𝜙 −primary hyperideal 

of 𝑅. Clearly, 𝐼 ⋃ (𝜙(𝐼):𝑅 𝑎) ⊆ (𝐼:𝑅 𝑎). On the other hand, for 

every 𝑥 ∈ (𝐼:𝑅 𝑎), if 𝑥 •  𝑎 ⊆ 𝜙(𝐼), then 𝑥 ∈ (𝜙(𝐼):𝑅 𝑎). Otherwise, 

from 𝑥 •  𝑎 ⊆  𝐼 − 𝜙(𝐼) and 𝑎 ∈ √𝐼, we get 𝑥 ∈  𝐼. Hence, (𝐼:𝑅 𝑎) ⊆

 𝐼 ⋃ (𝜙(𝐼):𝑅 𝑎). 

(2) ⟹ (3) It is clear since (𝐼:𝑅 𝑎) is a hyperideal of 𝑅. 

(3) ⟹ (1) Assume that 𝑎, 𝑏 ∈  𝑅 with 𝑎 •  𝑏 ⊆  𝐼 − 𝜙(𝐼). 

Obviously, (𝐼:𝑅 𝑎) ≠ (𝜙(𝐼):𝑅 𝑎). If 𝑎 ∈ √𝐼, then by (3), we have 

(𝐼:𝑅 𝑎) = 𝐼. This implies that 𝑏 ∈  𝐼, that is 𝐼 is 𝜙 −primary 

hyperideal of 𝑅.  

Theorem 3.22 Let (𝑅,+,•) be a strongly distributive 

multiplicative hyperring, 𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, 𝐼 

be a 𝜙 − 2−absorbing primary hyperideal of 𝑅 and 𝑃 be a 

hyperideal of 𝑅. If 𝑎 •  𝑏 •  𝑃 ⊆  𝐼 − 𝜙(𝐼) and 𝑎 •  𝑏 ⊈  𝐼 for any 

𝑎, 𝑏 ∈  𝑅, then 𝑎 •  𝑃 ⊆ √𝐼 or 𝑏 •  𝑃 ⊆ √𝐼.  

