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Abstract: The study presents a novel approach for solving highe-order ordinary differential equations (ODEs) prevalent in various
physics applications, specifically through a modified Adomian Decomposition Method (ADM). This method enhances the traditional
ADM by introducing specific modifications that improve its convergence and applicability to complex problems. The research focuses on
three primary areas: magnetohydrodynamic (MHD) flows, the dynamics of elastic beams, and sixth-order boundary value problems. The
proposed method demonstrates significant effectiveness in deriving analytical solutions that can accurately predict physical behaviors
in these domains. By applying the modified ADM, the study not only addresses the challenges associated with higher order ODEs
but also offers practical solutions for engineers and physicists working with intricate modeling scenarios. The results indicate that this
method provides an efficient and reliable framework for analyzing and solving complex differential equations in the field of physics and
engineering.
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Introduction

Differential equations serve as a fundamental tool across various sci-
entific disciplines, including physics, chemistry, and engineering. They
provide a framework for modeling an extensive range of natural phe-
nomena, allowing for a deeper understanding of dynamic systems
characterized by either linear or nonlinear behavior. By developing
models based on these equations, researchers can derive both ana-
lytical and approximate solutions, which have gained significant promi-
nence in recent studies.
Given the inherent challenges in obtaining precise solutions for physi-
cal problems represented mathematically by differential equations, the
exploration of analytical and numerical techniques becomes impera-
tive. Foundational work in operator calculus, such as that of Mikusiński
and Riemann–Liouville [1–3], has provided a theoretical basis for ma-
nipulating and inverting differential operators, which underpins many
decomposition-based methods.
In fluid mechanics, for instance, the Jeffery-Hamel flow, a significan-
t conceptual advancement introduced by Jeffery [4] and Hamel [5]
in the early 20th century, has become a pivotal example of how
two-dimensional incompressible viscous flows can be examined using
Navier-Stokes equations.
The term magnetohydrodynamic (MHD) was first introduced by re-

searcher Parth Bansal, marking a significant development in the field
of fluid mechanics [6]. MHD studies the behavior of electrically con-
ducting fluids in the presence of magnetic fields, combining principles
from both electromagnetism and fluid dynamics. Bansal’s contributions
laid the groundwork for exploring various MHD applications, particularly
in contexts like astrophysics, engineering, and plasma physics, where
magnetic fields interact with fluid flow, influencing behaviors such as
turbulence and stability [7].
The diverse physical problems associated with fourth-order differential
equations are intrinsically linked to the field of elastic stability theory.
These equations play a critical role in modeling the behavior of struc-
tural elements under various loading conditions, particularly those that
exhibit bending and torsional deformations. When addressing the e-
lastic stability of structures, one encounters phenomena such as buck-
ling, which occurs when a structure is subjected to critical loads that
exceed its capacity to maintain its original shape [8]. The analysis of
such problems typically involves fourth-order differential equations due
to their ability to incorporate the effects of shear deformation and rota-
tional inertia, which are essential for accurately predicting the stability
and performance of structural components [9–12].
A comprehensive and uniform framework for sixth-order boundary val-
ue problems is increasingly recognized as a vital tool for analyzing a
diverse array of challenges across fields such as astrophysics, mathe-
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matics, and engineering sciences. This framework allows researchers
and practitioners to study complex systems and phenomena that exhib-
it higher-order behavior, which is often crucial for accurately modeling
the intricate processes in these domains [13].
In astrophysics, for instance, many phenomena, including the convec-
tive stability in stellar structures or the dynamics of astronomical bod-
ies, can be effectively described using sixth-order differential equations.
These equations arise from the need to account for higher-order effects
that are significant in understanding stability and oscillatory behaviors,
allowing for a more nuanced description of astrophysical systems [14].
Given the inherent challenges in obtaining precise solutions for physical
problems represented mathematically by differential equations, the ex-
ploration of numerical techniques becomes imperative. Among these,
the Adomian Decomposition Method (ADM) [15,16] has demonstrated
its utility, particularly in addressing ordinary differential equations with-
out the need for discretization or linearization, and its performance has
been enhanced by a number of modifications [17–27]. ADM provides
an approximate solution of the problem without simplifying it, in contrast
to usual methods that include mild nonlinearity and minor perturbation-
s, which alter the physics of the problem through simplification.
The research conducted by various authors illustrates the versatility
of the (ADM) and its modified versions in tackling complex differential
equations across multiple domains. Odiba’s work exemplifies the ap-
plication of the Modified ADM (MADM) to a third-order ordinary differ-
ential equation, showcasing its efficacy in deriving solutions that might
be computationally intensive with traditional methods [28]. Meanwhile,
I. Hashim’s integration of ADM for a fourth-order integro-differential e-
quation highlights the method’s adaptability in handling intricate math-
ematical models, such as those found in engineering and physics [29].
While Ali et al.’s application of ADM to the HIV infection model indicates
its relevance in biological systems modeling [30]. Similarly, Coskun et
al. demonstrated ADM’s utility in studying the behavior of Euler beams
under variable stiffness, reinforcing the method’s significance in struc-
tural analysis [31].
However, most existing operator-based extensions of the Adomian De-
composition Method (ADM) focus on polynomial or standard differential
operator forms and do not explicitly address exponential-type differen-
tial operators. This highlights a gap in the current literature, which our
proposed modification seeks to fill by incorporating complex exponen-
tial weightings into the operator structure. This study aims to develop
and demonstrate a modified Adomian Decomposition Method (ADM)
for addressing higher order ordinary differential equations (ODEs) rel-
evant to physics. The focus is on applying this method to specific prob-
lems, including magnetohydrodynamic (MHD) flows, the behavior of
elastic beams, and sixth-order boundary value problems.
The goal of the research is to provide an effective analytical solution
technique that enhances the flexibility and applicability in solving com-
plex ODEs. This approach is intended to bridge theoretical advance-
ments and practical applications in fields such as physics and engi-
neering, ultimately aiming to offer more robust solutions to problems
characterized by higher order differential equations in various physical
contexts.

