
73/80
ANUJR-A. Vol 39(1) 2025 Published: An-Najah National University, Nablus, Palestine

An-Najah University Journal for Research – A

Natural Sciences

A Comparison of Heuristic Algorithms for Solving the Traveling

Salesman Problem

Younes Khdeir1 & Ahmed Awad1,*
Received: 25th Sep. 2023. Accepted 1th Sep. 2024, Published: 1th Feb. 2025, DOI: 10.35552/anujr.a.39.1.2301

Abstract: The Traveling Salesman Problem (TSP) is a challenging computational problem
in combinatorial optimization that aims to visit all cities exactly once and return to the first
city. Despite that numerous theoretical solutions have been proposed in the literature,
finding the exact optimal solution remains computationally infeasible due to the NP-hard
nature of the problem. To address this, many heuristic and optimization approaches have
been developed to generate probabilistic results that are often approximations. This paper
presents a comparison between four popular algorithms: steepest ascent hill climbing,
simulated annealing, genetic algorithm with partially matched crossover, and Particle
Swarm Optimization (PSO). The study examines how these algorithms can solve the TSP
and avoid local minimum values while achieving a balance between research exploration
and exploitation for an optimal solution. For a relatively large number of cities, the simulated
annealing algorithm and genetic algorithm produce promising results whilst the genetic
algorithm takes longer time to execute due to the iterative application of its variation
operators.

Keywords: Traveling Salesman Problem (TSP), Simulated Annealing (SA), Genetic algorithm (GA), Particle Swarm Optimization (PSO)

INTRODUCTION

The Traveling Salesman Problem (TSP) is a combinatorial

optimization problem that belongs to the class of Non-Polynomial

(NP) NP-hard problems. The problem involves determining the

shortest possible route that visits each city exactly once and

returns to the origin city, given a list of cities and the distances

between each pair of cities. Due to its theoretical significance in

computer science and operations research, TSP has been the

focus of extensive research in optimization algorithms, graph

theory, and computational complexity [1]. The TSP is widely

recognized as one of the most extensively researched

optimization problems, serving as a benchmark for evaluating

many optimization methods. Despite its computational

complexity, TSP has been widely used in various fields in

computer science, specifically in artificial intelligence, to find the

most efficient path for transferring data between different nodes.

The solutions to the TSP problem are not only applicable to the

problem per se but also can be translated into various

combinatorial optimization problems [2]. Therefore, algorithms

that can efficiently solve TSP are highly desirable. Such

algorithms are critical for achieving optimal routes while

minimizing the time and cost of transportation, network

optimization, and hardware optimization [3–5]. The TSP has

been a topic of research for several decades, with numerous

theoretical solutions proposed. The brute-force approach of

testing every possible solution is straightforward, but it can be

computationally intractable and time-consuming, especially for

large problem sizes where exact solutions are often unattainable

due to the limitations of computer resources. Although no exact

algorithm is known to solve the TSP in polynomial time,

heuristics and optimization-based methods are often employed

1 Department of Information Technology, Faculty of Engineering and Information Technology, An-Najah National University, Nablus, Palestine.
younes.khdeir@gmail.com
*Corresponding author email: ahmedawad@najah.edu

to produce satisfactory, albeit sub-optimal, solutions. As the

worst-case run time of any TSP algorithm can grow in a factorial

time with the number of cities, there is a constant need for novel

and efficient algorithms to solve the problem [3]. The local search

Hill Climb algorithm is employed to find the best solution by

moving uphill toward the peak of the problem. The algorithm

evaluates neighboring states in proximity to the current state until

reaching a local optima [6]. Simulated Annealing (SA) algorithm

has been utilized as well by incorporating temperature and

cooling ratio parameters to vary the probability of movement

between points in the search space, allowing exploration of a

larger area of the search space. Similarly, the Genetic Algorithm

(GA) is utilized to diversify the search space by creating new

solutions through crossover and mutation. The key objective is

to strike a balance between exploration and exploitation to obtain

the optimal solution in the least possible time and cost.

Additionally, the Particle Swarm Optimization (PSO) algorithm,

inspired by social behavior, provides an advantage of rapid

convergence to a nearly optimal solution through an efficient

population-based approach that explores the search space [7].

