
 

1 
  An-Najah National University, Nablus, Palestine 

An-Najah University Journal for Research – A 

Natural Sciences 
 

A Comparison of Heuristic Algorithms for Solving the Traveling 

Salesman Problem 

Younes Khdeir1 & Ahmed Awad1,* 

Accepted Manuscript, In press 

Abstract: The Traveling Salesman Problem (TSP) is a challenging computational problem 
in combinatorial optimization that aims to visit all cities exactly once and return to the first 
city. Despite that numerous theoretical solutions have been proposed in the literature, 
finding the exact optimal solution remains computationally infeasible due to the NP-hard 
nature of the problem. To address this, many heuristic and optimization approaches have 
been developed to generate probabilistic results that are often approximations. This paper 
presents a comparison between four popular algorithms: steepest ascent hill climbing, 
simulated annealing, genetic algorithm with partially matched crossover, and Particle 
Swarm Optimization (PSO). The study examines how these algorithms can solve the TSP 
and avoid local minimum values while achieving a balance between research exploration 
and exploitation for an optimal solution. For a relatively large number of cities, the simulated 
annealing algorithm and genetic algorithm produce promising results whilst the genetic 
algorithm takes longer time to execute due to the iterative application of its variation 
operators. 
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Introduction 

The Traveling Salesman Problem (TSP) is a combinatorial 

optimization problem that belongs to the class of Non-Polynomial 

(NP) NP-hard problems. The problem involves determining the 

shortest possible route that visits each city exactly once and 

returns to the origin city, given a list of cities and the distances 

between each pair of cities. Due to its theoretical significance in 

computer science and operations research, TSP has been the 

focus of extensive research in optimization algorithms, graph 

theory, and computational complexity [1]. The TSP is widely 

recognized as one of the most extensively researched 

optimization problems, serving as a benchmark for evaluating 

many optimization methods. Despite its computational 

complexity, TSP has been widely used in various fields in 

computer science, specifically in artificial intelligence, to find the 

most efficient path for transferring data between different nodes. 

The solutions to the TSP problem are not only applicable to the 

problem per se but also can be translated into various 

combinatorial optimization problems [2]. Therefore, algorithms 

that can efficiently solve TSP are highly desirable. Such 

algorithms are critical for achieving optimal routes while 

minimizing the time and cost of transportation, network 

optimization, and hardware optimization [3–5]. The TSP has 

been a topic of research for several decades, with numerous 

theoretical solutions proposed. The brute-force approach of 

testing every possible solution is straightforward, but it can be 

computationally intractable and time-consuming, especially for 

large problem sizes where exact solutions are often unattainable 

due to the limitations of computer resources. Although no exact 

algorithm is known to solve the TSP in polynomial time, 

heuristics and optimization-based methods are often employed 
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to produce satisfactory, albeit sub-optimal, solutions. As the 

worst-case run time of any TSP algorithm can grow in a factorial 

time with the number of cities, there is a constant need for novel 

and efficient algorithms to solve the problem [3]. The local search 

Hill Climb algorithm is employed to find the best solution by 

moving uphill toward the peak of the problem. The algorithm 

evaluates neighboring states in proximity to the current state until 

reaching a local optima [6]. Simulated Annealing (SA) algorithm 

has been utilized as well by incorporating temperature and 

cooling ratio parameters to vary the probability of movement 

between points in the search space, allowing exploration of a 

larger area of the search space. Similarly, the Genetic Algorithm 

(GA) is utilized to diversify the search space by creating new 

solutions through crossover and mutation. The key objective is 

to strike a balance between exploration and exploitation to obtain 

the optimal solution in the least possible time and cost. 

Additionally, the Particle Swarm Optimization (PSO) algorithm, 

inspired by social behavior, provides an advantage of rapid 

convergence to a nearly optimal solution through an efficient 

population-based approach that explores the search space [7]. 