The Mathematical Formulation of the Jeffery-Hamel
flow and the Beam Equation of Fourth Order

First
As shown in Figure 1, the Figure represent the steady two-dimensional
flow of an incompressible, conductive, viscous fluid between two rigid
plane walls that meet at an angle of 2α. The velocity of the fluid de-
pends solely on the radial distance (r) and the angle( θ), and it is en-
tirely radial in nature [32]. In polar coordinates, the continuity equation
and the Navier-Stokes equations can be expressed as follows:

ρ

r

∂

∂r
(ru(r, θ)) = 0, (1)

u(r, θ)
∂u(r, θ)

∂r
+

1

ρ

∂p

∂r
+
σB2

0

ρr2
u(r, θ)

−µ[
∂2u(r, θ)

∂r2
+

1

r

∂u(r, θ)

∂r
+

1

r2
∂2u(r, θ)

∂θ2
−
u(r, θ)

r2
] = 0, (2)

1

ρr

∂p

∂θ
−

2µ

r2
∂u(r, θ)

∂θ
= 0, (3)

note that, ρ the fluid density, µ is the coefficient of kinematic viscosity,
σ the conductivity, B0 the electromagnetic induction and p is the fluid
pressure.
Using equation (1)

h(θ) = ru(r, θ), (4)

from dimensionless parameters

f(x) =
h(θ)

hmax
, x =

θ

α
, (5)

Putting them in (2) and (3), we get nonlinear third order boundary value
problem

f ′′′(x) + 2αRef(x)f ′(x) + (4−Ha)α2f ′(x) = 0, (6)

with boundary conditions

f(0) = 1, f ′(0) = 0, f(1) = 0. (7)

Where Re is Reynolds number

Re =
Umax

µ

(
divergent : α > 0, Umax > 0

convergent : α < 0, , Umax < 0

)
,

and Ha is Hartmann number

Ha =

√
σB2

0

ρµ
.

Figure 1: Geometry of the MHD Jeffery-Hamel flow.

Second

When a beam-column that subjected to both the axial load and the a
spread load perpendicular to axis as indicated in figure 2 (b) has a
cross section distance dx internal forces occur in the element in figure
2 (a). When the equilibrium equation is expressed in the direction of
the distributed q, it is given as:

q = −
dV

dx
. (8)

The equilibrium equation in the y direction can be written as an ordi-
nary differential equation, as presented in [33–35]

−V + qdx+ (V + dV ) = 0. (9)

The sum of the forces acting on each surface of the cross-section must
be balanced due to the equilibrium condition. This can be expressed
as:

M + qdx+
dx

q
+ (V + dV )dx− (M + dM) + p

dy

dx
= 0. (10)
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Here M is the bending moment trying to bend the cross-section ele-
ment, and V is the shear force acting on the surface of the element.
Assuming the rotation is small and neglecting second order terms in
dx , equation (10) simplifies to:

V =
dM

dx
− p

dy

dx
. (11)

Since small rotation is assumed, and considering that d2

dx2
= − M

EL
,

then (11) written as

−V = EL
d3y

dx3
+ p

dy

dx
. (12)

Here, El refers to bending rigidity.Differentiating both sides of equation
(12) with respect to x, we obtain a fourth-order differential equation for
the elastic curve, given by:

EL
d4y

dx4
+ p

d2y

dx2
= q(x). (13)

(a)

(b)

Figure 2: Cross-section analysis of the column-beam el-
ement.

New Modified ADM

In this section, we present an innovative modification to the Standard
Adomian Decomposition Method (ADM), specifically focusing on alter-
ations made to the differential operator. This enhancement aims to
improve the method’s applicability and effectiveness in solving nonlin-
ear differential equations.
Consider the following equation:

y(r+2) + νy(r) = g(x) +N(y), r ∈ N ∪ {0}, (14)

with the conditions

y(0) = a0, y
′(0) = a1, ..., y

(r+1)(0) = ai, i = 0, 1, ...,

in the standard Adomian Decomposition Method (SADM), the linear
operator is typically taken as Ly = y(r+2), where L(y) = y(r+2).
However, in our proposed modification, we define the linear operator
as Ly = y(r+2) + νy(r), where r = n+m.
The choice Ly = y(r+2) + νy(r) improves convergence because it
modifies the spectral characteristics of the linear operator, leading to
a more balanced and well-conditioned inverse. This structure help-
s reduce the growth of higher-order terms in the decomposition se-
ries, thereby accelerating convergence, especially for stiff or oscillatory

problems.
Where L(y) as the following

L1(y) =
dm

dxm
e±i
√
ν x d

dx
e∓2i

√
ν x d

dx
e±i
√
ν x dn

dxn
(y), (15)

L2(y) =
dm

dxm
e±i
√
ν x d

dx
e∓i
√
ν x dn

dxn
e∓i
√
ν x d

dx
e±i
√
ν x(y). (16)

Where ν is constant and in equation (15) n,m ∈ N ∪ {0}, and in
equation (16) n ∈ N and m ∈ N ∪ {0}.
The inverse of eq.(15) and eq.(16) as follows
L−1
1 (y) =∫ x

0

∫ x

0
...