The paper focuses on solving the TSP with different

algorithms. In Addition, it evaluates their effectiveness in finding

the shortest path for N cities of various sizes. Furthermore, we

introduce a modified version of the Simulated Annealing (SA)

algorithm that enhances its speed and improves its results. To

represent the distances between cities, a fully connected one-

way graph data structure is used. The number of iterations for

An - Najah Univ. J. Res. (N. Sc.) Vol. 00 (0), 2023 46 each

algorithm is adjusted based on the search space size. Finally, a

comparison is conducted between the evaluated algorithms. Our

https://journals.najah.edu/journal/anujr-a/details/
https://doi.org/10.35552/anujr.a.39.1.2301
mailto:younes.khdeir@gmail.com

74/80
Younes Khdeir & Ahmed Awad A Comparison of Heuristic Algorithms for Solving the ……

contributions are summarized as follows: • We conduct a

comparison in terms of performance of four algorithms to solve

the TSP including: Steep Hill Climb, Simulated Annealing (SA),

Genetic Algorithm, and Particle Swarm Optimization (PSO). • We

propose an enhanced version of the SA algorithm to solve the

TSP and validate its performance. • Both the cost and the

runtime for each algorithm is evaluated on a set of benchmarks

with varying sizes. The rest of the paper is structured as follows:

In Section II, prior research on this topic is discussed. Section III

provides a summary of the formulation and representation of the

TSP. Section IV proposes a methodology that utilizes four

algorithms to solve the TSP. Section V presents the experimental

results and analysis. Finally, conclusions drawn from the findings

and potential future work are presented in Section VI.

Revious Work: Various approaches have been explored in

the field of solving the TSP using optimization algorithms, as

observed by previous studies. For instance, the researchers

utilized the Steep Hill Climb algorithm to find optimal solutions for

TSP problems, but the algorithm was found to be less effective

for larger benchmarks [8]. A modified Simulated Annealing (SA)

algorithm for TSP has been proposed to outperform quantum

annealing algorithms using Leap hybrid solver from D-Wave

Systems [9]. Other self-adaptive heuristics-based adjustment

strategies optimize the routing of autonomous transportation

systems in the context of dynamic and stochastic orienteering

problem formulated as TSP. The proposed strategies outperform

a static meta-heuristic algorithm in terms of solution quality [10].

An application of the asymmetric TSP to model a small

restaurant’s cooking process has been proposed. In this context,

enhanced versions of the migrating bird’s optimization algorithm

are found to outperform both the original Migrating Bird’s

Optimization (MBO) and the simulated annealing algorithm [11].

Other works have employed the GA to solve TSP problems and

noted that the crossover and mutation techniques employed in

GA helped to explore the search space and diversify the

population, making it effective for even larger-sized problems [4].

A new approach to solve the TSP by incorporating sub-tour

division inspired by genetic algorithms. The simulation results on

the traveling distance between cities in India show that the new

approach provides a more accurate and robust solution than

alternative methods [5]. The work published in [12] investigates

the application of Particle Swarm Optimization (PSO) to the

structural optimization design of composite materials for ships.

The study uses experimental and comparative methods to

analyze the optimization of ship composite material structure and

shows promising results with high calculation accuracy. In this

paper, we present a comprehensive overview of the latest

findings and advancements in the field of TSP optimization

algorithms, which have been developed by researchers

worldwide. We summarize and compare the results of these

algorithms and provide insights into their strengths and

limitations. Furthermore, we propose an enhanced SA algorithm

to solve the TSP. All algorithms are evaluated in terms of their

cost and the runtime.

Problem Formulation: TSP is a mathematical problem

whose goal is to find the shortest path between a set of points

and locations that must be visited once and back to the starting

point. The topology of the cities is represented as a weighted

graph G where each vertex represents a city and a weight

represents the distance between two cities in the topology. The

key objective is to find the optimal tour in terms of time and cost.

To solve the TSP, we must first determine the following:

Solution Representation: The traveling salesman problem

is a permutation problem in which the goal is to find the shortest

path between N different cities, which is referred to as the tour.