The paper focuses on solving the TSP with different 

algorithms. In Addition, it evaluates their effectiveness in finding 

the shortest path for N cities of various sizes. Furthermore, we 

introduce a modified version of the Simulated Annealing (SA) 

algorithm that enhances its speed and improves its results. To 

represent the distances between cities, a fully connected one-

way graph data structure is used. The number of iterations for 
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comparison is conducted between the evaluated algorithms. Our 

contributions are summarized as follows: • We conduct a 

comparison in terms of performance of four algorithms to solve 

the TSP including: Steep Hill Climb, Simulated Annealing (SA), 

Genetic Algorithm, and Particle Swarm Optimization (PSO). • We 

propose an enhanced version of the SA algorithm to solve the 

TSP and validate its performance. • Both the cost and the 

runtime for each algorithm is evaluated on a set of benchmarks 

with varying sizes. The rest of the paper is structured as follows: 

In Section II, prior research on this topic is discussed. Section III 

provides a summary of the formulation and representation of the 

TSP. Section IV proposes a methodology that utilizes four 

algorithms to solve the TSP. Section V presents the 

experimental results and analysis. Finally, conclusions drawn 

from the findings and potential future work are presented in 

Section VI. 

Revious Work 

Various approaches have been explored in the field of 

solving the TSP using optimization algorithms, as observed by 

previous studies. For instance, the researchers utilized the Steep 

Hill Climb algorithm to find optimal solutions for TSP problems, 

but the algorithm was found to be less effective for larger 

benchmarks [8]. A modified Simulated Annealing (SA) algorithm 

for TSP has been proposed to outperform quantum annealing 

algorithms using Leap hybrid solver from D-Wave Systems [9]. 

Other self-adaptive heuristics-based adjustment strategies 

optimize the routing of autonomous transportation systems in the 

context of dynamic and stochastic orienteering problem 

formulated as TSP. The proposed strategies outperform a static 

meta-heuristic algorithm in terms of solution quality [10]. An 

application of the asymmetric TSP to model a small restaurant’s 

cooking process has been proposed. In this context, enhanced 

versions of the migrating bird’s optimization algorithm are found 

to outperform both the original Migrating Bird’s Optimization 

(MBO) and the simulated annealing algorithm [11]. Other works 

have employed the GA to solve TSP problems and noted that 

the crossover and mutation techniques employed in GA helped 

to explore the search space and diversify the population, making 

it effective for even larger-sized problems [4]. A new approach to 

solve the TSP by incorporating sub-tour division inspired by 

genetic algorithms. The simulation results on the traveling 

distance between cities in India show that the new approach 

provides a more accurate and robust solution than alternative 

methods [5]. The work published in [12] investigates the 

application of Particle Swarm Optimization (PSO) to the 

structural optimization design of composite materials for ships. 

The study uses experimental and comparative methods to 

analyze the optimization of ship composite material structure and 

shows promising results with high calculation accuracy. In this 

paper, we present a comprehensive overview of the latest 

findings and advancements in the field of TSP optimization 

algorithms, which have been developed by researchers 

worldwide. We summarize and compare the results of these 

algorithms and provide insights into their strengths and 

limitations. Furthermore, we propose an enhanced SA algorithm 

to solve the TSP. All algorithms are evaluated in terms of their 

cost and the runtime. 

Problem Formulation  

TSP is a mathematical problem whose goal is to find the 

shortest path between a set of points and locations that must be 

visited once and back to the starting point. The topology of the 

cities is represented as a weighted graph G where each vertex 

represents a city and a weight represents the distance between 

two cities in the topology. The key objective is to find the optimal 

tour in terms of time and cost. To solve the TSP, we must first 

determine the following: 

Solution Representation: 

 The traveling salesman problem is a permutation problem in 

which the goal is to find the shortest path between N different 

cities, which is referred to as the tour. Thus, we represent each 

tour as a permutation of integers, where each integer denotes a 

city number in the graph. For example, consider the graph 

depicted in Fig 1 which consists of 7 cities. An example of a 

solution representation is [6, 7, 4, 5, 1, 2, 3]. This representation 

indicates a tour starts with city 6 and then returns to this city. 