∫ x

0︸ ︷︷ ︸
n−times

e∓i
√
ν x

∫ x

0
e±2i

√
ν x

∫ x

0
e∓i
√
ν x

∫ x

0

∫ x

0
...

∫ x

0︸ ︷︷ ︸
m−times

(y)

dxdx...dxdxdxdxdx...dx︸ ︷︷ ︸
m+n+2−times

. (17)

L−1
2 (y) =

e∓i
√
ν x

∫ x

0
e±i
√
ν x

∫ x

0

∫ x

0
...

∫ x

0︸ ︷︷ ︸
n−times

e±i
√
ν x

∫ x

0
e∓i
√
ν x

∫ x

0

∫ x

0
...

∫ x

0︸ ︷︷ ︸
m−times

(y) dxdx...dxdxdxdxdx...dx︸ ︷︷ ︸
m+n+2−times

. (18)

So equation (14) takes the form

Ly +Ny = g(x),

or equivalently:
Ly = g(x)−Ny, (19)

to get y, take L−1 (L−1
1 or L−1

2 ) to both sides of equations (19).
Then

y = κ(x) + L−1g(x)− L−1N(y), (20)

where κ(x) arising from auxiliary conditions.
The solution in ADM decomposition to [15]

y0 = κ(x) + L−1g(x),

and

yn+1 = −L−1N(y),

where

N(y) =

∞∑
n=0

An,

An called Adomian polynomial and formed by

An =
1

n!

dn

dλn

[
N(
∞∑
i=0

λiyi)

]
, where λ = 0, n = 0, 1, 2, 3, ... .

(21)

That is

yn+1 = −L−1An,

then

y1 = −L−1A0,

y2 = −L−1A1,

y3 = −L−1A2,
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and so on.
Based on the above, the solution via ADM is given as a series:

y(x) = y0 + y1 + y2 + y3 + ... =

∞∑
n=0

yn. (22)

To better illustrate how the proposed NMADM differs from other modi-
fied ADM approaches, Table 1 provides a comparative summary of the
key features, convergence strategies, and implementation considera-
tions.

Justification for Using Complex Exponen-
tial Weightings

The composition of differential operators with complex exponential
weightings in equations (15) and (16) is motivated by their ability to
reshape the operator’s structure and improve its spectral properties.
Exponential terms like e∓2i

√
ν x act as integrating factors or transfor-

mation kernels, which can reduce oscillatory behavior and enhance the
stability of the inverse operator. This strategy is inspired by techniques
in spectral methods and perturbation theory, where such weightings
are commonly used to simplify the inversion of differential operators
and accelerate convergence. As a result, the modified operator be-
comes better suited for handling nonlinearities and leads to more effi-
cient implementation of the decomposition process.

Existence and Uniqueness of Solution

Let ℵ : ~ → ~ is an operator, where ~ is the Banach space
(C(I0), ‖.‖), the space of all continuous functions on I0 with norm
‖y‖ = maxx∈I0 |y(x)|, and N satisfied Lipschitz condition ( |N(y) −
N(z)| ≤ `|y − z| where y, z ∈ ~ ).

Theorem 1 The equation (14) has a unique solution y ∈ ~ on
I0 = [0, T ] when 0 < % < 1 where % = `γ, and γ =∑∞
i=0(−1)iνi

T (r+2)+2i

((r+2)+2i)!
.

proof The mapping ℵ :~→ ~ is defined as

(ℵy)(x) = κ(x) + L−1g(x)− L−1N(y),

(ℵz)(x) = κ(x) + L−1g(x)− L−1N(z),

where L−1 define in equations (17,18).

‖(ℵy)(x)− (ℵz)(x)‖ = max
x∈I0

|L−1N(y)− L−1N(z)|

= max
x∈I0

|L−1(N(y)−N(z))|

≤ `max
x∈I0

|y − z|L−1(1)

≤ `γ max
x∈I0

|y − z|

≤ %‖y − z‖

.
Since 0 < % < 1, Then the mapping ℵ is contraction. That is, there
exists a unique solution y ∈ ~ by Banach contraction principle.

Convergent and Error Estimate

In this section, we will study the Convergent and Error Estimate of the
solution.

Proof of Convergent

Theorem 2 The series solution (22) of the equation (14) using NMAD-
M converges if | y1 |<∞ and 0 < % < 1, % = `γ.

Proof Let Sn =
∑n
i=0 yi is the sequence of partial sum. Since,

N(y) = N(

∞∑
i=0

yi) =

∞∑
i=0

Ai,

so,

N(Sn) =

n∑
i=0

Ai.

Now, we prove that Sn is a Cauchy sequence in Banach space ~. Let
Sn,Sm be two arbitrary partial sums such that n ≥ m, then,

‖Sn − Sm‖ = max
x∈I0

| Sn − Sm |= max
x∈I0

|
n∑

i=m+1

yi(x) |

= max
x∈I0

|
n∑

i=m+1

L−1Ny |

= max
x∈I0

|
n∑

i=m+1

L−1Ai |

= max
x∈I0

|
n−1∑
i=m

L−1Ai |

= max
x∈I0

| L−1[N(Sn)−N(Sm)] |

≤ max
x∈I0

L−1 | [N(Sn)−N(Sm)] |

≤ max
x∈I0

L−1` | Sn − Sm |

≤ γ`‖Sn − Sm‖

≤ %‖Sn − Sm‖.

