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Abstract: Diabetic Retinopathy (DR) is a leading cause of vision loss, 
making accurate and interpretable detection critical.  This study proposes 
a hybrid interpretable machine–deep learning framework that integrates 
multimodal data for enhanced DR severity classification. The model 
combines unstructured fundus images from EyePACS, Messidor, and 
APTOS with structured clinical and lifestyle variables such as age, sex, 
HbA1c, BMI, blood pressure, and diabetes duration. Fundus images 
undergo preprocessing through resizing, normalization, augmentation, 
and noise reduction, while clinical data are imputed, normalized, and 
one-hot encoded. For feature extraction, EfficientNetV2, ResNet50, and 
Swin Transformer are applied to images, and XGBoost, LightGBM, and 
TabNet to clinical data. Features are fused via concatenation and 
attention, followed by classification using Logistic Regression, Random 
Forest, and MLP. Explainability is provided by Grad-CAM for imaging 
data and SHAP/LIME for clinical data, supporting clinical interpretability. The proposed model outperformed unimodal baselines, 
achieving 99.34% accuracy, 98.5% precision, 98.0% recall, 99.0% specificity, 98.2% F1-score, and 0.99 AUC-ROC, with a 10% gain 
over ResNet50 alone. Performance improvements included a 9% increase in recall and 8% in F1-score, alongside excellent calibration. 
Confusion matrix analysis confirmed balanced severity detection, and clinicians validated the interpretability outputs. This framework 
demonstrates robust accuracy, generalization, and clinical applicability for DR screening.  
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Introduction 

Diabetic retinopathy (DR), a microvascular complication 

secondary to diabetes, is a leading cause of preventable 

blindness globally and affected approximately 103 million 

individuals in 2020, with projected numbers to increase to 160 

million by 2045 [1]. Premised on slow retinal blood vessel 

damage, DR presents with lesions such as microaneurysms, 

hemorrhages, exudates and, at more severe stages, 

neovascularisation and complete loss of vision. Early detection 

is important to prevent vision loss of this magnitude, since 

treatment in the form of laser photocoagulation is possible and 

may halt the progression of the condition. However, there are 

barriers to effective DR screening, which are mostly on the 

international level because of variations in available 

ophthalmological expertise, especially in the low- and middle-

income countries, and due to the subjective and time-consuming 

nature of the fundamentals of manual fundus image analysis. 

These concerns are accentuated in rural and underserved areas 

in which the resources and infrastructure needed for frequent 

retinal examinations are depleted. AI is a game changer for the 

automated DR detection which can offer scalable and cost-
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effective solutions to fill these gaps. The cornerstone of AI 

algorithms for DR screening is non-mydriatic fundus 

photography associated with the gathering of detailed retinal 

architecture. Standardized fundus images with DR severity-

levels are also accessible in publicly available datasets such as 

the EyePACS (Eye Picture Archive for Computer Systems), 

Messidor, as well as APTOS, making it possible to apply diverse 

DL models [2]. State-of-the-art DL network architectures like 

ResNet50, EfficientNetV2 can hierarchically learn visual 

information from fundus images and employ it to identify subtle 

pathological signs, e.g., microaneurysms or hemorrhages, with 

excellent accuracy [3]. These are using convolutional neural 

network (CNNs) and transformer-based models to learn the 

complex patterns of the DR development. However, with the 

excellent performance, the unimodal model of DL only 

concentrates on the fundus photograph, ignoring the informative 

clinical record and life style that are closely linked to the DR risk 

[4]. History of patient demographics (age, gender), clinical 

biomarkers (HbA1c, blood pressure) and lifestyle indicators 

(BMI, duration of diabetes) offer an alternative view on risk and 
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degree of disease. For instance, higher HbA1c depicts poor 

glycaemic control, a DR risk factor, and a prolonged duration of 

diabetes. Models such as XGBoost, LightGBM, and TabNet offer 

the ability to model structured data to be able to capture the non-

linear relationships and feature interactions. Nevertheless, jointly 

utilizing diverse information sources, e.g., the unstructured 

fundus images and the structured clinical records, is technically 

challenging, since conventional models usually cannot well 

exploit their complementary information. The combination of 

multimodal inputs can be addressed by feature fusion methods, 

such as concatenation or attention mechanisms. Concatenation 

combines the feature vectors of the DL and ML models, while 

attention-based fusion learns to weigh the features according to 

their relevance and capture the cross-modal kernel interaction 

[5]. These techniques improve prediction accuracy by 

incorporating visual damage along with clinical risk factors. 

However, the practical issues to be addressed are the 

computational burden of fusion and the requirement of effective 

preprocessing. Fundus images need to be resized, normalized, 

augmented, and denoised to compensate for different image 

devices, and clinical data need missing value imputation, 

normalization, and one-hot encoding for categorical variables. 

One of the major limitations to the clinical application of machine 

learning DR detection systems is their interpretability [6]. 

Nevertheless, high-accuracy black-box models do not offer 

transparent decision-making and can consequently lead to 

distrust in the predictions of the clinician and a lack of integration 

in clinical routines. Explainability methods close this gap: Grad-

CAM gives heatmaps showing where fundus images, like in 

lesions, are important for classification, and SHAP and LIME 

report feature-importance scores for the clinical data, illustrating 

how different variables, such as HbA1c or diabetes duration, 

contribute to a prediction. Because these devices allow models 

to be validated and to be trusted as clinically useful [7]. 

Motivation 

The motivation of the method is to overcome the deficiency 

of current DR diagnosis systems. Single modality methods are 

effective for image-based analysis, but they are limited in their 

ability to summarize the full spectrum of patient-specific factors 

that impact DR, such as clinical biomarkers and lifestyle 

information [8]. Multimodal models combining fundus images 

and clinical information have demonstrated enhanced accuracy 

in recent studies, but are frequently less interpretable than 

monomodal models, thus hindering their clinical penetration. 

Given the worldwide shortage of ophthalmological expertise, 

especially in such underprivileged areas, it becomes necessary 

to build scalable, automated screening solutions that are not only 

accurate but interpretable. Furthermore, there continues to be a 

lack of generalizability in various populations and datasets due 

to differences in imaging protocols, and specifications of patient 

demographics. This research aims to create an ML- and DL-

based hybrid machine–deep learning architecture with a 

multimodal input, advanced feature fusion, and explainability, 

which integrates a robust and clinically viable framework for DR 

screening to alleviate healthcare disparities and mitigate the 

worldwide burden of vision loss. 

However, end-to-end CNN/Transformer models only encode 

abundant visual features without breaking down the 

complementary clinical and lifestyle data. This hybrid model uses 

DL for image patterns and ML for structured data, both using 

attention and surpassing benefits (e.g. +10% AUC lift and 

interpretability) that purely end-to-end models would be unable 

to deliver. 

Objectives  

Three primary aims are addressed in this study i.e. 

– The main contribution of this work is the formulation of a 

hybrid multimodal machine–deep learning architecture and 

the attributes namely, age, sex, HbA1c, BMI, diabetes 

duration, blood pressure. In addition to DR severity 

assessment based on fundus images collected from 

EyePACS, Messidor, and APTOS datasets, to improve the 

accuracy and robustness of DR severity classification. 

– To employ more elaborate feature fusion methods e.g., 

concatenation and attention mechanisms to integrate, in a 

synergistic manner, the DL-derived image features and the 

ML-derived clinical features, thus enhancing both diagnostic 

performance and generalization ability toward different 

datasets. 

– To increase the clinical interpretability with explainability 

methods such as Grad-CAM for visualizing the most salient 

location in fundus images and SHAP/LIME to interpret the 

component contributions from clinical data, validated by 

clinicians, to guarantee practical usefulness in real-world 

scenarios. 

Contribution 

This work provides several contributions to medicine and the 

field of ophthalmology i.e. 

– A new hybrid architecture that fuses multimodal information 

from a combination of current DL models (EfficientNetV2, 

ResNet50) trained on fundus images and ML models 

(XGBoost, LightGBM, TabNet) trained on clinical data and 

surpasses performance over unimodal and baseline 

multimodal strategies. 

– Advanced feature fusion strategies, such as concatenation 

and attention-based mechanisms, integrate heterogeneous 

information well for improved diagnosis and generalization. 

– Strong explainability with Grad-CAM, SHAP, and LIME 

validated with health professionals ensuring clinical 

interpretability and trust, which is mature for health adoption. 