Thus, we represent each tour as a permutation of integers,

where each integer denotes a city number in the graph. For

example, consider the graph depicted in Fig 1 which consists of

7 cities. An example of a solution representation is [6, 7, 4, 5, 1,

2, 3]. This representation indicates a tour starts with city 6 and

then returns to this city.

Figure (1): a graph with 7 nodes (cities) fully connected.

Evaluation function: We strive to find solutions that

minimize total cost while also shortening the time it takes to find

a solution. A solution P is evaluated in terms of the path length it

takes from the starting city to the end city within the path,

denoted by eval(P), which is formulated in eq.(1), wherein (xi ,

yi) denotes a pair of cities that belongs to P, and dist(xi , yi)

represents the distance between city xi and city yi in the

topology.

𝑒𝑣𝑎𝑙(𝑃) = ∑ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑦𝑖)

∀(𝑥,𝑦)∈𝑃

 (1)

Thus, The TSP is formulated as an optimization problem given

in eq.(2), where S represents the search space, the set of all

permutations to solve the problem. Notice that the search space

size is (N − 1)!/2, given that the graph is undirected.

minimize P∈S eval(P) (2)

& \𝑢𝑛𝑑𝑒𝑟𝑠𝑒𝑡{𝑃 ∈ 𝑆}{"{𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒}}& & Ⅎr{𝑒𝑣𝑎𝑙}(𝑃) \\

75/80
ANUJR-A. Vol 39(1) 2025 Published: An-Najah National University, Nablus, Palestine

Neighborhood: We define a neighbor to a solution by

swapping two adjacent cities in the permutation. For

instance, given the permutation [1, 7, 2, 6, 4, 5, 3], some

of the neighboring solutions are: [7, 1, 2, 6, 4, 5, 3] [1, 2,

7, 6, 4, 5, 3] [1, 7, 6, 2, 4, 5, 3] [1, 7, 2, 4, 6, 5, 3] [1, 7, 2,

6, 5, 4, 3]. The TSP problem, when tackled with brute

force, exhibits an factorial time complexity of O(n!), with n

representing the city count. As the factorial growth rate is

exceptionally high, this approach becomes infeasible for

larger city sets. Consequently, we turn to alternative

exploration methods to swiftly obtain optimal solutions.

The TSP problem, when tackled with brute force, exhibits an

factorial time complexity of O(n!), with n representing the city

count. As the factorial growth rate is exceptionally high, this

approach becomes infeasible for larger city sets. Consequently,

we turn to alternative exploration methods to swiftly obtain

optimal solutions.

PROPOSED METHODOLOGY: In order to find the best

solution to the TSP problem, we use several algorithms,

including hill climbing, Simulated Annealing (SA), the Genetic

Algorithm (GA), as well as a Particle Swarm Optimization (PSO)

algorithm. Proper comparisons of their results are then

conducted.

Hill-Climbing Algorithm: A hill climbing algorithm is a local

search algorithm that moves uphill in order to find the top of the

hill or the best solution to the problem. It comes to an end when

it reaches a point where no neighbor has a higher value. A hill

climbing algorithm node has two components: state and value.

When a good heuristic is available, hill climbing is commonly

used. We don’t need to maintain and manage the search tree or

graph in this algorithm because it only keeps a single current

state [13]. After reviewing various hill-climbing algorithms, the

steepest hill-climbing algorithm was chosen for implementation

in the TSP problem. This algorithm selects the optimal neighbor

from among all possible neighbors and advances to a better

current state. Each iteration examines a new local area at

random, following the prescribed termination condition. The

starting point in the hill climbing algorithm impacts the algorithm’s

performance. Furthermore, this algorithm might suffer the flat

and shoulder problem. To resolve those issues, we have

modified the algorithm in such a way that the best previously

selected neighbour is repeatedly returned to the algorithm within

the same iteration.