Let n = m+ 1 then,

‖Sm+1 − Sm‖ ≤ %‖Sm − Sm−1‖

≤ %2‖Sm−1 − Sm−2‖ ≤ ... ≤ %m‖S1 − S0‖.

Based on the triangle inequality, we get

‖Sn − Sm‖ ≤ ‖Sm+1 − Sm‖+

‖Sm+2 − Sm+1‖+ ...+ ‖Sn − Sn−1‖

≤ (%m + %m+1 + ...%n−1)‖S1 − S0‖

≤ %m(1 + %+ ...%n−m−1)‖S1 − S0‖

≤ %m(
1− %n−m

1− %
)‖y1‖.

Since 0 < % < 1, (%n−m) ≤ 1. Then

‖Sn − Sm‖ ≤
%m

1− %
‖y1‖

≤
%m

1− %
max
x∈I0

| y1 | .

Since | y1 |< ∞, then, ‖Sn − Sm‖ → 0 hence, Sn is a Cauchy se-
quence in Banach space ~, that is

∑∞
n=0 yn converges and this com-

pletes the proof.
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Error Estimate
The following theorem allows us to estimate the maximum absolute
truncation error of the Adomian’s series solution for NMADM.

Theorem 3 The series solution (22) to the problem (14) is estimated
to have a maximum absolute truncation error given by

max
x∈I0

|y(x)−
m∑
i=0

yi(x)| ≤
%m

1− %
max
x∈I0

| y1 |

Proof Theorem (2) gives us

‖Sn − Sm‖ ≤
%m

1− %
max
x∈I0

| y1 | .

Since Sn =
∑n
i=0 yi, as n→∞, then Sn → y(x) so,

‖y(x)− Sm‖ ≤
%m

1− %
max
x∈I0

| y1 | .

Thus, in the interval I0, the maximum absolute truncation error is

max
x∈I0

|y(x)−
m∑
i=0

yi(x)| ≤
%m

1− %
max
x∈I0

| y1 | .

And thus the proof is finished.

Before starting the application, we will give the following remarks.

Remark 1 Although the current analysis is conducted in the Banach
space C([0, T ]), it is worth noting that the approach may be extended
to other functional settings. In particular, weighted spaces and Sobolev
spaces Wk,p may provide a more natural framework for problems in-
volving boundary layers or beam-type structures. These spaces allow
for more accurate modeling of the regularity and boundary behavior
of solutions and could enhance both the theoretical and numerical as-
pects of the method.

Remark 2 Equation (15), and equation (16) give many differential op-
erators, for instant, if the differential equation of third order we have six
operators by giving the different value of n and m.

L1(y) = e−i
√
ν x d

dx
e2i
√
ν x d

dx
e−i
√
ν x d

dx
(y),

L2(y) = ei
√
ν x d

dx
e−2i

√
ν x d

dx
ei
√
ν x d

dx
(y),

L3(y) =
d

dx
e−i
√
ν x d

dx
e2i
√
ν x d

dx
e−i
√
ν x(y),

L4(y) =
d

dx
ei
√
ν x d

dx
e−2i

√
ν x d

dx
ei
√
ν x(y),

L5(y) = e−i
√
ν x d

dx
ei
√
ν x d

dx
ei
√
ν x d

dx
e−i
√
ν x(y),

L6(y) = ei
√
ν x d

dx
e−i
√
ν x d

dx
e−i
√
ν x d

dx
ei
√
ν x(y).

All of them give the differential equation Ly = y′′′ + νy′.

Remark 3 All above differential operators give the same result.

Proof We aim to show that all the defined differential operators yield
the same result.
Starting with the operator L1(y), we compute:

L1(y) = e−i
√
νx d

dx

(
e2i
√
νx d

dx

(
e−i
√
νx d

dx
(y)

))
= e−i

√
νx d

dx

(
e2i
√
νx d

dx

(
−i
√
νe−i

√
νxy′ + e−i

√
νxy′′

))
= e−i

√
νx d

dx

(
−i
√
νei
√
νxy′ + ei

√
νxy′′

)
= e−i

√
νx
(
νei
√
νxy′ − i

√
νei
√
νxy′′ + i

√
νei
√
νxy′′

+e−i
√
νxy′′′

)
= e−i

√
νx
(
νei
√
νxy′ + e−i

√
νxy′′′

)
= y′′′ + νy′

Similarly, it can be shown that:

L2(y) = L3(y) = L4(y) = L5(y) = L6(y) = y′′′ + νy′

Now consider the inverse operator of L1:

L−1
1 (y) =

∫ x

0
ei
√
νx

(∫ x

0
e−2i

√
νx

(∫ x

0
e−i
√
νxy(x) dx

)
dx

)
dx

Applying this operator to y′′′+ νy′, and using Mathematica, we obtain:

L−1
1 (y′′′+νy′) = −f(0)+f(x)−

sin(x
√
ν)

√
ν

f ′(0)+
−1 + cos(x

√
ν)

ν
f ′′(0)

Following the same procedure for the inverse operators
L−1
2 , L−1

3 , . . . , L−1
6 , we find that they all yield the same expression:

−f(0) + f(x)−
sin(x

√
ν)

√
ν

f ′(0) +
−1 + cos(x

√
ν)

ν
f ′′(0)

Thus, all the differential operators L1, L2, . . . , L6 produce the same
result.
Hence, the proof is complete.