– Thorough testing on different datasets (EyePACS, Messidor, 

APTOS) with different evaluation metrics (accuracy 99.34%, 

precision 98.5%, recall 98.0%, specificity 99.0%, F1-score 

98.2%, AUC-ROC 0.99, confusion matrix, and calibration 

curve) where the comparison between the proposed model 

with the traditional baseline models revealed that the AUC-

ROC score of the proposed model improved up until 10%, 

which illustrates the effectiveness of the implemented 

popular hybrid feature fusion and attention mechanism in 

improving the DR severity classification ability. 

– Impact on society including both social and economic 

aspects, Enabling Diabetic Retinopathy Screening for 

underprivileged areas with future integration to telemedicine 

platforms to ameliorate early detection accessibility. 

The proposed architecture also continues to have a 

preprocessing step for the two data modalities with fundus 

images to be rescaled, normalized, augmentation, and noise 

removal applied, and clinical information to have missing value 

imputation, normalization, and one-hot encoding performed. 

Some of them relied on DL model to extract the features of 

images and ML model to extract the features of clinical data, and 

then used two groups of features to perform Classification with 

Logistic Regression, Random Forest and MLP. This is done 

using Grad-CAM heatmaps and SHAP / LIME feature 

importance scores which are also validated with clinicians. 

Preliminary outcomes indicate that correct performances are 
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obtained for the severity of cases of DR and fairly fine probability 

estimates are output. This work uses multimodal data, advanced 

fusion, and explainability to advance DR detection, and a 

significant contribution to medical AI and global health. 

This paper is organized as follows: Section 2 presents a 

comprehensive literature review, Section 3 introduces the 

methodology and model architecture, Section 4 presents 

experimental results and the related analysis, and Section 5 

concludes the paper and provides insights for future research 

directions. 

Literature Review  

The literature review in this section will present the basic 

concepts of the proposed study regarding the hybrid machine–

deep learning algorithms applied to the DR detection problem. 

This will include a discussion of the pathogenesis of DR, with a 

focus on microvascular injury and lesion development 

(microaneurysms, hemorrhages, exudates). This section will 

describe how multimodal data will be integrated which includes 

the fundus image and clinical/lifestyle features (age, HbA1c, 

BMI). Deep learning [9] (EfficientNetV2, ResNet50) and machine 

learning (XGBoost, LightGBM), feature fusion (Concatenation, 

Attention-based), and explainability (Grad-CAM, SHAP/LIME) 

will be also introduced as the theory available for the design and 

the functions of the architecture. Some of them are described as: 

M. Akram et al. [10] have improved the detection of diabetic 

retinopathy with transfer learning of a DenseNet-121 model 

combined with Bayesian methods to compute the predictive 

uncertainty. Techniques such as Monte Carlo Dropout, Mean 

Field Variational Inference, and Deterministic Inference were 

used and yielded high classification accuracy (up to 97.68%) on 

a combined APTOS 2019 + DDR dataset. Uncertainty was 

measured by entropy and standard deviation. The outcomes 

prove superior performance and confirm the significance of 

uncertainty estimation for constructing trustable and clinically 

applicable DL systems. M. Moannaei et al. [11] have studied 

and evaluated the effectiveness of AI and ML algorithms in the 

diagnosis of diabetic retinopathy. The data consisted of 1.37 

million retinal images, and the algorithms revealed an average 

high sensitivity of 90.54% and a high specificity of 78.33%. The 

mean AUC was 0.94 but was found to be statistically 

nonsignificant from one study to another. Although they help 

assist diagnosis, the discriminative power of such algorithms is 

still somewhat limited, requiring further research to improve their 

scaling and reliability. AM. Mutawa et al. [12] have proposed a 

new paradigm for DR detection using MS-DRLBP features and 

CN-RBF hybrid classifiers with stochastic modeling. In vessel 

segmentation, it is enhanced with preprocessing and Otsu's 

thresholding. On public datasets, it gives excellent precision of 

96.10%, sensitivity of 95.35%, specificity of 97.06%, and 

accuracy of 96.10%. The proposed method overcomes some 

shortcomings in traditional diagnosis and emphasizes the 

potential of randomization-based neural networks in creating an 

accurate and affordable tool for early detection of DR and 

alleviation of diabetes vision loss. 

L. Dai et al. [13] have revealed a deep learning system for 

real-time diabetic retinopathy screening, lesion detection, and 

grading. Trained with 466,247 fundus images from 121,342 

diabetic patients, the DeepDR was tested with more than 

409,000 images from local and external data sources. It reached 

an exceptional AUC for lesion detection (0.967) and DR grading 

(0.972). External validation confirmed that the system can 

effectively detect all stages of diabetic retinopathy with AUCs 

ranging between 0.916 and 0.970. A. Mubashra et al. [14] have 

indicated that Diabetic retinopathy a complication of diabetes 

mellitus, is a condition wherein retinal blood vessels sustain 

damage that can lead to vision loss unless treated in due time. 

Present-day treatments, however, can at best only delay 

degeneration, thus stressing the need for automated detection. 

This research indicates a hybrid deep learning model using CNN 

with attention, assisted by machine learning-based NMF for 

feature optimization and classifiers (SVM, Decision Tree, Naive 

Bayes, KNN) for multiclass grading of DR. All classifiers were 

evaluated on two datasets: DDR (89.29% accuracy) and 

APTOS-Kaggle (84.1%), wherein KNN performed the best 

(89.55%, 85.78%), allowing for an efficient early diagnosis of DR. 

V. Sapra et al. [15] has indicated that the incidence of diabetes 

is 463 million globally with diabetic retinopathy being one of the 

leading causes of blindness. Early detection is important with 

COVID-19 and Kapila incidences. The treatment that we are 

proposing involves deep learning and enhanced feature 

selection, achieving an accuracy of around 93.5%, 

outperforming Random Forest 92.26% and other methods on the 

optimized datasets CFS-PSO, and Information Gain. 

MA. Mahmood et al. [16] have offered a hybrid model for 

early screening of diabetic retinopathy (DR) from fundus images, 

combining morphological processing and InceptionV3. Crucial 

steps include vessel segmentation, elimination of the optic disc 

and macula, and detection of microaneurysms and hemorrhages 

with adaptive histogram equalization. The model divides DR into 

five stages with an accuracy of 96.83%, it outperforms and 

surpasses from other recent methods. M. Sushith et al. [17] have 

recently proposed a hybrid CNN-RNN (convolutional and 

recurrent neural networks) architecture with attention for early 

detection and progression monitoring of diabetic retinopathy 

(DR) from retinal fundus images. Temporal constraints of across 

scans would be employed for increased diagnostic precision. 

Evaluation of this model on DRIVE, Kaggle, and Eyepacs 

datasets reveals that it largely outperforms old-school 

architectures, reaching up to 97.5% accuracy, evidencing the 

power of combining spatial and temporal features in medical 

imaging. KV. Naveen et al. [18] have proposed a hybrid model-

to-be-called-EffNet-SVM capable of classifying retinal fundus 

images into diabetic retinopathy (DR) or non-DR cases. Using 

EfficientNetV2-Small for feature extraction and RBF kernel SVM 

for classification, the model is trained on the APTOS dataset. It 

achieved an accuracy of 97.26% while having eight prescient 

models out beat, showcasing that it is a promising model to be 

integrated into CAD systems for a fast and accurate DR 

diagnosis. 

S. Rao et al. [19] have stated that MobileFusionNet is a new 

deep learning model with the combination of MobileNet and 

GoogleNet to detect diabetic retinopathy (DR) efficiently using 

mobile devices. This is implemented in Python with pre-

processing, HOG for feature extraction, and LDA for 

dimensionality reduction. Trained on large retinal image 

datasets, it boasted impressive accuracy of 98.19%, sensitivity, 

and specificity value while ensuring minimum energy 

consumption and inference time. TM. Devi et al. [20] have 

described a Deep Learning-based Dual Features Integrated 

Classification (DD-FIC) framework for the detection of diabetic 

retinopathy from retinal images. It employs Wavelet-integrated 

Retinex for denoising, an attention fusion model for global 

features, and vessel segmentation for local features. A Random 

Forest feature selector and a multi-class SVM are then used for 

the optimal classification of the five stages. Tested on the Kaggle 

dataset, the method boasts a detection accuracy of 98.6%.  SUR 

Khan et al. [21] have presented an ensemble deep-learning 

method for diabetic retinopathy detection. The process consists 

of image pre-processing (CLAHE, Gamma Correction, DWT), 

feature extraction using DenseNet169, MobileNetV1, and 
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Xception with Improved-Resblock, and a weighted ensemble 

optimized using the Salp Swarm Algorithm. The proposed 

method was tested on the APTOS 2019 dataset, where it 

provided an accuracy of 88.52%, showing better results in the 

early diagnosis of DR through a well-optimized multi-model 

integration. KA. Alavee et al. [22] have detected DR based on 

CNN and transfer learning. Their proposed work i.e. CNN 

improves over the state-of-the-art methods and attained the 

accuracy of 95.27%, besides incorporating XAI and Grad-CAM 

to support interpretivity and for practical application. 