Simulated Annealing (SA) Algorithm: SA is an algorithm

utilized to avoid being stuck at a local minimum or sub optimal

solution. This algorithm chooses a random move rather than the

best move. If a random move improves the condition, it takes the

same path as before. Otherwise, the algorithm takes the path

with a probability of less than one given in eq.(3) [14]. In this

formula: P(vn) denotes the probability of accepting the new

solution vn, eval(vc) represents the evaluation (cost) of the

current solution vc whilst eval(vn) denotes the evaluation (cost)

of the new solution vn, and T denotes the current temperature.

𝑃(𝑣𝑛) =
1

1 + 𝑒
𝑒𝑣𝑎𝑙(𝑣𝑐)−𝑒𝑣𝑎𝑙(𝑐𝑛)

𝑇

 (3)

Figure (2): Flowchart of the Simulated Annealing algorithm for
solving the TSP problem.

The moving direction must be determined probabilistically in

each step in order to avoid becoming trapped in a local optimum

and to progress toward the global optimum. While the search

process is progressing and approaching the final result, the size

of the search step must be reduced. This allows to move quickly

in the beginning and slowly in the end. The SA method requires

that the search be continued until a good-enough solution is

found or the stopping criteria are met. Furthermore, this method

is sensitive to how its parameters, such as the search step and

moving direction, are defined and tuned. Because the SA

method is a heuristic search algorithm, it is sensitive to its

starting point in the search space. A parameter T is also used to

calculate the probability. It is analogous to the temperature in an

annealing system. Uphill movements are more likely at higher T

values. They become increasingly unlikely as T approaches

zero, and the SA becomes hill climbing. T in a SA optimization

problem begins high and gradually decreases according to the

annealing schedule. To find the best solution when using the SA

algorithm, it is critical to carefully select and tune the following

parameters as shown in Fig 2:

https://journals.najah.edu/journal/anujr-a/details/

76/80
Younes Khdeir & Ahmed Awad A Comparison of Heuristic Algorithms for Solving the ……

1. The initial temperature. We typically start with a relatively

high temperature and gradually reduce it to allow the

algorithm to perform as much exploration as possible.

2. Termination Condition: The number of iterations is selected

to be proportional to the number of cities. Such selection is

essential to allow the algorithm to converge faster for a

small-sized topology.

3. The cooling ratio: The temperature drops gradually,

shrinking by 10% after each termination condition.

4. The frozen temperature: We have modified the algorithm to

enhance the speed of exploration, prevent being trapped in

local minima, and address convergence issues in each

iteration. In order to expedite the search and learning

process, we’ve implemented the following modifications:

Control the decaying in the upper temperature towards the

lower temperature. Introduce a variable value, which is

initially set to be twice the number of cities. This variable

decreases with each trial where no solution is accepted. The

rate at which this variable decrease is tied to the reduction

of the freezing temperature, ultimately reaching the desired

level when the variable reaches zero.

Genetic Algorithm (GA): The GA handles a population of

possible solutions. Each solution is represented by a

chromosome, which is merely an abstract representation. A set

of reproduction factors is applied directly to the chromosomes,

and they are used to perform mutations and recombination on

the problem solutions in order to obtain the greatest variety of

solutions and explore as much of the search space as possible

without becoming stuck in the local minima[15].

Following the implementation of the GA algorithm, efforts

were made to adjust and treat the following factors in order to

achieve good results:

Initialization

The genetic algorithm process begins with the generation of

a population of solutions. Each of the solutions is referred to as

a chromosome. A chromosome contains or is defined by a set of

parameters known as genes (cities). Using our algorithm

implementation, we generated a random set of N solutions,

which we call population. It is derived from the number of cities.

Here are some examples:

a. Gene: The solution’s gene, City ID (6), is a chromosomal

element.

b. Chromosomes: [6, 7, 4, 5, 1, 2, 3]

c. Population: [1, 7, 2, 6, 4, 5, 3] [7, 1, 2, 6, 4, 5, 3] [1, 2, 7, 6,

4, 5, 3] [1, 7, 6, 2, 4, 5, 3]

Fitness Assignment

The fitness function is used to assess a solution’s ability to

compete with other solutions. Solutions are evaluated based on

their fitness function at each iteration. This degree also

influences the likelihood of reproductive selection. The greater

the fitness score, the greater the likelihood of reproductive

selection. As previously stated, the problem’s evaluation function

is the sum of the distances between all cities. The evaluation

function was converted into probability to calculate the fitness

function with normalization. Thus, given a solution P, the fitness

value of this solution is inversely proportional to its evaluation

(the total distance), as given in eq.(4).