Application

Example 1 Equation (6) [38–41] with boundary conditions (7) can be
written as

Ly = −2αRef(x)f ′(x), (23)

we can get Ly by putting m = 0, n = 1 or m = 1, n = 0 in equation
(15), m = 0, n = 1 in equation (16), and ν = (4 − Ha)α2. In this
example we used when m = 0, n = 1 in equation (15) that is

Ly = e±i
√

(4−Ha)α2 x d

dx
e∓2i

√
(4−Ha)α2 x d

dx
e±i
√

(4−Ha)α2 x d

dx
(y),

(24)
L−1 of equation (24) is

L−1(y) =

∫ x

0
e∓i
√

(4−Ha)α2 x

∫ x

0
e±2i

√
(4−Ha)α2 x

∫ x

0
e∓i
√

(4−Ha)α2 x(y)dxdxdx, (25)

applying inverse equation (25) on equation (23), and using Adomian
polynomial in equation (21) of non-linear part−2αRef(x)f ′(x) we get

f0(x) = 1 +
c

2
x2 −

c α2

6
x4 +

cHaα2

24
x4 +

c α4

45
x6 −

cHaα4

90
x6

+
cHa2α4

720
x6−

c α6

630
x8 +

cHaα6

840
x8−

cHa2 α6

3360
x8 +

cHa3 α6

40320
x8,

f1(x) =
−cReα

12
x4 −

c2Reα

120
x6 +

cReα3

45
x6 −

cHa,Reα3

180
x6

+
c2Reα3

280
x8 −

c2HaReα3

1120
x8 −

cReα5

420
x8

+
cHaReα5

840
x8 −

cHa2Reα5

6720
x8,

f2(x) =
cRe2 α2

180
x6 +

c2Re2 α2

560
x8 −

cRe2 α4

840
x8

+
cHaRe2 α4

3360
x8,

f3(x) = −
cRe3α3

5040
x8 −

c2Re3α3

5600
x10 +

cRe3α5

28350
x10

−
cHaRe3α5

113400
x10,

the series solution is given by
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f(x) = f0(x) + f1(x) + f2(x) + f3(x) =

1 +
cx2

2
−

1

12
cReαx4 −

1

120
c2Reαx6 −

1

6
cα2x4 +

1

24
cHaα2x4

+
1

180
cRe2α2x6 +

1

560
c2Re2α2x8 +

1

45
cReα3x6 −

1

180
cHaReα3x6

+
1

280
c2Reα3x8 −

c2HaReα3

1120
x8 −

cRe3α3

5040
x8−

c2Re3α3

5600
x10 +

1

45
cα4x6 −

1

90
cHaα4x6 +

1

720
cHa2α4x6

−
1

840
cRe2α4x8 +

cHaRe2α4

3360
x8−

1

420
cReα5x8 +

1

840
cHaReα5x8 −

cHa2Reα5

6720
x8 +

cRe3α5

28350
x10

−
cHaRe3α5

113400
x10−

1

630
cα6x8 +

1

840
cHaα6x8 −

cHa2α6

3360
x8 +

cHa3α6

40320
x8.