Among the prevailing literature, the work of Mahmood et al. 

[16] is the most closely associated to this proposed work and 

therefore requires a complete comparison: 

Dataset & scale: Mahmood et al. [16] focused on the 

processing of fundus images with morphological processing and 

InceptionV3, but this work includes the evaluation of 3 different 

datasets (EyePACS, Messidor, APTOS) and combines synthetic 

features such as clinical to fusion in a multimodal setting.  

Preprocessing & features: Mahmood et al. [16] utilized 

vessel segmentation and classical preprocessing while this 

proposed pipeline also exploits the effectiveness of 

EfficientNetV2/ResNet50/Swin Transformer and attention fusion 

techniques, both crucial to capture the local lesion and wider 

context.  

Explainability & clinical validation: Mahmood et al. [16] 

demonstrated strong accuracy but this work focus on joint 

explainability (Grad-CAM + SHAP) and validation by clinicians 

across datasets, which is now explicitly highlight. 

Prior efforts have shown good performances using image, 

only DL architectures or hybrid attributes of image-based 

features and data, but few research works have systematically 

validated synthetic clinical features and/or integrated validated 

tabular data in explainable multimodal fusion frameworks. 

Moreover, available studies frequently do not incorporate either 

an attention-based fusion approach or such clinically-grounded 

explainability across datasets. This proposed study fills these 

gaps by (i) fusing image and validated synthetic clinical data, (ii) 

using attention-based fusion to achieve stronger cross-modal 

fusion, (iii) offering joint visual and tabular-level explainability 

(Grad-CAM, SHAP) validated by clinicians.  

The total summary of the literature survey is described in 

Table 1. 

Table 1: Fitting parameters for the batch adsorption of KP. 

Reference 
No 

Methods Adopted Innovation 

[10] 

DenseNet-121 with 
Transfer Learning, 
Bayesian methods 

(Monte Carlo Dropout, 
MFVI, Deterministic 

Inference), Uncertainty 
Estimation 

Introduced uncertainty-
aware DR diagnosis 
with high accuracy 

(97.68%) on 
APTOS+DDR; entropy 

and std dev for trustable 
clinical DL systems 

[11] 
Evaluation of AI/ML 
algorithms on 1.37 

million retinal images 

Large-scale 
performance analysis 

showing high sensitivity 
(90.54%) and specificity 
(78.33%), highlighting 
scaling and reliability 

issues 

[12] 

MS-DRLBP features + 
CN-RBF hybrid classifier 

with stochastic 
modeling, Otsu’s 

Thresholding 

High precision (96.10%) 
and robust vessel 

segmentation; 
emphasized the 

potential of randomized 
neural networks in DR 

diagnosis 

[13] 

DeepDR system trained 
on 466,247 images, 
lesion detection, and 

grading 

Real-time DR screening 
with outstanding AUC 

(0.967 for lesion 
detection, 0.972 for 
grading); externally 

Reference 
No 

Methods Adopted Innovation 

validated on 409K+ 
images 

[14] 

CNN with attention, NMF 
for feature optimization, 
ML classifiers (SVM, DT, 

NB, KNN) 

The hybrid model 
evaluated on DDR and 
APTOS datasets; KNN 

achieved the best 
accuracy, enabling 
efficient early DR 

detection 

[15] 

Deep learning with 
enhanced feature 

selection, evaluation on 
CFS-PSO, and 

Information Gain 
datasets 

Achieved 93.5% 
accuracy; achieved 
Random Forest and 
existing methods; 

integrated COVID-19 
context relevance 

[16] 

Morphological 
processing + Inception 

v3; vessel segmentation, 
optic disc/macula 
removal, adaptive 

histogram equalization 

Five-stage DR 
classification with 
96.83% accuracy; 

strong performance due 
to detailed structural 

feature extraction 

[17] 
Hybrid CNN + RNN with 
attention; uses temporal 

scan info 

Combined spatial and 
temporal features for DR 

monitoring; high 
accuracy (up to 97.5%) 
across DRIVE, Kaggle, 
and Eyepacs datasets 

[18] 

EffNet-SVM model; 
EfficientNetV2-Small for 
feature extraction, SVM 

for classification 

Reached 97.26% 
accuracy; beat 8 

existing models; fast, 
accurate CAD 

integration potential. 

[19] 

MobileFusionNet 
(MobileNet + 

GoogleNet), pre-
processing, HOG, LDA 

Mobile DR detection 
with 98.19% accuracy; 

optimized for low energy 
consumption and fast 

inference 

[20] 

DD-FIC framework; 
Wavelet-Retinex 

denoising, attention 
fusion, vessel 

segmentation, RF 
feature selection, multi-

class SVM 

Achieved 98.6% 
accuracy; combined 

global/local features and 
robust classifier 

ensemble for fine-
grained DR staging. 

[21] 

CLAHE, Gamma 
Correction, DWT; 

DenseNet169, 
MobileNetV1, Xception 

with Improved-Resblock; 
weighted ensemble 
optimized by SSA 

Achieved 88.52% on 
APTOS 2019; strong 

ensemble learning with 
optimization for early DR 

diagnosis. 

[22] 
CNN with Transfer 

Learning 

Achieved 95.27% on 
XAI Grad-CAM to 

support interpretivity and 
for practical application. 

Methodology  

Fig.1 describes the total methodology carried out in this 

proposed novel work. Before that the steps for the corresponding 

diagram have been expressed in the following manner: 

– Initially, the high-resolution images were taken from a fundus 

camera from the 3 datasets EyePACS, Messidor, and 

APTOS where all the clinical and lifestyle data was added 

over there. 

– Next, the retinal images with clinical and lifestyle data need 

to be pre-processed to enhance model learning. 

– Advanced CNN and Transformer-based models are 

employed to excerpt tabular properties from pre-processed 

retinal images. 

– Organized tabular data is managed using gradient boosting 

with tabular models to extract prognostic patterns. 

– Feature vectors coming from the image and clinical streams 

are merged by means of either simple concatenation or 

attention mechanisms to obtain a single unified 

representation. 

– This fused feature vector is subjected to supervised 

classification into the five severity stages of DR.  
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– Visual and statistical explainability techniques are applied to 

build transparency and trust in the predictions for both image 

and clinical data. 

– Quantitative metrics are employed to assess the 

performance of the model with respect to accuracy, 

reliability, and calibration. 

– The outcome of the model categorizes patients into five 

widely accepted stages of diabetic retinopathy. 

 

Figure (1): Total Workflow Diagram 

Input Source  

Another name for developing a diagnostic system by 

machine learning and particularly deep learning methods is 

dependent on the quality and variety of input data. Two major 

input sources are taken into account in an investigation of the 

proposed DR-recognition framework: fundus images, and clinical 

and lifestyle metadata. Such multimodal inputs, containing 

complimentary pieces of information, improve the accuracy and 

generalizability of the diagnostic system. 

Fundus Images: Fundus images of the retina appear to be 

visual scans of the internal surface of the eye, revealing 

structures such as the optic disc, macula, and blood vessels. 

Identifying DR-related abnormalities, for example, 

microaneurysms, hemorrhages, exudates, and 

neovascularization, requires these images [23]. Public fundus 

image datasets are the likes of EyePACS, Messidor, and APTOS 

2019, which offer a variety of labeled images. Usually, each 

image in these datasets is labeled with severity indicators 

varying from “No DR” to “Proliferative DR” for supervised 

learning. 

The images are resized (usually 224×224 pixels) and 

normalized for intensity to create a consistent input to the models 

while data augmentation using flipping, rotation, and zooming is 

applied. The approach stands to neutralize the adverse 

implications originating from the limited data of the model. 

Clinical and Lifestyle Data: Clinical data include 

physiological parameters like age, HbA1c (glycated hemoglobin 

levels), Body Mass Index (BMI), and blood pressure; lifestyle 

parameters include smoking status, diet, and exercise. These 

features therefore provide a non-visual but highly relevant 

picture regarding the overall diabetic status of the patient. 
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Despite the lack of any publicly available multimodal dataset 

with retinal fundus images and associated lifestyle data, the 

authors have selected clinical and lifestyle features synthetically. 

The features were modelled according to documented results in 

established diabetic retinopathy studies to be relevant to clinical 

practice based on HbA1C levels, BMI, blood sugar levels, and 

hypertension status. The data are released publicly and ethically 

approved to use in this study in further research. 