 

Figure (1): a graph with 7 nodes (cities) fully connected. 

Evaluation function 

We strive to find solutions that minimize total cost while also 

shortening the time it takes to find a solution. A solution P is 

evaluated in terms of the path length it takes from the starting 

city to the end city within the path, denoted by eval(P), which is 

formulated in eq.(1), wherein (xi , yi) denotes a pair of cities that 

belongs to P, and dist(xi , yi) represents the distance between 

city xi and city yi in the topology.  

𝒆𝒗𝒂𝒍(𝑷) = ∑ 𝒅𝒊𝒔𝒕(𝒙𝒊, 𝒚𝒊)

∀(𝒙,𝒚)∈𝑷

 (𝟏) 

Thus, The TSP is formulated as an optimization problem given 

in eq.(2), where S represents the search space, the set of all 

permutations to solve the problem. Notice that the search space 

size is (N − 1)!/2, given that the graph is undirected.  

minimize P∈S eval(P)          (2) 

& \𝒖𝒏𝒅𝒆𝒓𝒔𝒆𝒕{𝑷 ∈ 𝑺}{"{𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆}}& & Ⅎ𝐫{𝒆𝒗𝒂𝒍}(𝑷) \\ 

Neighborhood 

We define a neighbor to a solution by swapping two adjacent 

cities in the permutation. For instance, given the permutation [1, 

7, 2, 6, 4, 5, 3], some of the neighboring solutions are: [7, 1, 2, 

6, 4, 5, 3] [1, 2, 7, 6, 4, 5, 3] [1, 7, 6, 2, 4, 5, 3] [1, 7, 2, 4, 6, 5, 3] 

[1, 7, 2, 6, 5, 4, 3 ]. The TSP problem, when tackled with brute 

force, exhibits an factorial time complexity of O(n!), with n 

representing the city count. As the factorial growth rate is 

exceptionally high, this approach becomes infeasible for larger 

city sets. Consequently, we turn to alternative exploration 

methods to swiftly obtain optimal solutions. 
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The TSP problem, when tackled with brute force, exhibits an 

factorial time complexity of O(n!), with n representing the city 

count. As the factorial growth rate is exceptionally high, this 

approach becomes infeasible for larger city sets. Consequently, 

we turn to alternative exploration methods to swiftly obtain 

optimal solutions. 

Proposed Methodology 

In order to find the best solution to the TSP problem, we use 

several algorithms, including hill climbing, Simulated Annealing 

(SA), the Genetic Algorithm (GA), as well as a Particle Swarm 

Optimization (PSO) algorithm. Proper comparisons of their 

results are then conducted. 

Hill-Climbing Algorithm 

A hill climbing algorithm is a local search algorithm that 

moves uphill in order to find the top of the hill or the best solution 

to the problem. It comes to an end when it reaches a point where 

no neighbor has a higher value. A hill climbing algorithm node 

has two components: state and value. When a good heuristic is 

available, hill climbing is commonly used. We don’t need to 

maintain and manage the search tree or graph in this algorithm 

because it only keeps a single current state [13]. After reviewing 

various hill-climbing algorithms, the steepest hill-climbing 

algorithm was chosen for implementation in the TSP problem. 

This algorithm selects the optimal neighbor from among all 

possible neighbors and advances to a better current state. Each 

iteration examines a new local area at random, following the 

prescribed termination condition. The starting point in the hill 

climbing algorithm impacts the algorithm’s performance. 

Furthermore, this algorithm might suffer the flat and shoulder 

problem. To resolve those issues, we have modified the 

algorithm in such a way that the best previously selected 

neighbour is repeatedly returned to the algorithm within the same 

iteration. 