𝑓(𝑃) =
1

𝑒𝑣𝑎𝑙(𝑃)
 (4)

Selection

The selection phase involves the selection of individuals to

reproduce offspring. The selected individuals are then arranged

in pairs of two to increase reproduction. These individuals then

pass on their genes to the next generation. There are several

types of selection methods available. In our work, we have

selected a roulette wheel to select pairs of solutions based on a

fitness function, It is also called fitness proportionate selection,

since the probability to select a solution P , denoted by P rob(P),

is proportional to its fitness value, as given in eq.(5), wherein, the

sum of probabilities for all solutions in the population Spop is

utilized to normalize the probability. [16].

𝑃𝑟𝑜𝑏(𝑃) =
𝑓(𝑃)

∑ 𝑓(𝑃𝑖)∀𝑃𝑖∈𝑆𝑝𝑜𝑝

 (5)

Reproduction

The reproduction stepchild after the selection process. Two

distinct factors play a role in changing the genetic makeup of the

next generation in this step.

Crossover: The intersection is crucial in the reproductive

stage of the genetic algorithm. The crossover operator mixes the

genetic information of two current-generation parents to create a

new individual which represents the offspring. The mixing nature

is determined by the crossover mechanism. There are many

types of crossovers to solve the traveling salesman problem, the

most popular of which are order crossover (OX), partially

matched crossover (PMX), and cycle crossover (CX). We have

utilized the PMX in our work because it provides a high level of

diversity and gene exploration while preserving the genes of the

parents [17]. A single individual (a potential solution) might be

selected for mating, and it can potentially mate with itself. PMX

is applied within genetic algorithms through the following

sequence: Start with two initial solutions, two positions are

randomly selected within the permutation of both parents. Then,

proceed to transfer the segment between the specified crossover

positions from one parent to the corresponding positions within

the offspring. To finalize the offspring’s formation, integrate

values from the other parent into the remaining positions,

ensuring no duplication with those already found in the copied

segment from the first parent. As per the research methodology,

this process yields two offspring, inheriting genetic information

from both parents while concurrently broadening the diversity of

potential solutions [18].

An example of a PMX crossover between two parents to

produce offspring is as follows, where | denotes a crossing point:

i. The first parent: [2, 7,| 6, 3, 5,| 1, 4]

ii. The second parent: [5, 2,| 4, 1, 3,| 6, 7]

iii. offspring: [2, 7, 4, 1, 3, 5, 6]

iv. offspring: [1, 2, 6, 3, 5, 4, 7]

Mutation: To maintain population diversity and solve the

problem of early convergence, a mutation agent introduces

random genes into the offspring (a new baby). We manipulated

genes and chromosomes in the TSP problem by swapping city

locations. We examine all permutations in order to find the best

solution, not just switching cities.

Termination

The algorithm concludes its execution either when it reaches

the maximum number of iterations or when it enters the

convergence stage. This convergence stage is characterized by

a distinct lack of diversity among solutions within a single

generation’s reproductive phase.

77/80
ANUJR-A. Vol 39(1) 2025 Published: An-Najah National University, Nablus, Palestine

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a computational

technique inspired by the social behavior of organisms, to

optimize objective functions. PSO algorithm has been effective

in solving various optimization problems, including the Traveling

Salesman Problem (TSP), where each particle represents a

potential solution. The algorithm operates on a population of

particles, each influenced by its own and the swarm’s best

solution found.

Following the implementation of the PSO algorithm, efforts

were made to adjust and treat the following factors in order to

achieve the best results:

1. Particle Initialization: The algorithm starts by initializing a

swarm of particles. Using our algorithm implementation, we

generated a random set of N Particles that is proportional to

the number of cities.

2. Fitness Evaluation: The fitness evaluation is conducted in

PSO for the TSP. Fitness is based on the length of the tour,

with updates made when a new best solution is found Using

the previous Equation 1.