And the solution by SADM as follows

f0(x) = 1 +
c

2
x2,

f1(x) = −
1

12
cReαx4 −

1

6
cα2x4 +

1

24
cHaα2x4 −

1

120
c2Reαx6,

f2(x) =
1

180
cRe2α2x6 +

1

45
cReα3x6−

1

180
cHaReα3x6 +

1

45
cα4x6

−
1

90
cHaα4x6 +

1

720
cHa2α4x6+

1

280
c2Re2α2x8 +

1

140
c2Reα3x8 −

1

560
c2HaReα3x8

+
13

75600
c3Re2α2x10,

f3(x) =
1

180
cRe2α2x6 +

1

90
cReα3x6

−
1

360
cHaReα3x6 +

13

10080
c2Re2α2x8 +

1

504
c2Reα3x8−

1

2016
c2HaReα3x8 −

1

2520
cRe2α4x8 +

1

10080
cHaRe2α4x8

−
1

630
cReα5x8 +

1

1260
cHaReα5x8−

1

10080
cHa2Reα5x8 −

1

630
cα6x8 +

1

840
cHaα6x8

−
1

3360
cHa2α6x8 +

1

40320
cHa3α6x8+

1

14400
c3Re2α2η10 −

1

10800
c2Re3α3x10 −

1

1890
c2Re2α4x10

+
1

7560
c2HaRe2α4x10 −

13

18900
c2Reα5x10+

13

37800
c2HaReα5x10 −

13

302400
c2Ha2Reα5x10−

53

3326400
c3Re3α3x12 −

37

997920
c3Re2α4x12

+
37

3991680
c3HaRe2α4x12 −

89

165110400
c4Re3α3x14,

the series solution is given by
f(x) = f0(x) + f1(x) + f2(x) + f3(x) =

1 +
c

2
x2 −

1

12
cReαx4 −

1

6
cα2x4 +

1

24
cHaα2x4−

1

120
c2Reαx6 +

1

90
cRe2α2x6 +

1

30
cReα3x6

−
1

120
cHaReα3x6 +

1

45
cα4x6 −

1

90
cHaα4x6 +

1

720
cHa2α4x6

+
7

1440
c2Re2α2x8 +

23

2520
c2Reα3x8−

23

10080
c2HaReα3x8 −

1

2520
cRe2α4x8 +

1

10080
cHaRe2α4x8

−
1

630
cReα5x8 +

1

1260
cHaReα5x8

−
1

10080
cHa2Reα5x8−

1

630
cα6x8+

1

840
cHaα6x8−

1

3360
cHa2α6x8

+
1

40320
cHa3α6x8 +

73

302400
c3Re2α2x10 −

1

10800
c2Re3α3x10

−
1

1890
c2Re2α4x10 +

1

7560
c2HaRe2α4x10−

13

18900
c2Reα5x10 +

13

37800
c2HaReα5x10 −

13

302400
c2Ha2Reα5x10

−
53

3326400
c3Re3α3x12−

37

997920
c3Re2α4x12 +

37

3991680
c3HaRe2α4x12

−
89

165110400
c4Re3α3x14.

Based on the analysis of Figures 3 (a) and (b), which explore the vari-
ation of the function (f ) for (α < 0) under different Hartmann numbers
( Ha) with a fixed Reynolds number (Re = 50), the results obtained
through NMADM were compared to those derived from the SADM. The
comparison indicates a strong agreement between the two methods,
with the channel exhibiting a convergent steepness.

In Figures (c) and (d), the focus shifts to the variation of the function (
f ) for ( α > 0 ) with different Hartmann numbers while maintaining a
fixed Reynolds number (Re = 10). Here, a notable difference between
the NMADM and SADM results emerges, highlighting a divergent s-
teepness of the channel.

Additionally, Figures 3 (e) and (f ) address the variation of the function
(f ) for ( α > 0) across different Reynolds numbers while keeping the
Hartmann number fixed at Ha = 5. The results indicate a divergence
between the NMADM and SADM outcomes, with the steepness of the
channel demonstrating divergent behavior in the SADM context, while
it remains convergent in the case of NMADM.
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(a) SADM at Re = 50,α = −5◦ (b) NMADM at Re = 50,α = −5◦

(c) SADM at Re = 10, α = 7.5◦ (d) NMADM at Re = 10,α = 7.5◦

(e) SADM at Ha = 50, α = 5◦ (f) NMADM at Ha = 50, α = 5◦

Figure 3: NMADM and SADM Solutions for differ-
ent Hartmann number (Ha = 0, 50, 500, 1000, 2000),
Reynolds number (Re = 10, 15, 25, 35, 50) and( α =

−5◦, 5◦, 7.5◦).

Example 2 Consider equation (13) [10–12] with EL = 1, p = −2, and
q(x) = −8ex, that is ν = p

EL
= −2 for

y(4) − 2y(2) + y = −8ex, x ∈ [0, 1], (26)

with boundary conditions

y(0) = y(1) = 0, y′′(0) = 0, y′′(1) = −4e. (27)

With Exact solution y(x) = x(1 − x)ex. Equation (26) in an operator
form is

Ly = −8ex − y, (28)

where Ly gets when m = 0, n = 2 in equation (16)

L(y) = e±i
√
−2 x d

dx
e∓i
√
−2 x d2

dx2
e∓i
√
−2 x d

dx
e±i
√
−2 x(y), (29)

L−1 of equation (29) is

L−1(y) = e∓i
√
−2 x

∫ x

0
e±i
√
−2 x

∫ x

0

∫ x

0
e±i
√
−2 x

∫ x

0
e∓i
√
p x(y)dxdxdxdx. (30)

Appling equation (30) to (28) equation we have

y0 = a x+
b x3

6
−
x4

3
+

(
−

1

15
+

b

60

)
x5 −

x6

30
+

(
−

1

210
+

b

1260

)
x7 −

x8

720
+(

−
1

6480
+

b

45360

)
x9 −

x10

30240
,

y1 =
−a
120

x5 +

(
−a
2520

−
b

5040

)
x7 +

x8

5040
+(

1

45360
−

a

90720
−

b

90720

)
x9 +

x10

90720
,

y2 =
a

362880
x9,

y0 + y1 + y2 =

a x+
b x3

6
−
x4

3
−
a x5

120
+

(
−

1

15
+

b

60

)
x5 −

x6

30

+

(
−a
2520

−
b

5040

)
x7+(

−
1

210
+

b

1260

)
x7 −

x8

840
+

a x9

362880
+(

1

45360
−

a

90720
−

b

90720

)
x9+(

−
1

6480
+

b

45360

)
x9 −

x10

45360
.

Using boundary conditions in equation (27) in the above series solution
we get a = 1, and b = −3.

y0 + y1 + y2 = x−
x3

2
−
x4

3
−
x5

8
−
x6

30
−

x7

144
−

x8

840
−

x9

5760
−

x10

45360
.