Simulated Annealing (SA) Algorithm 

SA is an algorithm utilized to avoid being stuck at a local 

minimum or sub optimal solution. This algorithm chooses a 

random move rather than the best move. If a random move 

improves the condition, it takes the same path as before. 

Otherwise, the algorithm takes the path with a probability of less 

than one given in eq.(3) [14]. In this formula: P(vn) denotes the 

probability of accepting the new solution vn, eval(vc) represents 

the evaluation (cost) of the current solution vc whilst eval(vn) 

denotes the evaluation (cost) of the new solution vn, and T 

denotes the current temperature. 

𝑷(𝒗𝒏) =
𝟏

𝟏 + 𝒆
𝒆𝒗𝒂𝒍(𝒗𝒄)−𝒆𝒗𝒂𝒍(𝒄𝒏)

𝑻

  (𝟑) 

 

 

Figure (2): Flowchart of the Simulated Annealing algorithm for 
solving the TSP problem. 

The moving direction must be determined probabilistically in 

each step in order to avoid becoming trapped in a local optimum 

and to progress toward the global optimum. While the search 
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process is progressing and approaching the final result, the size 

of the search step must be reduced. This allows to move quickly 

in the beginning and slowly in the end. The SA method requires 

that the search be continued until a good-enough solution is 

found or the stopping criteria are met. Furthermore, this method 

is sensitive to how its parameters, such as the search step and 

moving direction, are defined and tuned. Because the SA 

method is a heuristic search algorithm, it is sensitive to its 

starting point in the search space. A parameter T is also used to 

calculate the probability. It is analogous to the temperature in an 

annealing system. Uphill movements are more likely at higher T 

values. They become increasingly unlikely as T approaches 

zero, and the SA becomes hill climbing. T in a SA optimization 

problem begins high and gradually decreases according to the 

annealing schedule. To find the best solution when using the SA 

algorithm, it is critical to carefully select and tune the following 

parameters as shown in Fig 2: 

1. The initial temperature. We typically start with a relatively high 
temperature and gradually reduce it to allow the algorithm to 
perform as much exploration as possible.  

2. Termination Condition: The number of iterations is selected to 
be proportional to the number of cities. Such selection is 
essential to allow the algorithm to converge faster for a 
small-sized topology. 

3. The cooling ratio: The temperature drops gradually, shrinking 
by 10% after each termination condition.  

4. The frozen temperature: We have modified the algorithm to 
enhance the speed of exploration, prevent being trapped in 
local minima, and address convergence issues in each 
iteration. In order to expedite the search and learning 
process, we’ve implemented the following modifications: 
Control the decaying in the upper temperature towards the 
lower temperature. Introduce a variable value, which is 
initially set to be twice the number of cities. This variable 
decreases with each trial where no solution is accepted. The 
rate at which this variable decreases is tied to the reduction 
of the freezing temperature, ultimately reaching the desired 
level when the variable reaches zero. 

Genetic Algorithm (GA) 

The GA handles a population of possible solutions. Each 

solution is represented by a chromosome, which is merely an 

abstract representation. A set of reproduction factors is applied 

directly to the chromosomes, and they are used to perform 

mutations and recombination on the problem solutions in order 

to obtain the greatest variety of solutions and explore as much 

of the search space as possible without becoming stuck in the 

local minima[15]. 

Following the implementation of the GA algorithm, efforts 

were made to adjust and treat the following factors in order to 

achieve good results:  

1. Initialization 

The genetic algorithm process begins with the generation of 

a population of solutions. Each of the solutions is referred to as 

a chromosome. A chromosome contains or is defined by a set of 

parameters known as genes (cities). Using our algorithm 

implementation, we generated a random set of N solutions, 

which we call population. It is derived from the number of cities. 