Proof. Assume that 𝑎 •  𝑃 ⊈ √𝐼 and 𝑏 •  𝑃 ⊈ √𝐼 for some 

𝑎, 𝑏 ∈  𝑅. Since, 𝑎 •  𝑃 = ⋃  𝑎 •  𝑗𝛼 ⊈ √𝐼 and 𝑏 •  𝑃 = ⋃  𝑏 •

 𝑗𝛼 ⊈ √𝐼 for all 𝑗𝛼 ∈  𝑃, then there exists 𝑗𝛼 such that 𝑎 •  𝑗𝛼 ⊈ √𝐼 

and 𝑏 •  𝑗𝛼 ⊈ √𝐼. We may assume that 𝑎 •  𝑗1 ⊈ √𝐼 and 𝑏 •  𝑗2 ⊈

√𝐼 for some 𝑗1, 𝑗2 ∈  𝑃. Also, for all 𝑗𝛼 we have 𝑎 •  𝑏 •  𝑗𝛼 ⊆  𝐼 −

𝜙(𝐼). Since 𝑎 •  𝑏 •  𝑗1 ⊆  𝐼 − 𝜙(𝐼), 𝑎 •  𝑏 ⊈  𝐼 and 𝑎 •  𝑗1 ⊈ √𝐼, we 

have 𝑏 •  𝑗1 ⊆ √𝐼. Similarly, since 𝑎 •  𝑏 •  𝑗2 ⊆  𝐼 − 𝜙(𝐼), 𝑎 •  𝑏 ⊈

 𝐼 and 𝑏 •  𝑗2 ⊈ √𝐼, we have 𝑎 •  𝑗2 ⊆ √𝐼. Now, since 𝐼 is a 𝜙 −

2 −absorbing primary hyperideal of 𝑅, whenever 𝑎 •  𝑏(𝑗1 + 𝑗2) ⊆

 𝐼 − 𝜙(𝐼) and 𝑎 •  𝑏 ⊈  𝐼, we have 𝑎 • (𝑗1 + 𝑗2) ⊆ √𝐼 or 𝑏 • (𝑗1 +

𝑗2) ⊆ √𝐼. Assume that 𝑎 • (𝑗1 + 𝑗2) = 𝑎 •  𝑗1 + 𝑎 • 𝑗2 ⊆ √𝐼. Since 

𝑎 •  𝑗2 ⊆ √𝐼, we have 𝑎 •  𝑗1 ⊆ √𝐼 a contradiction. Similarly, let 𝑏 •

(𝑗1 + 𝑗2) = 𝑏 𝑗1 + 𝑏 • 𝑗2 ⊆ √𝐼. Since 𝑏 •  𝑗1 ⊆ √𝐼, we have 𝑏 •  𝑗2 ⊆

√𝐼, a contradiction. Thus, 𝑎 •  𝑃 ⊆ √𝐼 or 𝑏 •  𝑃 ⊆ √𝐼.  

Theorem 3.23 Let (𝑅,+,•) be a strongly distributive 

multiplicative hyperring, 𝜙: 𝐿(𝑅)  ⟶  𝐿(𝑅)⋃ {∅} be a function, 

and 𝐼 be a proper hyperieal of 𝑅. Then, 𝐼 is a 𝜙 − 2 −absorbing 

primary hyperideal of 𝑅 if and only if 𝐼1 •  𝐼2 •  𝐼3 ⊆  𝐼 − 𝜙(𝐼), then 

𝐼1 •  𝐼2 ⊆  𝐼 or 𝐼2 •  𝐼3 ⊆ √𝐼 or 𝐼1 •  𝐼3 ⊆ √𝐼 for any hyperideals 

𝐼1, 𝐼2, 𝐼3 of 𝑅.  

Proof. Let 𝐼 be a 𝜙 − 2 −absorbing primary hyperideal of 𝑅, 

𝐼1 •  𝐼2 • 𝐼3 ⊆  𝐼 − 𝜙(𝐼) and 𝐼1 • 𝐼2 ⊈  𝐼. Claim that 𝐼2 •  𝐼3 ⊆ √𝐼 or 

𝐼1 •  𝐼3 ⊆ √𝐼. Assume that 𝐼1 •  𝐼3 ⊈ √𝐼 and 𝐼2 •  𝐼3 ⊈ √𝐼. Thus, 

there exist 𝑗1 ∈  𝐼1 and 𝑗2 ∈  𝐼2 such that 𝑗1 •  𝐼3 ⊈ √𝐼 and 𝑗2 •  𝐼3 ⊈

√𝐼. By Theorem 3.22, we get 𝑗1 •  𝑗2 ⊆  𝐼. Since 𝐼1 •  𝐼2 ⊈  𝐼, we 

have 𝑎 •  𝑏 ⊈  𝐼 for some 𝑎 ∈  𝐼1 and 𝑏 ∈  𝐼2. Since 𝑎 •  𝑏 •  𝐼3 ⊆

 𝐼1 •  𝐼2 •  𝐼3 ⊆  𝐼 − 𝜙(𝐼) and 𝑎 •  𝑏 ⊈  𝐼, then by Theorem 3.22, 𝑎 •

 𝐼3 ⊆ √𝐼 or 𝑏 •  𝐼3 ⊆ √𝐼. 