3. Update particles: At each iteration, the particles are updated

by adjusting their velocities and positions based on their

current positions and the best positions found by the swarm.

a. Update Velocity: The velocity adjustment process in

PSO for optimizing objective functions as with Equation

6.

b. Update Position: The position of each particle is then

updated by adding its velocity to its current position as

given in eq. (7). The new position at time (t+1) is updated

by adding the current position (pt) to the velocity (vt) at

time t+1.

𝑣[𝑡 + 1] = 𝑤 ⋅ 𝑣[𝑡] + 𝑐1 ⋅ rand ⋅ (𝑝Best − 𝑝) + 𝑐2

⋅ rand ⋅ (𝑔Best − 𝑝) (6)

pt+1 = p𝑡 + v𝑡 + 1 (7)

The notation used for PSO, where p represents the current

position, v is the current velocity, pBest is the best position found

by the particle, gBest is the best position found by the swarm,

and the rand is a random variable.

4. PSO Parameters: The PSO algorithm involves tuning

several parameters. In this particular application, the number

of particles and iterations are determined based on the

number of cities. The values of c1 and c2 are both set to 1.5,

while w is set to 0.7, as these parameter values have

demonstrated successful performance in a variety of

optimization problems in the literature.

5. Termination: The algorithm terminates when a stopping

criterion is met, such as a maximum number of iterations.

Experimental Results and Analysis

Python programming language and Jupyter Notebook were

utilized to conduct experiments on various algorithms using

different benchmarks for solving the TSP with varying numbers

of cities. A structured dataset was generated for each number of

cities and used as input for all the algorithms tested. The

experiments were conducted separately for each number of

cities, and the resulting data was processed and analyzed.

The distances were randomly selected from a set of values

categorized as relatively short, medium, or large. To ensure that

all cities were connected to each other, we created a fully

connected unidirectional graph, with equal distances between

cities in both directions. The data was then read and converted

to a data frame using the Pandas library. Additional libraries,

such as NumPy, Random, and Matplotlib, were also utilized in

the analysis. This study addresses the TSP with a large number

of cities, aiming to find the most efficient route for a vendor using

various optimization algorithms.

The results of these algorithms were recorded, including the

number of iterations, time to find the optimal solution, number of

cities, and evaluation function. Table I presents a comprehensive

overview of the recorded results from implementing the

algorithms multiple times with different numbers of cities.The

algorithms included in the comparison are: Steepest Ascent Hill

Climbing (SA-HC) algorithmm, Genetic Algorithm (GA), Particle

Swarm Optimization (PSO) algorithm, the classical Simulated

Annealing (C_SA) algorithm, and the proposed enhanced

version of the SA algorithm (Enhancement SA).

The plots depicted in Fig 3 and Fig. 4 illustrate the

convergence of different optimization algorithms toward optimal

solutions and their ability to surmount local minima for a TSP

benchmark of 100 cities. Our analysis delves first into the

performance of the hill climbing algorithm, which faces

challenges in escaping local optima but yields satisfactory

outcomes with fewer cities. However, when dealing with a larger

number of cities, the algorithm encounters greater difficulty and

becomes trapped in a local minimum, as shown in the

fluctuations in the SA-HC curve in Fig 3. In contrast, the

enhanced simulated annealing algorithm delivers remarkable

results, demonstrating smooth convergence towards the optimal

solution for both small and large city counts. This is evident in

the second set of plot in Fig 3. On the whole, the genetic

algorithm consistently achieves excellent results and performs

similarly to the simulated annealing algorithm in all scenarios.

However, it tends to require more time, especially when dealing

with a larger number of cities, as indicated by the third plot in Fig

3. As for the Particle Swarm Optimization (PSO) algorithm, it

shows promising results with quick convergence when dealing

with fewer cities, but it encounters challenges as the city count

increases. One of the main issues with the PSO algorithm is its

inclination to be confined to a local optimum and its struggle to

escape from it. In summary, most stages lead to achieving the

optimal solution, but there is some variability in the speed and

computational cost associated with each algorithm’s evolution to

reach the solution as shown in Fig.4. The time complexity of

various algorithms is depicted in Fig.4 and Fig.5. All algorithms

exhibit a semi-quadratic time complexity except the enhanced

simulated annealing algorithm which exhibits a semi-linear time

complexity. This reflects remarkable proficiency in discovering

highly efficient solutions within a relatively short time frame,

maintaining consistency across different city counts.