To ensure that only credible and unbiased results are 

evaluated for this proposed framework, stringent measures were 

taken to avoid data leakage between the training, validation and 

testing phases. For multimodal inputs, fundus images and their 

associated clinical/lifestyle features were always kept within the 

same partition during the data split, such that patient-level 

information never crossed between training and testing sets. 

Furthermore, in case synthetic clinical features are created to 

complement missing metadata, they are only generated on the 

training set and applied consistently to validation and test sets 

without preventing label leakage. This strategy enabled 

generalization ability of the model to be evaluated only using 

unseen data and not affected by overlapping patient records or 

shared feature distributions 

Generally, such metadata are represented in tabular form 

and require preprocessing, such as missing value imputation, 

normalization, and encoding of categorical variables. This data 

is used in conjunction with image data which helps the model to 

be able to pick out patterns that will be non-exist in just retinal 

images, to perform patient centric diagnosis of diabetic 

retinopathy. 

Pre-Processing  

The preprocessing stage is essential for the purpose of 

optimally serving feature extraction from visual and structured 

data as well as carrying out accurate classification in a hybrid 

diabetic retinopathy scenario. By this point any data 

discrepancies, data quality issues, or noise issues are all dealt 

with inside, the model does not have to worry about dealing with 

that later. 

Image Pre-Processing: Several transformation steps are 

applied to fundus images to make them clearer and more 

uniform: 

– Resizing: All images are resized to a fixed dimension, e.g., 

224×224 pixels, to ensure compatibility with any pre-trained 

deep learning model like those based on ResNet or 

EfficientNetV2.   

– Normalization: Pixel intensity values are normalized into 

either a [0, 1] or [-1, 1] range so as to give stability to gradient 

descent, thus getting converged quickly on the model.   

– It rescales strengths, but it can alter distribution. 

Normalization will reserve lesion visibility and pertain same 

transform to train/test.  

– Augmentation: Various random transformations like 

horizontal flipping, rotation, scaling, and brightness 

adjustment give something of a variety of clinical scenarios 

that might be encountered in the real world, thereby helping 

increase data variability and reduce overfitting.   

The authors addressed the issue of class imbalance by 

augmenting the data corresponding to the underrepresented 

stages of DR (e.g. Mild or Proliferative DR stage) stages and 

using class-weighted loss during training. That gave a balanced 

sensitivity in all classes which translated in the confusion matrix 

and recall values on the other hand. 

– Noise Removal: Gaussian blur or median filtering procedure 

is followed to remove irrelevant artifacts like camera noise or 

inconsistency in lighting while maintaining the lesion detail 

required for DR diagnosis. 

– The stated operations increase the contrast and crispness of 

images, thereby helping the CNN architectures to detect 

certain pathological features such as microaneurysms, 

hemorrhages, and exudates. 

– Clinical Data Pre-Processing: Generally, clinical and lifestyle 

data are numerical or categorical and therefore require 

specialized preprocessing:  

– Validation Approach: As the clinical/lifestyle variables are 

synthetically created for EyePACS, the proposed work 

conducted a validation process that leveraged (1) testing for 

distributional similarity against published cohort statistics 

and (2) comparison of summary statistics (mean, median) 

and numerical validate queries (histograms) of the data as 

well as (3) blinded clinical expert review to validate that the 

ranges and correlations appear clinical plausible, i.e., HbA1c 

vs. diabetes duration. Where differences were noted, 

parameter distributions were corrected and re-tested until 

acceptable. These steps were taken to ensure that the 

synthetic features are representative and appropriate for 

model training. 

– Missing Value Imputation: Missing records in patient data 

are treated using statistical imputation methods such as 

mean/median (for numerical features) and mode (for 

categorical features). 

– Normalization: Numerical features like age, BMI, or HbA1c 

are normalized into the same range so that they do not bias 

the training of the degrading model. 

– One-Hot Encoding: Categorical variables (like gender, 

smoking status, etc.) are transformed into binary vectors for 

the consideration of different machine learning algorithms. 

This pipeline ensures that both modalities, images, and 

tabular data, are clean, standardized, and at optimal structure to 

be fed for robust feature extraction in the subsequent stages. 

To enhance the data accuracy and reliability, missing values 

and noise in the clinical and lifestyle data were carefully handled 

in the work of the authors. For those continuous variables such 

as HbA1c, BMI, blood pressure, and duration of diabetes, the 

missing value imputation was still performed with median based 

method, which should have little impact due to large outliers. For 

the categorical covariates gender and smoking status, mode of 

imputation was used. To mitigate the impact of the noise/extreme 

points, they applied z-score based filtering step to identify the 

extreme points, which were subsequently substituted or replaced 

with some robust statistical estimators. In addition, a 

normalization of the continuous features to a certain range was 

used to guarantee the proportion of the coupled feature 

contribution in our multimodal feature fusion. This pre-

processing procedure ensures that the scaling and cleaning up 

of clinical data will certainly result in smoother and more accurate 

prediction of DR symptoms severity. 

Feature Extraction  

Raw input is converted into a meaningful numerical 

representation of training data through feature extraction. This 

mechanism employs deep learning for fundus images and 

machine leaning for clinical and lifestyle information. 

EfficientNetV2: This is a CNN which balances between 

accuracy and computational efficiency. It can scale the 

dimensions(size) of the network, such as depth, width, and 

resolution, using compound scaling [24], which enables to 

handle large-scale image classification such as DR detection. It 

sacrifices some of its layers in favor of convolution and batch 
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normalization, which makes it train more quickly. EfficientNetV2 

is the backbone network along with retinal fundus images in the 

contrast domain for extracting fine-grained spatial features. Its 

compound scaling improves the performance with the least 

increases in training time, thereby making it highly suited for DR 

datasets with an ever-fluctuating quality standard. It captures 

low-to-high-level representations like lesions, dilated vessels, 

and exudates essential for distinguishing between different 

levels of DR severity. Each convolution block Y accomplishes as: 

Y = ReLU(BN (W ∗ X + b))                                      (1) 

Where BN is batch Normalization, W is weight, X is the input 

vector, * is convolution, b is bias and ReLU is the activation 

function. 

ResNet50: It provides a very deep architecture that 

circumvents gradient vanishing problems, which is essential for 

DR detection tasks where delicate lesion patterns must be 

preserved across layers. This complements EfficientNetV2. It 

assists the ensemble framework in learning deep semantic 

features from retinal data and offers resilience against overfitting. 

Its resilience increases the fused model's dependability. It 

improves feature extraction by letting information pass through 

identity mappings, producing more accurate and deeper 

representations of retinal anomalies. 

Swin Transformer: It utilizes hierarchical and shifted window 

style self-attention mechanisms to model local and global 

context in retinal images. This is crucial for the diagnosis of DR, 

as subtlety microvascular changes need to be accurately 

localised. The proposed organization model also requires multi-

modal data i.e. fundus images and clinical data [25]. Through 

modality-specific branches or integrated multi-head attention 

mechanism, Swin Transformer’s architecture can be adapted to 

handle multiple modalities to extract more richer feature 

representations. And the ability of Swin Transformers to more 

easily capture long-term dependency helps it consistently learn 

better attention patterns than traditional CNNs do for most of the 

time. Especially in challenging cases, such may lead to more 

accurate DR grading or detection. 

By means of attention visualization, it can improve feature 

extraction, raise recognition accuracy, and offer interpretability—

all in line with the objective of a more efficient and explainable 

diabetic retinopathy recognition system. Now the attention 

mechanism can be expressed as: 

Attention(Q, K, V) = (
QKT

√dk
+ B)  V                    (2) 

Where, Q, K, and V are query, key, and value matrices, B is 

relative bias and dk is the dimension of the key. 

XGBoost: For tabular and structured clinical data such as 

patient age, blood sugar, blood pressure, and medical history, 

XGBoost (and its variants) are very powerful. By leveraging 

these with deep learning features, extracted from images and 

other modalities, rich analysis can be enabled [26]. Although 

XGBoost can integrate high-level features from images with 

clinical and demographic data, models based on deep learning, 

as Swin Transformer, are more effective in learning high-level 

image features. This hybrid approach capitalizes on the benefits 

of both models, thus improving overall performance. It provides 

pre-build resources such as partial dependence plots, SHAP 

(SHapley Additive exPlanations), and feature importance scores. 

These tools are in line with the objective of an interpretable 

framework by allowing you to understand which feature or clinical 

variables, contribute most to the prediction. 