Case (1): Assume that 𝑎 •  𝐼3 ⊆ √𝐼 and 𝑏 • 𝐼3 ⊈ √𝐼. Since 𝑗1 •

 𝑏 •  𝐼3 ⊆ 𝐼1 •  𝐼2 •  𝐼3 ⊆  𝐼 − 𝜙(𝐼), 𝑏 •  𝐼3 ⊈ √𝐼 and 𝑗1 •  𝐼3 ⊈ √𝐼, we 

have 𝑗1 •  𝑏 ⊆  𝐼 by Theorem 3.22. Since (𝑎 + 𝑗1) •  𝑏 •  𝐼3 ⊆ 𝐼1 •

 𝐼2 •  𝐼3 ⊆  𝐼 − 𝜙(𝐼) and 𝑏 •  𝐼3 ⊈ √𝐼, we have (𝑎 + 𝑗1) •  𝐼3 ⊆ √𝐼 or 

(𝑎 + 𝑗1) •  𝑏 ⊆  𝐼 by Theorem 3.22. Assume that (𝑎 + 𝑗1) •  𝐼3 ⊆

√𝐼. Then for every 𝑗3 ∈  𝐼3, since 𝑅 is strongly distributive, we 

conclude that (𝑎 + 𝑗1) •  𝐼3 = ⋃ (𝑎 + 𝑗1) •  𝑗3 = 𝑎 • 𝑗3 + 𝑗1 •  𝑗3 =

𝑎 • 𝐼3 + 𝑗1 •  𝐼3 ⊆ √𝐼. Since √𝐼 is a hyperideal and 𝑎 •  𝐼3 ⊆ √𝐼, we 

get 𝑗1 • 𝐼3 ⊆ √𝐼, a contradiction. Now, suppose that (𝑎 + 𝑗1) •

 𝑏 = 𝑎 •  𝑏 + 𝑗1 •  𝑏 ⊆  𝐼. Since 𝐼 is a hyperideal and 𝑗1 •  𝑏 ⊆  𝐼, we 

have 𝑎 •  𝑏 ⊆  𝐼, a contradiction. 

Case (2): Assume that 𝑎 •  𝐼3 ⊈ √𝐼 and 𝑏 • 𝐼3 ⊆ √𝐼. Then, 𝑎 •

 𝑗2 ⊆  𝐼 by Theorem 3.22. Since 𝑎 • (𝑏 + 𝑗2) •  𝐼3 ⊆  𝐼1 • 𝐼2 •  𝐼3 ⊆

 𝐼 − 𝜙(𝐼), 𝑎 •  𝐼3 ⊈ √𝐼, we have 𝑎 • (𝑏 + 𝑗2) ⊆  𝐼 or (𝑏 + 𝑗2) •  𝐼3 ⊆

√𝐼 by Theorem 3.22. Assume that (𝑏 + 𝑗2) •  𝐼3 ⊆ √𝐼. Since 𝑅 

strongly distributive, we have (𝑏 + 𝑗2) •  𝐼3 = ⋃ (𝑏 + 𝑗2) •  𝑗3 =

𝑏 • 𝑗3 + 𝑗2 •  𝑗3 = 𝑏 • 𝐼3 + 𝑗2 •  𝐼3 ⊆ √𝐼 for every 𝑗3 ∈  𝐼3. Since √𝐼 

is a hyperideal and 𝑏 •  𝐼3 ⊆ √𝐼, we have 𝑗2 •  𝐼3 ⊆ √𝐼, a 

contradiction. Now, assume that 𝑎 • (𝑏 + 𝑗2) = 𝑎 •  𝑏 + 𝑎 • 𝑗2 ⊆

 𝐼. Similarly, since 𝐼 is a hyperideal and 𝑎 •  𝑗2 ⊆  𝐼, we have 𝑎 •

 𝑏 ⊆  𝐼, a contradiction. 

Case (3): Assume that 𝑎 •  𝐼3 ⊆ √𝐼 and 𝑏 • 𝐼3 ⊆ √𝐼. Since 𝑏 •

 𝐼3 ⊆ √𝐼 and 𝑗2 •  𝐼3 ⊈ √𝐼, we have (𝑏 + 𝑗2) •  𝐼3 ⊈ √𝐼. By 

Theorem 3.22, we conclude that 𝑗1 • (𝑏 + 𝑗2) = 𝑗1 •  𝑏 + 𝑗1 •  𝑗2 ⊆

 𝐼. Since 𝑗1 •  𝑗2 ⊆  𝐼 and 𝑗1 •  𝑏 + 𝑗1 •  𝑗2 ⊆  𝐼, we get 𝑏 •  𝑗1 ⊆  𝐼. 