The Solution by SADM

y0 = a x+
b x3

6
−
x4

3
−
x5

15
−
x6

90
−

x7

630

−
x8

5040
−

x9

45360
−

x10

453600
,

y1 =

(
−a
120

+
b

60

)
x5 −

x6

45
+

(
−

1

315
−

b

5040

)
x7

−
x8

5040
−

x9

45360
−

x10

453600
,

y2 =

(
−a
2520

+
b

1260

)
x7 −

x8

1260

+

(
−

1

11340
+

a

362880
−

b

90720

)
x9,

y0 + y1 + y2 = a x+
b x3

6
−
x4

3
−
x5

15
+

(
−a
120

+
b

60

)
x5−

x6

30
−

x7

630
+

(
−

1

315
−

b

5040

)
x7

+

(
−a
2520

+
b

1260

)
x7 −

x8

840
−

x9

22680
+(

−
1

11340
+

a

362880
−

b

90720

)
x9 −

x10

226800
.

Using boundary conditions in equation (27) in the above series solution
we get a = 1, and b = −3.

y0 + y1 + y2 = x−
x3

2
−
x4

3
−
x5

8

−
x6

30
−

x7

144
−

x8

840
−

x9

10368
−

x10

226800
.

The following is the Taylor series for the exact solution

x−
x3

2
−
x4

3
−
x5

8
−
x6

30
−

x7

144
−

x8

840
−

x9

5760
−

x10

45360
+O

(
x11
)
.
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To clarify the convergence between the exact solution and the solutions
obtained using the SADM and the NMADM in this example, we utilize a
tenth-order Taylor series expansion. We find that the solution provided
by the NMADM is identical to the exact solution and is closer to the
exact solution than that of the SADM.

Example 3 Consider a special sixth-order boundary value problem
with parameter c [42–44]

y(6)(x)− (1 + c)y(4)(x) = cx− cy(2)(x), (31)

with boundary conditions

y(0) = y′(0) = 1, y′′(0) = 0,

y(1) =
7

6
+ sinh(1), y′(1) =

1

2
cosh(1), y′′(1) = 1 + sinh(1). (32)

y(x) = 1 + 1
6
x3 + sinh(x) is the exact solution. Equation (31) in an

operator form is
Ly = cx− cy(2)(x), (33)

L obtains when m = 3, n = 1 and ν = −(1 + c) in equation (15)

Ly =
d3

dx3
e±i
√
−(1+c) x d

dx
e∓2i

√
−(1+c) x d

dx
e±i
√
−(1+c) x d

dx
(y),

(34)
and L−1 of equation (34)

L−1 =

∫ x

0
e∓i
√
−(1+c) x

∫ x

0
e±2i

√
−(1+c) x

∫ x

0
e∓i
√
−(1+c) x

∫ x

0

∫ x

0

∫ x

0
dxdxdxdxdxdx(y). (35)

Applying (35) on (33) we get

y0 = 1 + x+
x3a1

6
+
x4a2

24
+
x5a3

120
+
x6a2

720
+
cx6a2

720
+

cx7

5040

+
x7a3

5040
+
cx7a3

5040
+

x8a2

40320
+
cx8a2

20160
+
c2x8a2

40320
+

cx9

362880
+

x9a3

362880
+

cx9a3

181440
+
c2x9a3

362880
+

c2x9

362880
+

x10a2

3628800
+

cx10a2

1209600
+
c2x10a2

1209600
+
c3x10a2

3628800
,

y1 = −
cx7a1

5040
−
cx8a2

40320
−

cx9a1

362880
−
c2x9a1

362880
−

cx9a3

362880

−
cx10a2

1814400
−
c2x10a2

1814400
,

the series solution by NMADM

y(x) = y0 + y1

= 1 + x+
x3a1

6
+
x4a2

24
+
x5a3

120
+
x6a2

720
+
cx6a2

720
+

cx7

5040

−
cx7a1

5040
+
x7a3

5040
+
cx7a3

5040
+

x8a2

40320
+
cx8a2

40320

+
c2x8a2

40320
+

cx9

362880
+

c2x9

362880
−

cx9a1

362880
−
c2x9a1

362880
+

x9a3

362880
+

cx9a3

362880
+
c2x9a3

362880
+

x10a2

3628800
+

cx10a2

3628800
+
c2x10a2

3628800
+
c3x10a2

3628800
.

And the solution in SADM

y0 = 1 + x+
x3a1

6
+
x4a2

24
+
x5a3

120
+

cx7

5040
,

y1 =
x6a2

720
+
cx6a2

720
−
cx7a1

5040
+
x7a3

5040
+
cx7a3

5040
+

cx9

362880

+
c2x9

362880
−
cx8a2

40320
−

cx9a3

362880
−

c2x11

39916800
,

y0 + y1 = 1 + x+
x3a1

6
+
x4a2

24
+
x5a3

120
+
x6a2

720

+
cx6a2

720
+

cx7

5040
−
cx7a1

5040
+
cx7a3

5040

−
cx8a2

40320
+

cx9

362880
+

c2x9

362880
−

cx9a3

362880
−

c2x11

39916800
.

The value of constants a1, a2 and a3 can be get by using boundary
conditions in (32).