Here are some examples:  

a.  Gene: The solution’s gene, City ID (6), is a chromosomal 

element. 

b.  Chromosomes: [6, 7, 4, 5, 1, 2, 3]  

c.  Population: [1, 7, 2, 6, 4, 5, 3] [7, 1, 2, 6, 4, 5, 3] [1, 2, 7, 6, 

4, 5, 3] [1, 7, 6, 2, 4, 5, 3]  

2.  Fitness Assignment 

The fitness function is used to assess a solution’s ability to 

compete with other solutions. Solutions are evaluated based on 

their fitness function at each iteration. This degree also 

influences the likelihood of reproductive selection. The greater 

the fitness score, the greater the likelihood of reproductive 

selection. As previously stated, the problem’s evaluation function 

is the sum of the distances between all cities. The evaluation 

function was converted into probability to calculate the fitness 

function with normalization. Thus, given a solution P, the fitness 

value of this solution is inversely proportional to its evaluation 

(the total distance), as given in eq.(4).  

𝒇(𝑷) =
𝟏

𝒆𝒗𝒂𝒍(𝑷)
  (𝟒) 

3.  Selection 

The selection phase involves the selection of individuals to 

reproduce offspring. The selected individuals are then arranged 

in pairs of two to increase reproduction. These individuals then 

pass on their genes to the next generation. There are several 

types of selection methods available. In our work, we have 

selected a roulette wheel to select pairs of solutions based on a 

fitness function, It is also called fitness proportionate selection, 

since the probability to select a solution P , denoted by P rob(P), 

is proportional to its fitness value, as given in eq.(5), wherein, the 

sum of probabilities for all solutions in the population Spop is 

utilized to normalize the probability. [16]. 

𝑷𝒓𝒐𝒃(𝑷) =
𝒇(𝑷)

∑ 𝒇(𝑷𝒊)∀𝑷𝒊∈𝑺𝒑𝒐𝒑

  (𝟓) 

4.  Reproduction 

The reproduction stepchild after the selection process. Two 

distinct factors play a role in changing the genetic makeup of the 

next generation in this step.  

a. Crossover: The intersection is crucial in the reproductive 

stage of the genetic algorithm. The crossover operator mixes the 

genetic information of two current-generation parents to create a 

new individual which represents the offspring. The mixing nature 

is determined by the crossover mechanism. There are many 

types of crossover to solve the traveling salesman problem, the 

most popular of which are order crossover (OX), partially 

matched crossover (PMX), and cycle crossover (CX). We have 

utilized the PMX in our work because it provides a high level of 

diversity and gene exploration while preserving the genes of the 

parents [17]. A single individual (a potential solution) might be 

selected for mating, and it can potentially mate with itself. PMX 

is applied within genetic algorithms through the following 

sequence: Start with two initial solutions, two positions are 

randomly selected within the permutation of both parents. Then, 

proceed to transfer the segment between the specified crossover 

positions from one parent to the corresponding positions within 

the offspring. To finalize the offspring’s formation, integrate 

values from the other parent into the remaining positions, 

ensuring no duplication with those already found in the copied 

segment from the first parent. As per the research methodology, 

this process yields two offspring, inheriting genetic information 

from both parents while concurrently broadening the diversity of 

potential solutions [18].  

An example of a PMX crossover between two parents to 

produce offspring is as follows, where | denotes a crossing point:  

i. The first parent: [2, 7,| 6, 3, 5,| 1, 4]  
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ii. The second parent:[5, 2,| 4, 1, 3,| 6, 7]  

iii. offspring:[2, 7, 4, 1, 3, 5, 6]  

iv. offspring:[1, 2, 6, 3, 5, 4, 7]  

b. Mutation: To maintain population diversity and solve the 

problem of early convergence, a mutation agent introduces 

random genes into the offspring (a new baby). We manipulated 

genes and chromosomes in the TSP problem by swapping city 

locations. We examine all permutations in order to find the best 

solution, not just switching cities.  

5.  Termination 

The algorithm concludes its execution either when it reaches 

the maximum number of iterations or when it enters the 

convergence stage. This convergence stage is characterized by 

a distinct lack of diversity among solutions within a single 

generation’s reproductive phase. 

Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a computational 

technique inspired by the social behavior of organisms, to 

optimize objective functions. PSO algorithm has been effective 

in solving various optimization problems, including the Traveling 

Salesman Problem (TSP), where each particle represents a 

potential solution. The algorithm operates on a population of 

particles, each influenced by its own and the swarm’s best 

solution found.  

Following the implementation of the PSO algorithm, efforts 

were made to adjust and treat the following factors in order to 

achieve the best results:  

1.  Particle Initialization: The algorithm starts by initializing a 

swarm of particles. Using our algorithm implementation, we 

generated a random set of N Particles that is proportional to 

the number of cities.  

2.  Fitness Evaluation: The fitness evaluation is conducted in 

PSO for the TSP. Fitness is based on the length of the tour, 

with updates made when a new best solution is found Using 

the previous Equation 1.  

3.  Update particles: At each iteration, the particles are updated 

by adjusting their velocities and positions based on their 

current positions and the best positions found by the swarm.  

a.  Update Velocity: The velocity adjustment process in 

PSO for optimizing objective functions as with Equation 

6.  

b. Update Position: The position of each particle is then 

updated by adding its velocity to its current position as 

given in eq. (7). The new position at time (t+1) is updated 

by adding the current position (pt) to the velocity (vt) at 

time t+1. 

𝒗[𝒕 + 𝟏] = 𝒘 ⋅ 𝒗[𝒕] + 𝒄𝟏 ⋅ rand ⋅ (𝒑Best − 𝒑) + 𝒄𝟐

⋅ rand ⋅ (𝒈Best − 𝒑)  (𝟔) 

pt+1 = p𝒕 + v𝒕 + 𝟏  (𝟕) 

The notation used for PSO, where p represents the current 

position, v is the current velocity, pBest is the best position found 

by the particle, gBest is the best position found by the swarm, 

and the rand is a random variable.  

4.  PSO Parameters: The PSO algorithm involves tuning 

several parameters. In this particular application, the number 

of particles and iterations are determined based on the 

number of cities. The values of c1 and c2 are both set to 1.5, 

while w is set to 0.7, as these parameter values have 

demonstrated successful performance in a variety of 

optimization problems in the literature.  

5.  Termination: The algorithm terminates when a stopping 

criterion is met, such as a maximum number of iterations. 

Experimental Results and Analysis 

Python programming language and Jupyter Notebook were 

utilized to conduct experiments on various algorithms using 

different benchmarks for solving the TSP with varying numbers 

of cities. A structured dataset was generated for each number of 

cities and used as input for all the algorithms tested. The 

experiments were conducted separately for each number of 

cities, and the resulting data was processed and analyzed.  

The distances were randomly selected from a set of values 

categorized as relatively short, medium, or large. To ensure that 

all cities were connected to each other, we created a fully 

connected unidirectional graph, with equal distances between 

cities in both directions. The data was then read and converted 

to a data frame using the Pandas library. Additional libraries, 

such as NumPy, Random, and Matplotlib, were also utilized in 

the analysis. This study addresses the TSP with a large number 

of cities, aiming to find the most efficient route for a vendor using 

various optimization algorithms.  

The results of these algorithms were recorded, including the 

number of iterations, time to find the optimal solution, number of 

cities, and evaluation function. Table I presents a comprehensive 

overview of the recorded results from implementing the 

algorithms multiple times with different numbers of cities.The 

algorithms included in the comparison are: Steepest Ascent Hill 

Climbing (SA-HC) algorithmm, Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO) algorithm, the classical Simulated 

Annealing (C_SA) algorithm, and the proposed enhanced 

version of the SA algorithm (Enhancement SA). 