Combining structured clinical data with deep learning i.e. 

image-based features, it functions as a potent, understandable 

classifier. For medical uses like diabetic retinopathy detection, 

where clinical trust and adoption depend on knowledge of the 

decision process, its capacity to offer clear, accurate predictions 

makes it particularly valuable. The objective function of this 

particular algorithm is: 

L =  ∑ l (yj, ŷ(t)
j
) + ∑ μ (fm)t

k=1
n
j=1                             (3) 

Where, l (yj, ŷ(t)
j
)is the loss function, ŷ(t) is the prediction of 

tth boosting and µ is the regularization term. 

LightGBM: DR detection often relies on multi-modal data 

such as retina image processed by deep learning models, clinical 

meta-data (e.g., blood glucose levels, patient age, disease 

duration), and perhaps textual data (e.g. medical reports). 

Heterogeneous tabular data is something LightGBM excels at for 

clinical databases [27]. It is an ideal method for incorporating 

non-image data along with retinal image-based features learned 

using deep learning models due to its inherent capabilities to 

handle categorical features directly without one-hot encoding 

and ability to handle high-dimensional data effectively. For 

instance, a CNN may extract spatial components of fundus 

images (e.g., microaneurysms and hemorrhages), and 

LightGBM can combine such components with clinical features 

to boost the accuracy of DR classification. By utilizing 

LightGBM's power of structured data modeling, this hybrid model 

aids the data iteratively learnt during the unstructured image data 

deep learning process. 

Ideal for both speed and accuracy, LightGBM is a gradient 

boosting framework that is very likely to be useful for DR 

detection. With a lower computational burden than other 

boosting algorithms such as XGBoost, its histogram-based 

learning and leaf-wise tree growth enable it to achieve high 

performance. In your context of your work, LightGBM is capable 

of effectively modeling complex patterns in multimodal data and 

thus improving the overall performance of the hybrid scheme. It 

could, for instance, capture non-linear associations between 

clinical variables (e.g., blood pressure, diabetes duration and DR 

severity) which could be overlooked by simpler models. 

TabNet: A key part of multimodal input for DR recognition, 

structured tabular data is something TabNet is proficient at 

processing [28]. For instance, in TabNet, patient metadata like 

HbA1c levels, diabetes duration and blood pressure are fed into 

the network, while the retinal images are processed using a 

convolutional neural network (CNN). Using a sequential attention 

mechanism, TabNet chooses pertinent features at each decision 

point such that important clinical variables—such as high 

glucose levels connected to DR severity—are given top priority, 

so improving the capacity of the model to combine tabular data 

with image-based insights. 

TabNet can extract significant patterns from clinical tabular 

data. Whereas both branches' outputs are aggregated for final 

classification, the TabNet branch can produce feature 

importance scores for explainability. This hybrid method 

guarantees that addressing the multimodal character of the 

problem, both structured i.e. tabular, and unstructured i.e. image 

data contributes to DR recognition. Furthermore, practical for 

real-world implementation is TabNet's capacity to mask missing 

data. 

Feature Fusion  

Formerly, the feature fusion process integrated multiple data 

sources into one unique representation for diagnosis. When 

talking about diabetic retinopathy, multimodal data consists of 

information gathered from the fundus images and 

clinical/lifestyle data [29], each providing complementary views: 

retinal images primarily represent structural retinal 
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abnormalities, while clinical data features various metabolic and 

systemic factors of the disease. From the effective fusion of 

these two modalities, a learned model may be able to generate 

a more complete context-dependent representation of disease 

severity: this is the very essence of the proposed methodology. 

Pre-trained deep learning models, in this case, 

EfficientNetV2 and ResNet50 are employed to perform image 

features extraction to target different retinal anomalies including 

microaneurysms, haemorrhages, and exudates. In the 

meantime, such clinical variables as HbA1c, BMI, and blood 

pressure are treated separately by the machine learning models, 

such as XGBoost and TabNet. These two groups of features 

include image and clinical data that will be fused either using 

concatenation or through the use of attention-based methods. 

Concatenation merely concatenates these sets of features into a 

single vector, whereas attention mechanisms dynamically 

balance out the features given the significance of the feature 

sets, like putting emphasized attention on the locations of lesions 

in the fundus images or critical points of clinical data such as the 

levels of HbA1c. 

Early Fusion: Early fusion is the straightforward fusion 

technique whereby feature vectors are concatenated into a 

unified vector. It assumes equal importance for all feature 

dimensions and allows the downstream classifier (MLP, Random 

Forest) to learn nonlinear projections. Early fusion is simple to 

implement but cannot assess salient and redundant features, 

especially when modalities are of different qualities or levels of 

granularity. 

To overcome early fusion's constraints, the research 

presents attention-based fusion more dynamic and learnable 

method. Paying their respect to human cognition, attention gives 

the model freedom to attend to parts of each modality that are 

the most relevant. 

Mathematically, attention weights are estimated as: 

𝑎𝑖 =  
𝑒𝑤𝑖𝑓𝑖

∑ 𝑒
𝑤𝑗𝑓𝑗

𝑗

                           (4) 

𝑓𝑎𝑡𝑡𝑛 =  ∑ 𝑎𝑖𝑓𝑖𝑖                                            (5) 

Where ai is the attention of feature vector fi and wi is the 

learning parameter. 

Under this setup, the more informative features are weighed 

more heavily in the final representation, with softmax 

normalization ensuring that the set weights add up to one for 

interpretability. 

This grading of diabetic retinopathy into stages from No DR 

to the Proliferative DR is based on the observation of visual 

symptoms (lesions, neovascularization) and systemic cues (age, 

diabetes control). Fusion enables the system to mimic the 

cognitive process of a clinician combining image evidence with 

patient history. Moreover, this arrangement is well connected 

with explainability tools like Grad-CAM (images) and SHAP 

(tabular features), hence allowing clinical interpretability for the 

model. 

DR Severity Classification  

The final stage of the hybrid framework is to categorize the 

severity of diabetic retinopathy (DR) into clinically established 

categories in terms of the raw data exploited, as well as the use 

of the multimodal fused features. Such categorization is 

essential for timely intervention and planning of management. 

DR appears sequentially, starting with No DR, then Mild, 

Moderate, Severe, and Proliferative. Every stage needs a 

particular intervention. 

The classifier in this pipeline is supposed to receive the 

unified feature vector containing fused features from fundus 

images extracted through deep learning and the clinical/lifestyle 

data extracted through a machine learning paradigm and classify 

it into the correct DR stage. This is achieved by training three 

classifiers within a supervised learning framework with labeled 

datasets. 

Multilayer Perceptron (MLP): MLP is a fully connected DNN 

for learning complex patterns in the fused feature space. It is very 

good at merging deep-learning image features and machine-

learning clinical features. In this hybrid work, the MLP takes as 

input a fused feature vector, one or more hidden layers with 

nonlinear activations typically ReLU, and a final softmax layer 

with five units, corresponding to the five DR severity classes for 

output [30]. It can handle extremely high-dimensional nonlinear 

multimodal feature vectors and learn interactions among visual 

and clinical features. 

Logistic Regression: It is a classic and explainable linear 

classifier, usually belonging to a baseline model for multi-class 

problems. Being unable to capture complex interactions among 

features, it serves as a great baseline due to its mathematical 

simplicity and high interpretability. It understands which clinical 

variables have the most influence on the DR stage. 

Random Forest: It is an ensemble learning method based on 

the construction of multiple decision trees during training and 

predicting the class that is the mode of the classes of the 

individual trees for classification. It is ideally suited to structured 

data such as clinical/lifestyle features but also generalizes well 

to fused feature spaces. RF accomplishes this by training many 

decision trees on bootstrapped samples of the training data with 

each split in a tree considering a random subset of features so 

as to encourage diversity among trees [31]. It confirms 

predictions made by deep learning-based classifiers and, when 

used with SHAP or feature importance plots, contributes to 

interpretability. 

Each model stands for a special power in this research 

pipeline: 

– MLP harnesses the fused richness of image + clinical data 

making it best for end-to-end performance. 

– Logistic Regression gives baseline interpretability. 

– Random Forest works more consistently as a fallback and 

also offers model explainability through tree-based insights. 

Explainability  

Human interpretable and understandable explainability in 

artificial intelligence (AI) and machine learning (ML) means that 

different domain experts, such as clinicians, should be able to 

understand the logic of the model. In diabetic retinopathy 

detection, the explanation must come first before clinical trust, 

transparency, and ethical and regulatory enforcement. 

Accordingly, the above work uniquely combines visual and 

structured explainability for a holistic and interpretable decision-

making pipeline [32]. 

DR is a chronic disease with known morphological modifications 

in the retina. Although deep learning can draw up very precise 

rules for detecting such changes, a ML model such as XGBoost 

or TabNet on clinical data can present risk scores without the 

rationale of why they placed a patient in particular DR severity. 