(a) (b)

(c) (d)

Figure 4: Comparing between Exact, SADM and NMAD-
M solution when y(x) = y0 + y1 ) for different value of
c = 0, 20, 100, 1000

The performance of the new modified Adomian decomposition method
(NMADM) and the Standard Adomian Decomposition Method (SADM)
reveals significant differences as the parameter (c) increases. From
our analysis, particularly illustrated in Figure 4, it is evident that NMAD-
M consistently provides solutions that closely approximate the exact
solution, irrespective of how large the parameter (c) becomes. This ro-
bustness indicates the effectiveness of NMADM in handling higher val-
ues of (c) without significant deviation from the true solution. In stark
contrast, the SADM exhibits a noticeable divergence from the exact so-
lution as the parameter (c) increases. This indicates that while SADM
may perform adequately for lower values of (c), its reliability dimin-
ishes significantly as the parameter grows. Furthermore, our findings
align with previous literature [43], which has stated that the approxi-
mate solutions derived from the Adomian Decomposition Method are
quite accurate for small values of (c) only. As (c) increases, the accu-
racy of the SADM solutions deteriorates, highlighting a limitation in this
method, which NMADM effectively overcomes.

Remark 4 While the focus of this study has been on higher-order ordi-
nary differential equations, the structure of the modified operator intro-
duced in the NMADM suggests potential applicability to certain classes
of partial differential equations (PDEs). In particular, extension to non-
linear diffusion–reaction PDEs may be feasible, given the operator’s ca-
pability to handle nonlinearity and higher-order derivatives. This opens
a possible direction for future investigation.

An - Najah Univ. J. Res. (N. Sc.) Vol. 40 (1), 2026 An-Najah National University, Nablus, Palestine 8



Conclusion

The study presented a new modified Adomian decomposition method
(NMADM) tailored for solving higher-order ordinary differential equa-
tions, particularly in the context of magnetohydrodynamic (MHD) flows,
elastic beam dynamics, and sixth-order boundary value problems in
physics. The key findings of this research indicate that the modified
approach demonstrates significant advantages over traditional meth-
ods in terms of convergence speed and accuracy. By applying the
NMADM, the researchers were able to achieve rapid convergence for
various complex problems, providing explicit analytical solutions that
can effectively describe physical phenomena in MHD flows and the
behavior of elastic beams. The method’s versatility also extends to
accommodating sixth-order boundary value problems, which are often
encountered in engineering and applied physics.

In addition to the analytical benefits, the structure of NMADM suggest-
s favorable scalability to more complex or higher-dimensional prob-
lems. The incorporation of weighted exponential operators enhances
the convergence behavior, which may reduce computational costs in
multidimensional applications. Furthermore, its semi-analytical nature
avoids the intensive discretization required by many numerical method-
s. Future studies could explore its integration with domain decompo-
sition or spectral methods to improve performance in large-scale sim-
ulations. The results validate the efficiency of the modified Adomian
decomposition method as a robust computational tool, suggesting its
potential for broader applications in tackling nonlinear dynamic system-
s and enhancing the understanding of diverse physical mechanisms.
Further studies could explore its applicability to other types of differ-
ential equations and complex physical models, paving the way for ad-
vancements in both theoretical and practical realms of physics.
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Feature NMADM Duan-Rach Modifica-
tion [36]

Wazwaz Modification [37]

Linear Operator (L) Redefined linear opera-
tor L(y) = y(r+2) + νy(r),
reformulated using integral-
exponential operators for
improved spectral condition
and stability.

Traditional operator L(y) =

y(r+2) with adjustments for
boundary conditions.

Second-order operator de-
signed to simplify nonlinear
expressions.

Key Innovation Redesign of the operator
structure to enhance spectral
properties and convergence
in stiff or oscillatory problem-
s.

Improved inversion matching
specific boundary conditions.

Utilization of He polynomial-
s for nonlinear term approxi-
mation.

Convergence Enhance-
ment

Faster convergence due to
better operator conditioning
and exponential-integral for-
mulation.

Improved convergence for
problems with structured
boundaries.

Improved convergence by
matching structure of nonlin-
ear terms.

Typical Applications Stiff and oscillatory nonlinear
differential equations.

Nonlinear boundary value
problems and weak nonlin-
ear systems.

PDEs and solitary wave solu-
tions.

Distinct Advantage Improved conditioning and
accelerated convergence.

Flexible inversion options. Compatible with analytical
tools like He’s method.

Proposed Improvement Customized operator based
on the problem’s structure,
controlling higher-order term
growth.

Focus on operator inversion
only, no structural changes to
the equation.

Alteration of nonlinear terms’
form, base equation remains
unchanged.

Table 1: Comparison between NMADM and other Modified ADM Variants

c = f ′′(0)

α = −5◦ α = 5◦

Ha (Hartmann number) NMADM SADM NMADM SADM
0 -1.78545 -1.783225 -2.25333 -2.25429
200 -1.57552 -1.572131 -1.98479 -1.98461
400 -1.39632 -1.38969 -1.75465 -1.75529
600 -1.23815 -1.23185 -1.55609 -1.55813
800 -1.10261 -1.09500 -1.38393 -1.38726
1000 -0.98481 -0.976044 -1.23409 -1.23828
2000 -0.583545 -187.87 -1.72186 -0.72328

Table 2: (Example 1) c = f ′′(0) at different Ha, Re=10, α = 5 ◦ and α = −5 ◦.

SADM NMADM
c=0 c=20 c=100 c=0 c=20 c=100

a1 2.00411 2.00293 1.84544 2.00000313 2.0000061 1.99999991
a2 -0.0441241 0.237589 1.01826 -0.00000288 -0.0006482 0.0000002
a3 1.16996 -0.12382 -5.70828 1.00009 1.00033 0.999997

Table 3: (Example 3) Comparing value of y(1) = a1, y′(1) = a2 and y′′(1) = a3 at different c using SADM and
NMADM when y(x) = y0 + y1
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