Since 𝑎 •  𝐼3 ⊆ √𝐼 and 𝑗1 •  𝐼3 ⊈ √𝐼, we conclude that (𝑎 + 𝑗1) •

 𝐼3 ⊈ √𝐼. Hence (𝑎 + 𝑗1) •  𝑗2 = 𝑎 • 𝑗2 + 𝑗1 •  𝑗2 ⊆  𝐼 by Theorem 

3.22. Since 𝑗1 •  𝑗2 ⊆  𝐼 and 𝑎 •  𝑗2 + 𝑗1 •  𝑗2 ⊆  𝐼, we have 𝑎 •  𝑗2 ⊆

 𝐼. Thus, (𝑎 + 𝑗1) • (𝑏 + 𝑗2) = 𝑎 •  𝑏 + 𝑎 • 𝑗2 + 𝑏 • 𝑗1 + 𝑗1 •  𝑗2 ⊆  𝐼 

which leads to 𝑎 •  𝑏 ⊆  𝐼 that is a contradiction. 
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Let (𝑅1 , +1 ,  •1) and (𝑅2 , +2 ,  •2) be two multiplicative 

hyperrings. Recall from (Ardekani & Davvaz, 2014) that (𝑅 =

𝑅1 × 𝑅2 , + ,•) is a multiplicative hyperrings with the operation + 

and the hyperoperatin • are defined respectively as (𝑥, 𝑦) +

(𝑧, 𝑡) = (𝑥+1𝑧, 𝑦+2𝑡) and (𝑥, 𝑦) • (𝑧, 𝑡) = {(𝑎, 𝑏) ∈  𝑅: 𝑎 ∈

 𝑥 •1 𝑧, 𝑏 ∈  𝑦 •2 𝑡} for all (𝑥, 𝑦), (𝑧, 𝑡) ∈  𝑅. Note that each 

hyperideal of 𝑅 is the cartesian product of hyperideals of 𝑅1 and 

𝑅2, respectively. 

Remark 3.24 Let (𝑅1 ,  +1 ,  •1) and (𝑅2 , + 2 ,  •2) be two 

multiplicative hyperrings, 𝑅 = 𝑅1 × 𝑅2, 𝜓1: 𝐿(𝑅1) ⟶

 𝐿(𝑅2)⋃ {∅} and 𝜓2: 𝐿(𝑅2) ⟶  𝐿(𝑅2)⋃ {∅} be functions, and 

𝜙 = 𝜓1 × 𝜓2. Let 𝐼 = 𝐼1 × 𝐼2 be a hyperideal of 𝑅, where 𝐼1 and 

𝐼2 are hyperideals of 𝑅1 and 𝑅2, respectively. Suppose that 

𝜓𝑖(𝐼𝑖) = ∅ for some 𝑖, 1 ≤  𝑖 ≤ 2. Then 𝐼 − 𝜙(𝐼) = 𝐼. Hence, 

𝜙(𝐼) = ∅ if and only if 𝜓𝑖(𝐼𝑖) = ∅ for some 𝑖, 1 ≤  𝑖 ≤ 2. If 𝜙(𝐼) =

∅, then we set 𝑅/𝜙(𝐼) = 𝑅. 

Theorem 3.25 Let (𝑅1 , +1 , •1) and (𝑅2 ,+2 ,  •2) be two 

multiplicative hyperrings, 𝑅 = 𝑅1 × 𝑅2, 𝜓1: 𝐿(𝑅1) ⟶

 𝐿(𝑅2)⋃ {∅} and 𝜓2: 𝐿(𝑅2) ⟶  𝐿(𝑅2)⋃ {∅} be functions such 

that 𝜓2(𝑅2) ≠  𝑅2, and let 𝜙 = 𝜓1 × 𝜓2. Then, the following 

assertions are equivalent. 

(1) 𝐼1 × 𝑅2 is a 𝜙 − 2 −absorbing primary hyperideal of 𝑅. 

(2) 𝐼1 × 𝑅2 is a 2 −absorbing primary hyperideal of 𝑅. 

(3) 𝐼1 is a 2 −absorbing primary hyperideal of 𝑅1.  