Thus, while optimal solutions were achieved in the majority

of scenarios, as illustrated in Fig.5 and detailed in Table I during

a comparison with the classical simulated annealing algorithm, it

outperformed the latter in terms of achieving optimal solutions

and in the development of the fitness function and the complexity

of the run time. This performance improvement came with only a

marginal difference in execution time.

https://journals.najah.edu/journal/anujr-a/details/

78/80
Younes Khdeir & Ahmed Awad A Comparison of Heuristic Algorithms for Solving the ……

Table (1): A comparison between various algorithms for solving TSP.

Optimization
Algorithm

Fitness Function Evolution Run Rime Complexity (sec)

SA-
HC

GA POS C_SA
Enhancement

SA
SA-HC GA POS C_SA

Enhancement
SA Num

Cities
Max

Iterations

7 21 104 61 61 61 147 0.04 0.47 0.29 0.38 0.13

20 60 208 186 245 241 173 1.9 9.01 5 1.6 1.37

50 150 479 475 757 681 427 70.03 205.02 75.82 7.52 7.19

100 300 1167 918 1880 966 741 1264.21 3272.7 1288.15 33.25 28.87

Figure (3): Convergence curves for different algorithms for a Benchmark of 100 cities. The curves shown (from left to right) represent: hill
climbing algorithm, the enhanced SA algorithm, GA, and the PSO algorithm).

79/80
ANUJR-A. Vol 39(1) 2025 Published: An-Najah National University, Nablus, Palestine

Figure (4): Time complexity for different algorithms (fromt left to right): hill climbing, GA, and PSO.

Figure (5): A comparison between the classical SA and the enhanced SA algorithms in terms of time complexity.

Conclusion and FUTURE WORK: The Traveling Salesman

Problem (TSP) is a computational problem that seeks to

determine the shortest path between multiple points. Numerous

heuristics and optimization techniques have been proposed to

generate probabilistic results for solving this problem. The aim is

to find algorithms that can provide efficient solutions for a large

number of cities, in a timely manner and at a minimal cost. In this

study, we explored several algorithms, including the hill-climbing,

simulated annealing (SA) algorithm, the genetic algorithm with

partially matching cross PMX, and the particle swarm

optimization algorithm. We discussed their ability to solve

optimization problems, avoid local minima, and balance search

exploration and exploitation to find an optimal solution. Our

results show that the SA and genetic algorithms produced

excellent results for a relatively large number of cities. We plan

to introduce other algorithms for comparison in future work.

DISCLOSURE STATEMENT

– Ethics approval and consent to participate: Not applicable.

– Consent for publication: Not applicable.

– Availability of data and materials: Not applicable.

– Author's contribution: The authors confirm contribution to the

paper as follows: study conception and design: Ahmed

Awad, theoretical calculations and modeling: Younes Khdeir;

data analysis and validation|: Younes Khdeir, Ahmed Awad,

manuscript preparation: Younes Khdeir, Ahmed Awad. All

authors reviewed the results and approved the final version

of the manuscript.

https://journals.najah.edu/journal/anujr-a/details/

80/80
Younes Khdeir & Ahmed Awad A Comparison of Heuristic Algorithms for Solving the ……

– Funding: Not applicable.

– Conflicts of interest: The authors declare that there is no

conflict of interest regarding the publication of this article

– Acknowledgements: Not applicable.

REFERENCES

1] Toufik Mzili, Mohammed Essaid Riffi, and Ilyass Mzili.
Artificial rat optimization with decision-making: A bioinspired
metaheuristic algorithm for solving the traveling salesman
problem. Decision Making: Applications in Management and
Engineering, 2023.

2] A Rehash Rushmi Pavitra, I Daniel Lawrence, and A
Muthukrishnan. A secure quantum technology for smart
cities using travelling salesman problem (tsp): Application
perspectives. In Handbook of Research on Quantum
Computing for Smart Environments. IGI Global, 2023.