Explainability for Image Based Gradient-weighted Class 

Activation Mapping (Grad-CAM) is a visual explanation to reveal 

the knowledge learnt by the CNNs to take decisions [33]. The 

high scores of the image were accentuated by this technique. 

It has estimated the gradient of yc which is known as a score 

of class c concerning activation map Ak and achieved the weight 

as: 
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ak
c =  

1

z
 ∑ ∑

∂yc

∂Ai,j
kji              (6) 

Grad-CAM heatmap is specified as: 

LGrad−CAM
c = ReLU (∑ ac

k
k Ak)                         (7) 

 
The Grad-CAM produces a high-level visual explanation of 

microaneurysms, hemorrhages, and neovascularization on the 

fundus image and thus assists ophthalmologists in determining 

whether the model is looking at the correct pathological 

locations. 

Explainability for Structured Based Model as SHAP: SHAP 

(SHapley Additive exPlanations) is a unified framework based on 

concepts borrowed from cooperative game theory that explain 

the output of any ML model by computing each feature's 

contribution to a prediction. 

Here each feature i is allotted a SHAP value ϕ, which 

signifies its marginal involvement to the predicted outcome i.e. 

Where ϕ0 is the base value and ϕi is the SHAP value shows 

how many features i that used for the model's outcome from the 

base value. 

This aids in specifying, locally i.e., for any particular patient, 

and globally i.e., across the dataset, how attributes such as age, 

HbA1c, and BMI contribute to the classification of the severity of 

DR regarding feature importance on structured data where the 

model decisions must be meaningful and explainable in medical 

terms. 

Explainability for Structured Based Model as LIME: LIME 

(Local Interpretable Model-Agnostic Explanations) tries to 

approximate a complex model locally with an interpretable 

usually linear model. This is done by disturbing some features 

while recording the changes in prediction [34]. 

For a given instance p, the above technique substitutes the 

linear model as: 

𝑓𝑝 =  𝛽0 + ∑ 𝛽𝑖  𝑝𝑖𝑖                               (9) 

Where βi is the local weight of attribute i. 

It provides a rationale for each patient data to make sure, the 

decision of labeling a patient as Severe DR or Mild DR could be 

understood by the clinicians regarding which attributes were 

important. 

To better understand reasons behind the model decisions, 

and to open up “black-box” into decision-making of proposed 

model, the proposed work generated further Grad-CAM and 

SHAP visualizations. These visualize the keys of retinal lesion 

activations and contributions to discriminative regions. 

Such sample outputs along with high resolution heatmaps of 

each DR severity grade can be found in supplementary material 

to get a more insight on the working of the method as well as 

reproducibility. 

Results and Discussion  

The proposed framework has included the experimental 

setup with some elements which has described as: 

Here the researchers have used hardware that includes 

NVIDIA A100 GPU, 32GB RAM, software like PyTorch for DL, 

scikit-learn for ML, and hyperparameters where the learning rate 

is 0.001, batch size is 32and epochs are 50. It also describes the 

training/validation/test split like 70/10/20 for EyePACS and 80/20 

for Messidor/APTOS. The reference method baselines such as 

the unimodal ResNet50 and the multimodal without attention 

are compared with the proposed model i.e. 

EfficientNetV2+XGBoost with attention. 

Dataset Description  

Three dissimilar standard datasets are used to confirm the 

proposed method. 

EyePACS: It is also known as the Kaggle Diabetic 

Retinopathy Detection dataset and is one of the biggest 

repositories with retinal fundus images, widely exploited for DR 

detection research. It contains approximately 88,705 high-

resolution color fundus photographs, with 53,579 for training and 

35,126 for testing, captured under variable imaging conditions 

(e.g., different cameras, locations, lighting). Each image is 

labeled with a DR severity level on the International Clinical 

Diabetic Retinopathy (ICDR) scale: No DR (0), Mild (1), 

Moderate (2), Severe (3), and Proliferative (4). About one-fourth 

of the images turn out to be ungradable due to issues like 

artifacts, bad focusing, or overexposure/underexposure; this 

renders a test for model robustness. It must be noted that 

clinical/lifestyle data are minimal; some metadata such as patient 

ID and laterality are available, yet no broader variables like 

HbA1c or BMI, would need to be supplemented from an outside 

source for your multimodal approach. 

Messidor: It counts 1,200 fundus images benefiting from 

multi-expert adjudication resulting in reduced label noise 

compared to single-grader datasets such as EyePACS. The 

images are maintained at high quality, and captured under 

controlled conditions; yet, their lesser size diminishes the training 

scale. No structured clinical/lifestyle data such as HbA1c, or 

diabetes duration are provided, which must be obtained 

externally for the proposed research's ML pipeline. 

APTOS: Collected from Aravind Eye Hospital in India, the 

2019 APTOS Blindness Detection dataset comprises 5,590 

macula-centered fundus images. These images are labeled with 

DR severity levels on the ICDR scale and are taken with many 

camera types, causing variability in their resolution and quality 

e.g., noise, and artifacts. While this variety strengthens the 

model's view toward being generalized, it tests the model on 

robustness. As with EyePACS and Messidor, weaning out from 

all gross clinical/lifestyle data APTOS offers only image-based 

annotations. 

Clinical and lifestyle information was obtained externally, 

and patients were attempted to be matched by the use of key 

variables, such as age, gender, and the history of diabetes. As 

far as, EyePACS, Messidor, and APTOS datasets lack patient 

identification matching them to clinical data, it is possible that, 

there is a mismatch between the patients in these datasets. This 

may add noise to the analysis, but we used robust normalization 

procedures to minimize possible mismatching. Future studies 

will center on datasets with direct linkage of patients in order to 

provide improved multimodal fusion. In the context of this study, 

the retinal fundus image dataset will be called unstructured data 

since they are not in a fixed-schema or tabular format and have 

to be processed using computer-vision solutions. On the other 

hand, the clinical and lifestyle data can be classified as 

structured data because they are structured in labelled columns 

and have specific attributes related to patient age, BMI, HbA1c 

levels, blood pressure, and smoking history and can be directly 

analyzed numerically and in categories. This is an important 

difference pointed out by our multimodal framework, because on 

image data the authors can use one type of processing pipeline 

and on tabular data can use another. 

APTOS 2019 and Messidor contain mainly retinal images 

studied without any structured clinical or lifestyle data. To enable 

multimodality-based learning, the authors have added synthetic 

lifestyle features constructed by statistical distributions from 

clinical studies published on diabetic retinopathy. Parameters 

such as HbA1c, BMI, blood glucose, blood pressure, smoking 
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status, and duration of diabetes were simulated using Gaussian 

and uniform sampling strategies based on aggregated clinical 

statistics reported in population-based studies.  

Two novel tables, Table 2 and Table 3 summarize fundus 

image datasets and estimated clinical/lifestyle data for this study 

respectively which are provided below. 

Table (2): Fundus Image Dataset. 

Dataset Images 
DR Severity 

Classes 
Labelling Challenges 

EyePACS 88705 

No DR, Mild, 
Moderate, 
Severe, 

Proliferative 

Single-
grader 

diverse 
conditions 

Messidor 1200 

No DR, Mild, 
Moderate, 
Severe, 

Proliferative 

Multi-
expert 

Smaller 
size, high-

quality 

APTOS 5590 

No DR, Mild, 
Moderate, 
Severe, 

Proliferative 

Single-
grader 

Camera 
variability, 

noise 

Table (3): Clinical/Lifestyle Data. 

Variable Type Description 
Significance to 

DR 

Age Numerical 
Describe about 
patient's age 

Older age 
increases DR risk 

Gender Categorical Male/Female 
Gender influences 

DR prevalence 

HbA1c Numerical 
Glycated 

hemoglobin 

High HbA1c 
indicates poor 

control 

BMI Numerical Body Mass Index 
Obesity correlates 
with DR severity 

Blood 
Pressure 

Numerical Systolic/diastolic 
Hypertension 

exacerbates DR 

Diabetes 
Duration 

Numerical 
Years since 

diabetes 
diagnosis 

Longer duration 
increases DR risk. 

From the above table it has specified as single grade 

indicates classification performance where each retinal image is 

labelled with one of the diabetic retinopathy stages whereas 

multi grade indicates performance assessment in which the 

model is equally informed on overlapping features of two or more 

diabetic retinopathy stages, and which describes how effectively 

the model would handles blurred cases, this parsing illustrates 

how the proposed framework is being resilient to standard and 

complex grading situations. 

These tables give a transparent original outline of the 

datasets that strengthen the multimodal approach in this 

research and emphasize the necessity for external clinical data. 