The plots depicted in Fig 3 and Fig. 4 illustrate the 

convergence of different optimization algorithms toward optimal 

solutions and their ability to surmount local minima for a TSP 

benchmark of 100 cities. Our analysis delves first into the 

performance of the hill climbing algorithm, which faces 

challenges in escaping local optima but yields satisfactory 

outcomes with fewer cities. However, when dealing with a larger 

number of cities, the algorithm encounters greater difficulty and 

becomes trapped in a local minimum, as shown in the 

fluctuations in the SA-HC curve in Fig 3. In contrast, the 

enhanced simulated annealing algorithm delivers remarkable 

results, demonstrating smooth convergence towards the optimal 

solution for both small and large city counts. This is evident in 

the second set of plot in Fig 3. On the whole, the genetic 

algorithm consistently achieves excellent results and performs 

similarly to the simulated annealing algorithm in all scenarios. 

However, it tends to require more time, especially when dealing 

with a larger number of cities, as indicated by the third plot in Fig 

3. As for the Particle Swarm Optimization (PSO) algorithm, it 

shows promising results with quick convergence when dealing 

with fewer cities, but it encounters challenges as the city count 

increases. One of the main issues with the PSO algorithm is its 

inclination to be confined to a local optimum and its struggle to 

escape from it. In summary, most stages lead to achieving the 

optimal solution, but there is some variability in the speed and 

computational cost associated with each algorithm’s evolution to 

reach the solution as shown in Fig.4. The time complexity of 

various algorithms is depicted in Fig.4 and Fig.5. All algorithms 
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exhibit a semi-quadratic time complexity except the enhanced 

simulated annealing algorithm which exhibits a semi-linear time 

complexity. This reflects remarkable proficiency in discovering 

highly efficient solutions within a relatively short time frame, 

maintaining consistency across different city counts. 

Thus, while optimal solutions were achieved in the majority 

of scenarios, as illustrated in Fig.5 and detailed in Table I during 

a comparison with the classical simulated annealing algorithm, it 

outperformed the latter in terms of achieving optimal solutions 

and in the development of the fitness function and the complexity 

of the run time. This performance improvement came with only 

a marginal difference in execution time. 

Table (1): A comparison between various algorithms for solving TSP. 

Optimization 
Algorithm 

Fitness Function Evolution Run Rime Complexity (sec) 

SA-
HC 

GA POS C_SA 
Enhancement 

SA 
SA-HC GA POS C_SA 

Enhancement  
SA Num 

Cities 
Max 

Iterations 

7 21 104 61 61 61 147 0.04 0.47 0.29 0.38 0.13 

20 60 208 186 245 241 173 1.9 9.01 5 1.6 1.37 

50 150 479 475 757 681 427 70.03 205.02 75.82 7.52 7.19 

100 300 1167 918 1880 966 741 1264.21 3272.7 1288.15 33.25 28.87 

 

Figure (3): Convergence curves for different algorithms for a Benchmark of 100 cities. The curves shown (from left to right) represent: hill 
climbing algorithm, the enhanced SA algorithm, GA, and the PSO algorithm). 

 

 

Figure (4): Time complexity for different algorithms (fromt left to right): hill climbing, GA, and PSO. 
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Figure (5): A comparison between the classical SA and the enhanced SA algorithms in terms of time complexity. 

 

Conclusion AND FUTURE WORK 

The Traveling Salesman Problem (TSP) is a computational 

problem that seeks to determine the shortest path between 

multiple points. Numerous heuristics and optimization 

techniques have been proposed to generate probabilistic results 

for solving this problem. The aim is to find algorithms that can 

provide efficient solutions for a large number of cities, in a timely 

manner and at a minimal cost. In this study, we explored several 

algorithms, including the hill-climbing, simulated annealing (SA) 

algorithm, the genetic algorithm with partially matching cross 

PMX, and the particle swarm optimization algorithm. We 

discussed their ability to solve optimization problems, avoid local 

minima, and balance search exploration and exploitation to find 

an optimal solution. Our results show that the SA and genetic 

algorithms produced excellent results for a relatively large 

number of cities. We plan to introduce other algorithms for 

comparison in future work. 
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