 Proof. Assume that 𝜓1(𝐼1) = ∅ or 𝜓2(𝑅2) = ∅. Then, 

𝜙(𝐼1 × 𝑅2) = ∅ by Remark 3.24. Hence, (1) ⟺ (2) ⟺ (3). 

Thus, assume that 𝜙(𝐼1 × 𝑅2) ≠ ∅ and hence, 𝜓1(𝐼1) ≠ ∅, 

𝜓2(𝑅2) ≠ ∅. 

(1) ⟹ (2) It is clear that 𝐼1 is a 𝜓1 − 2 −absorbing primary 

hyperideal of 𝑅1. If 𝐼1 is a 2 −absorbing primary hyperideal of 𝑅1, 

then we are done. Thus, assume that 𝐼1 is not a 2 −absorbing 

hyperideal of 𝑅1. Thus, there exist 𝑎, 𝑏, 𝑐 ∈  𝑅1 with 𝑎 •1 𝑏 •1 𝑐 ⊆

𝜓1(𝐼1), 𝑎 •1 𝑏 ⊈  𝐼1, 𝑎 •1 𝑐 ⊈ √𝐼1 and 𝑏 •1 𝑐 ⊈ √𝐼1. Since 𝜓2(𝑅2) ≠

 𝑅2, we have (𝑎, 1𝑅2) • (𝑏, 1𝑅2) • (𝑐, 1𝑅2) ⊆  𝐼1 × 𝑅2 − 𝜓1(𝐼1) ×

𝜓2(𝑅2). Then, 𝑎 •1 𝑏 •1 𝑐 ⊆  𝐼1. Thus, 𝑎 •1 𝑏 ⊆  𝐼1 or 𝑎 •1 𝑐 ⊆ √𝐼1 

or 𝑏 •1 𝑐 ⊆ √𝐼1, a contradiction. Thus, 𝐼1 is a 2 −absorbing 

primary hyperideal of 𝑅1. Thus, 𝐼1 × 𝑅2 is a 2 −absorbing primary 

hyperideal of 𝑅. 

(2) ⟹ (3) It is clear. 

(3) ⟹ (1) It is clear.  

 Theorem 3.26 Let (𝑅1 ,  +1 ,  •1) and (𝑅2 , +2 ,  •2) be two 

multiplicative hyperrings, 𝑅 = 𝑅1 × 𝑅2, 𝜓1: 𝐿(𝑅1) ⟶

 𝐿(𝑅2)⋃ {∅} and 𝜓2: 𝐿(𝑅2) ⟶  𝐿(𝑅2)⋃ {∅} be functions. Then 

the 𝜙 −primes of 𝑅 have exactly one of the following three types: 

 (1) 𝐼1 × 𝐼2, where 𝐼1 is a proper hyperideal of 𝑅1 with 

𝜓1(𝐼1) = 𝐼1 and 𝐼2 is a proper hyperideal of 𝑅2 with 𝜓2(𝐼2) = 𝐼2; 

(2) 𝐼1 × 𝑅2, where 𝐼1 is a 𝜓1 −prime hyperideal of 𝑅1 which 

must be prime hyperideal if 𝜓2(𝑅2) ≠  𝑅2; 

(3) 𝑅1 × 𝐼2, where 𝐼2 is a 𝜓2 −prime hyperideal of 𝑅2 which 

must be prime hyperideal if 𝜓1(𝑅1) ≠  𝑅1.  