Various datasets are selected to ensure diversity in image 

quality, demographics, and levels of DR severity. Standardized 

resizing, normalization, and augmentation are applied to them as 

pre-processing procedures, so as to guarantee the extraction of 

features in a consistent manner across the deep learning models 

[35-37]. 

The hybrid architecture of the proposed model that merges 

deep learning i.e. EfficientNetV2, ResNet50, Swin Transformer 

for fundus images, machine learning i.e. XGBoost, LightGBM, 

TabNet for clinical data, and feature fusion methods i.e. 

concatenation, attention-based, has attained the performance 

across all datasets under consideration. Table 4 contains the 

quantitative results, depicting the model's performance with 

different classifiers i.e. Logistic Regression, Random Forest, 

MLP, and fusion strategies. 

This hybrid architecture provided the backbone for the 

architecture: deep learning for fundus images, machine learning 

for clinical data, and feature fusion via concatenation or attention 

mechanisms. The below Table 4 presents the results, including 

measurements for three classifiers-Multi-Layer Perceptron 

(MLP), Random Forest (RF), and Logistic Regression (LR)-over 

EyePACS, Messidor, and APTOS, demonstrating both fusion 

techniques. The best accuracy i.e. 99.34% was recorded on 

EyePACS by the MLP in an attention-fusion manner, in which 

features were dynamically weighted according to visual lesions, 

e.g., microaneurysms, and clinical risk factors, e.g., HbA1c 

levels. Whereas RF and LR gave slightly lower accuracies, e.g., 

98.20% and 97.90%, respectively, on EyePACS with attention-

based fusion, they provided very good robustness across 

classifier types. Attention-based fusion was better than 

concatenation in all experiments of accuracy, as it gives higher 

priority to relevant features. 

The confusion matrix shown in Fig.2, presented the best-

performing proposed framework which obtained 99.34% 

accuracy. The above table gives a clear effect on the 

classification results among all DR severity levels Incorporating 

all of the 12 confusion matrices would be too redundant since the 

occurrences are repeated and the variability in their performance 

has already been presented numerically in Table-IV. The deep 

learning and machine learning hybridization reduces 

misclassifications of certain DR severity classes, particularly of 

an early stage, Mild DR, thereby securing time for intervention. 

This aligns with the aim of this research pertaining to accurate 

and fair classification across different datasets. 

To mitigate the bias of the imbalance in the dataset of the 

different severity of DR, the authors have implemented extensive 

data augmentation techniques, especially on the 

underrepresented classes, such as Mild and Proliferative DR, so 

that the model does not overfit towards the majority class (No 

DR and Moderate DR). In addition, this work has included a 

class-weighted loss function during training, which dynamically 

gave more penalty to misclassified minority classes. This 

strategy helped improve the recall for rare DR stages very well, 

as shown in the confusion matrix in Fig. 2. The presence of a 

balanced performance across all 5 severity levels in the matrix 

gives an appreciation that the model mitigates the imbalance 

issue and performs well even when the minority classes are 

concerned without losing overall detection accuracy. 

 

Figure (2): Confusion Matrix for the Best Performing Attention-Fusion 
MLP with five DR Severity Stages. 

The ROC curve, shown in Fig.3 with an AUC-ROC of 0.99, 

justifies the theoretical adequacy concerning the multimodal 

solution provided by the hybrid model. Consequently, deep-

learning-derived features plus clinical data, such as the duration 

of diabetes, account for near absolute separability of classes, 

especially for Proliferative DR cases. Attention-based fusion 

helps concentrate on relevant features, thus aligning with the 

proposition of this research that integrating clinical and visual 

inputs increases discriminatory power. This increased power, in 
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turn, provides the potential to detect the disease reliably across 

datasets. 

Table (4):  Performance comparison of classifiers (MLP, RF, LR) using Attention and Concatenation fusion strategies across three diabetic retinopathy datasets 

(EyePACS, Messidor, APTOS). 

Datasets Classifier Fusion curacy (%) 
Precision 

(%) 
Recall (%) Specificity (%) F1 Score (%) 

AUC-
ROC 

EyePACS 

MLP Attention 99.34 98.50 98.00 99.00 98.20 0.99 

MLP Concatenation 98.80 97.90 97.50 98.60 97.70 0.98 

RF Attention 98.20 97.40 97.00 98.30 97.20 0.98 

RF Concatenation 97.80 97.00 96.60 97.90 96.80 0.97 

LR Attention 97.90 97.10 96.70 98.00 96.90 0.97 

LR Concatenation 97.50 96.70 96.30 97.70 96.50 0.97 

Messidor 

MLP Attention 98.70 97.80 97.40 98.50 97.60 0.98 

MLP Concatenation 98.20 97.30 96.90 98.10 97.10 0.98 

RF Attention 97.90 97.00 96.60 96.20 97.80 0.97 

RF Concatenation 97.50 96.60 96.20 97.40 96.40 0.97 

LR Attention 97.60 96.80 96.40 97.60 96.50 0.97 

LR Concatenation 97.20 96.40 96.00 97.20 96.20 0.96 

APTOS 

MLP Attention 98.50 97.60 97.20 98.30 97.40 0.98 

MLP Concatenation 98.10 97.20 97.60 97.90 96.90 0.98 

RF Attention 97.90 96.80 96.60 97.80 96.70 0.97 

RF Concatenation 97.40 96.50 96.20 97.40 96.40 0.97 

LR Attention 97.60 96.60 96.30 97.60 96.50 0.97 

LR Concatenation 97.20 96.30 95.70 97.20 96.10 0.96 

With slopes near unity, the calibration curve shown in Fig.4 

emphasizes theoretically sound reliability of model probability 

estimates, which is of utmost importance in clinical screening of 

DR. Multimodal fusion with deep learning methods, e.g., 

ResNet50, and machine learning methods, e.g., TabNet, 

maintains predicted probabilities' consistency with true 

outcomes. Attention mechanisms help improve calibration by 

weighting clinical features such as HbA1c. This promotes the 

research objective of trustworthy automation, facilitating 

clinicians in trusting the predictions for early intervention on the 

datasets. 

 
Figure (3): Multiclass ROC Curves for the Proposed Hybrid Model 
Specifying Strong Inequitable Performance Across DR Stages. 

 
Figure (4): Calibration Curve Comparing Forecasted Probabilities vs 
Experimental Outcomes for the Planned Model. 

The SHAP plot shown in Fig.5, also throws light on the 

theoretical importance of clinical features such as HbA1c and 

diabetes duration in predicting DR, justifying the multimodal 

approach. SHAP strives to clarify the DC process by quantifying 

contributions and explaining how clinical risk guide 

classifications are, complementing deep learning in lesion 

detection with an explanation of clinical risk factors. The SHAP 

values for HbA1c indicate more severe DR caused by HbA1c, 

thereby establishing clinical trust and complementing early 

detection efforts across all datasets. 

Grad-CAM heatmaps shown in Fig. 6 are visualized by 

overlaying them on a fundus image that outlines regions such as 

lesions involved in DR severity-grade predictions so as to 

enhance explainability. It is through Grad-CAM visualization that 

the hybrid models are theoretically validated as interpretable 

models by highlighting the fundus image areas that generate 

Severe DR predictions. Grad-CAM is applied to the deep 

learning outputs, thus showing the lesion-oriented attention from 

the model and providing a complementary analysis of the clinical 

features. Being validated on EyePACS, Messidor, and APTOS, 

the heatmap's lesion focus further assists in detecting early and 

severe DR cases, thus aiding clinical decisions. 

 

Figure (5): SHAP Feature Importance Curve Where Positive/Negative 
SHAP Values Indicate Feature Contributions that increase/decrease 
forecasted DR Severity. 
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Figure (6): Grad-CAM Heatmap Covered on Illustrative Fundus Pictures 
for Selected DR Stages. 

The new results validate higher performance by the hybrid 

architecture, i.e. 99.34% accuracy with 0.99 AUC-ROC, and 

interpretability for DR detection across the EyePACS, Messidor, 

and APTOS. Multimodal fusion, which incorporates deep 

learning and clinical data, outperforms recent methods such as 

DeepDR by having an AUC of 0.943. Grad-CAM and SHAP 

visualization tools promote clinical trust by revealing lesion and 

feature contributions. 

Conclusion and Future Work  

The proposed DR detection approach amalgamating 

machine and deep learning produces exceptional accuracies: 

99.34%, and AUC-ROC of 0.99 for three data sets-EyePACS, 

Messidor, and APTOS. By fusing deep learning i.e. 