3] Hua Yang and Ming Gu. Learning tsp combinatorial search
and optimization with heuristic search. In Neural Information
Processing: 29th International Conference, ICONIP 2022,
Virtual Event, November 22–26, 2022, Proceedings, Part IV,
pages 409–419. Springer, 2023.

4] S Purusotham, T Jayanth, T Vimala, and K Ghanshyam. An
efficient hybrid genetic algorithm for solving truncated
travelling salesman problem. Decision Science Letters,
11(4):473–484, 2022.

5] Rahul Jain, Kushal Pal Singh, Arvind Meena, Kun Bihari
Rana, Makkhan Lal Meena, Govind Sharan Dangayach, and
Xiao-Zhi Gao. Application of proposed hybrid active genetic
algorithm for optimization of traveling salesman problem.
Soft Computing, 27(8):4975– 4985, 2023.

6] Anurup Naskar, Rishav Pramanik, SK Sabbir Hossain,
Seyedali Mirjalili, and Ram Sarkar. Late acceptance hill
climbing aided chaotic harmony search for feature selection:
An empirical analysis on medical data. Expert Systems with
Applications, 221:119745, 2023.

7] Kanchan Rajwar, Kusum Deep, and Swagatam Das. An
exhaustive review of the metaheuristic algorithms for search
and optimization: taxonomy, applications, and open
challenges. Artificial Intelligence Review, pages 1–71, 2023.

8] Przemysław Kowalik, Grzegorz Sobecki, Piotr Bawoł, and
Paweł Muzolf. A flow-based formulation of the travelling
salesman problem with penalties on nodes. Sustainability,
15(5), 2023.

9] Jakub Ptasznik. Solving traveling salesman problem using
simulated annealing algorithm. PhD thesis, Instytut
Informatyki, 2023.

10] Bijun Wang, Zheyong Bian, and Mo Mansouri. Selfadaptive
heuristic algorithms for the dynamic and stochastic
orienteering problem in autonomous transportation system.
Journal of Heuristics, 2023.

11] Tibet Duman and Ekrem Duman. Solving a new application
of asymmetric tsp by modified migrating birds optimization
algorithm. arXiv preprint arXiv:2301.06914, 2023.

12] Zhiding Dong and He Chen. Design of composite structure
optimization model based on particle swarm optimization. In
Proceedings of the 2nd International Conference on
Cognitive Based Information Processing and Applications
(CIPA 2022) Volume 2, pages 357–365. Springer, 2023.

13] Stefan Wintersteller, Martin Uray, Michael Lehenauer, and
Stefan Huber. Improvements for mlrose applied to the
traveling salesperson problem. In Computer Aided Systems
Theory–EUROCAST 2022: 18th International Conference,
Las Palmas de Gran Canaria, Spain, February 20–25, 2022,
Revised Selected Papers, pages 611–618. Springer, 2023.

14] Deniz Dal and Esra Celik. Investigation of the impact of
different versions of gcc on various metaheuristic-based
solvers for traveling salesman problem. The Journal of
Supercomputing, pages 1–47, 2023.

15] Martin Uray, Stefan Wintersteller, and Stefan Huber. Csrx: A
novel crossover operator for a genetic algorithm applied to

the traveling salesperson problem. arXiv preprint
arXiv:2303.12447, 2023.

16] K Suresh, Briskilal Joseph, et al. Patient scheduling system
for medical treatment using genetic algorithm. Journal of
Population Therapeutics and Clinical Pharmacology,
30(8):268–273, 2023.

17] Xin-Ai Dou, Qiang Yang, Xu-Dong Gao, Zhen-Yu Lu, and
Jun Zhang. A comparative study on crossover operators of
genetic algorithm for traveling salesman problem. In 2023
15th International Conference on Advanced Computational
Intelligence (ICACI), pages 1–8, 2023.

18] Ting Huang, Yue-Jiao Gong, Sam Kwong, Hua Wang, and
Jun Zhang. A niching memetic algorithm for multisolution
traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 24(3):508–522, 2020.