 Proof. First of all, note that a hyperideal of 𝑅 having one of 

these three types is a 𝜙 −prime hyperideal of 𝑅. Case(1) is clear 

since 𝐼1 × 𝐼2 −𝜙(𝐼1 × 𝐼2) = ∅. If 𝐼1 is a prime hyperideal of 𝑅1, 

then 𝐼1 × 𝑅2 is a prime hyperideal of 𝑅 and hence 𝐼1 × 𝑅2 is a 

𝜙 −prime hyperideal of 𝑅. So, assume that 𝐼1 is a 𝜓1 −prime 

hyperideal of 𝑅1 and 𝜓2(𝑅2) ≠  𝑅2. Suppose that (𝑎1, 𝑎2) •

(𝑏1, 𝑏2) ⊆  𝐼1 × 𝑅2 − 𝜓1(𝐼1) × 𝜓2(𝑅2) = 𝐼1 × 𝑅2 −𝜓1(𝐼1) × 𝑅2 =

(𝐼1 −𝜓1(𝐼1)) × 𝑅2. Then, 𝑎1 •1 𝑏1 ⊆ 𝐼1 − 𝜓1(𝐼1) ⟹ 𝑎1 ∈

 𝐼1 𝑜𝑟 𝑏1 ∈  𝐼1, so (𝑎1, 𝑎2) ⊆  𝐼1 × 𝑅2 or (𝑏1, 𝑏2) ⊆  𝐼1 × 𝑅2. Thus, 

𝐼1 × 𝑅2 is a 𝜙 −prime hyperideal of 𝑅. The proof of case (3) is 

similar. Next, assume that 𝐼1 × 𝐼2 is a 𝜙 −prime hyperideal of 𝑅. 

Let 𝑎 •1 𝑏 ⊆  𝐼1 − 𝜓1(𝐼1). Then, (𝑎, 0𝑅1) • (𝑏, 0𝑅2) = (𝑎 •1 𝑏, 0𝑅2) ⊆

 𝐼1 × 𝐼2 − 𝜙(𝐼1 × 𝐼2). Thus, (𝑎, 0𝑅1) ⊆  𝐼1 × 𝐼2 or (𝑏, 0𝑅2) ⊆  𝐼1 ×

 𝐼2, i.e., 𝑎 ∈  𝐼1 or 𝑏 ∈  𝐼1. Thus, 𝐼1 is a 𝜓1 −prime hyperideal of 𝑅1. 

Likewise, 𝐼2 is a 𝜓2 −prime hyperideal of 𝑅2. Assume that 

𝐼1 × 𝐼2 ≠ 𝜓1(𝐼1) × 𝜓2(𝐼2). Say 𝐼1 ≠ 𝜓1(𝐼1). Let 𝑥 ∈  𝐼1 − 𝜓1(𝐼1). 

Let 𝑦 ∈  𝐼2. Then, (𝑥, 1𝑅2) • (1𝑅1 , 𝑦) ⊆  𝐼1 × 𝐼2. Thus, (𝑥, 1𝑅2) ⊆

 𝐼1 × 𝐼2 or (1𝑅1 , 𝑦) ⊆  𝐼1 × 𝐼2. Hence 𝐼2 = 𝑅2 or 𝐼1 = 𝑅1. Assume 

that 𝐼2 = 𝑅2. So, 𝐼1 × 𝑅2 is a 𝜙 −prime hyperideal of 𝑅, where 𝐼1 

is a 𝜓1 −prime hyperideal of 𝑅1. It remains to show that if 

𝜓2(𝑅2) ≠  𝑅2, then 𝐼1 is actually prime hyperideal of 𝑅1. Let 

𝑎 •1 𝑏 ⊆  𝐼1. Now 1𝑅2 ∈ 𝜓2(𝑅2). Then, (𝑎, 1𝑅2) • (𝑏, 1𝑅2) ⊆  𝐼1 ×

 𝐼2 − 𝜙(𝐼1 × 𝐼2), so (𝑎, 1𝑅2) ⊆  𝐼1 × 𝐼2 or (𝑏, 1𝑅2) ⊆  𝐼1 × 𝐼2, that is, 

𝑎 ∈  𝐼1 or 𝑏 ∈  𝐼2.  

Conclusion 

Here, we represented a new form of multiplicative hyperring 

theory. We discussed and proved new theorems in this area. We 

investigated the relation between the 𝜙 − 2 −absorbing primary 

hyperideals and the 2 −absorbing primary hyperideals. Also, we 

dedicated the study to hyperideals of product of multiplicative 

hyperrings. We can extend the notion of 𝜙 − 2 −absorbing 

primary hyperideals to the notion of 𝜙 − 2 −absorbing quasi 

primary hyperideals in the next work. 
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