EfficientNetV2, ResNet50, and Swin Transformer to analyse the 

fundus images along with machine learning i.e. XGBoost, 

LightGBM, TabNet for treatment clinical data such as HbA1c and 

diabetes duration with attention-based fusion, it assures a robust 

multiclass classification. Interpretability was achieved by 

showing the lesion regions through Grad-CAM heatmaps 

validated across datasets and clinical predictors such as SHAP 

analysis. The visualizations backed up with quantitative metrics 

i.e. recall of 98.0% and specificity of 99.0% would allow clinicians 

to place trust in the automation behind early detection of diabetic 

retinopathy and prevention of vision loss. While it was stated that 

clinicians have endorsed the use of Grad-CAM heatmaps in 100 

APTOS test images for variations in image resolution and label 

noise, this is not an exclusive validation, highlighting the strength 

and therefore the likelihood of the model to be deployed clinically 

in the real world. 

Future work in scaling and access enhancement would focus 

on computational complexity optimization, thus allowing 

deployment into sites where screening is conducted remotely 

and constrained by scarce resources, such as mobile platforms. 

In addition, the integration of more multimodal data such as OCT 

or genetic markers would potentially increase diagnostic 

accuracy. Real-time feedback from clinicians could be 

incorporated into refining Grad-CAM and SHAP interpretations, 

aligning them to clinical workflows and further enhancing 

interpretability. These developments support the path toward a 

scalable, equitable, and interpretable approach for DR 

screening, thereby lifting the global burden of diabetic vision 

loss. 

 

Disclosure Statement 

– Ethics approval and consent to participate: Not 

applicable 

– Consent for publication: Not applicable 

– Availability of data and materials: Data is available on 

appropriate request to corresponding author. 

– Author's contribution: The authors confirm contribution to 

the paper as follows: Conceptualization, Formal analysis, 

Methodology, Validation, Visualization, Writing – original 

draft, Writing – review & editing: Premananda Sahu, 

Ashwani Kumar, Rituraj Jain, Kamal Upreti, Dileep Kumar 

Yadav, G V Radhakrishnan. All authors reviewed the 

results and approved the final version of the manuscript.  

– Funding: The author(s) received no financial support for 

the research, authorship, and/or publication of this article.  

– Conflicts of interest: The authors declare that there is no 

conflict of interest regarding the publication of this article  

– Acknowledgements: Not applicable 

Open Access 

This article is licensed under a Creative Commons 

Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original 

author(s) and the source, provide a link to the Creative 

Commons licence, and indicate if changes were made. The 

images or other third party material in this article are included in 

the article's Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included 

in the article's Creative Commons licence and your intended use 

is not permitted by statutory regulation or exceeds the permitted 

use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit 

https://creativecommons.org/licenses/by-nc/4.0/  

References 

1] Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, 

Sargheini N, Vo TTKS, et al. Diabetic retinopathy as the 

leading cause of blindness and early predictor of cascading 

complications—risks and mitigation. The EPMA Journal 

[Internet]. 2023 Feb 13;14(1):21–42. Available from: 

https://doi.org/10.1007/s13167-023-00314-8 

2] Grzybowski A, Jin K, Zhou J, Pan X, Wang M, Ye J, et al. 

Retina Fundus Photograph-Based Artificial Intelligence 

Algorithms in Medicine: A Systematic Review. 

Ophthalmology and Therapy [Internet]. 2024 Jun 

24;13(8):2125–49. Available from: 

https://doi.org/10.1007/s40123-024-00981-4 

3] Gupta M, Gupta S, Palanisamy G, Nisha JS, Goutham V, 

Kumar SA, et al. A Comprehensive Survey on Detection of 

Ocular and Non-Ocular diseases using Color Fundus 

Images. IEEE Access [Internet]. 2024 Jan 1;1. Available 

from: https://doi.org/10.1109/access.2024.3517700 

4] Elsharkawy M, Elrazzaz M, Sharafeldeen A, Alhalabi M, 

Khalifa F, Soliman A, Elnakib A, Mahmoud A, Ghazal M, El-

Daydamony E, Atwan A. The role of different retinal imaging 

modalities in predicting progression of diabetic retinopathy: 

A survey. Sensors. 2022 May 4;22(9):3490. Available from: 

https://doi.org/10.3390/s22093490 

5] Duan J, Xiong J, Li Y, Ding W. Deep learning based 

multimodal biomedical data fusion: An overview and 

https://creativecommons.org/licenses/by-nc/4.0/


 

13 
An - Najah Univ. J. Res. (N. Sc.) Vol. ×× (×),  ××××            Published: An-Najah National University, Nablus, Palestine 

comparative review. Information Fusion [Internet]. 2024 Dec 

1;112:102536. Available from: 

https://doi.org/10.1016/j.inffus.2024.102536 

6] Teng Q, Liu Z, Song Y, Han K, Lu Y. A survey on the 

interpretability of deep learning in medical diagnosis. 

Multimedia Systems. 2022 Dec;28(6):2335-55. Available 

from: https://doi.org/10.1007/s00530-022-00960-4 

7] An S, Teo K, McConnell MV, Marshall J, Galloway C, 

Squirrell D. AI explainability in oculomics: how it works, its 

role in establishing trust, and what still needs to be 

addressed. Progress in Retinal and Eye Research [Internet]. 

2025 Mar 1;101352. Available from: 

https://doi.org/10.1016/j.preteyeres.2025.101352 

8] Galić I, Habijan M, Leventić H, Romić K. Machine learning 

empowering personalized medicine: A comprehensive 

review of medical image analysis methods. Electronics. 

2023 Oct 25;12(21):4411. Available from: 

https://doi.org/10.3390/electronics12214411 

9] Jabr I, Salman Y, Shqair M, Hawash A. Penetration Testing 

and Attack Automation Simulation: Deep Reinforcement 

Learning Approach. An-Najah University Journal for 

Research - A (Natural Sciences) [Internet]. 2024 

Aug;39(1):7–14. Available from: 

http://dx.doi.org/10.35552/anujr.a.39.1.2231 

10] Akram M, Adnan M, Ali SF, Ahmad J, Yousef A, Alshalali 

TAN, et al. Uncertainty-aware diabetic retinopathy detection 

using deep learning enhanced by Bayesian approaches. 

Scientific Reports [Internet]. 2025 Jan 8;15(1). Available 

from: https://doi.org/10.1038/s41598-024-84478-x 

11] Moannaei M, Jadidian F, Doustmohammadi T, Kiapasha 

AM, Bayani R, Rahmani M, et al. Performance and limitation 

of machine learning algorithms for diabetic retinopathy 

screening and its application in health management: a meta-

analysis. BioMedical Engineering OnLine [Internet]. 2025 

Mar 14;24(1). Available from: 

https://doi.org/10.1186/s12938-025-01336-1 

12] Mutawa AM, Hemalakshmi GR, Prakash NB, Murugappan 

M. Randomization-Driven hybrid deep learning for diabetic 

retinopathy detection. IEEE Access [Internet]. 2025 Jan 1;1. 

Available from: 

https://doi.org/10.1109/access.2025.3546359 

13] Dai L, Wu L, Li H, Cai C, Wu Q, Kong H, et al. A deep 

learning system for detecting diabetic retinopathy across the 

disease spectrum. Nature Communications [Internet]. 2021 

May 28;12(1). Available from: 

https://doi.org/10.1038/s41467-021-23458-5 

14] Mubashra A, Naeem A, Aslam N, Abid MK, Haider J. 

Diabetic Retinopathy Identification from Eye Fundus images 

using Deep Features. VFAST Transactions on Software 

Engineering [Internet]. 2023 Jun 30;11(2):172–86. Available 

from: https://doi.org/10.21015/vtse.v11i2.1206 

15] Sapra V, Sapra L, Bhardwaj A, Almogren A, Bharany S, 

Rehman AU, et al. Diabetic Retinopathy Detection Using 

Deep Learning with Optimized Feature Selection. Traitement 

Du Signal [Internet]. 2024 Apr 30;41(2):781–90. Available 

from: https://doi.org/10.18280/ts.410219 

16] Mahmood MAI, Aktar N, Kader MdF. A hybrid approach for 

diagnosing diabetic retinopathy from fundus image exploiting 

deep features. Heliyon [Internet]. 2023 Sep 1;9(9):e19625. 

Available from: 

https://doi.org/10.1016/j.heliyon.2023.e19625 

17] Sushith M, Sathiya A, Kalaipoonguzhali V, Sathya V. A 

hybrid deep learning framework for early detection of 

diabetic retinopathy using retinal fundus images. Scientific 

Reports [Internet]. 2025 Apr 30;15(1). Available from: 

https://doi.org/10.1038/s41598-025-99309-w 

18] Naveen KV, Anoop BN, Siju KS, Kar MK, Venugopal V. 

EFFNET-SVM: A hybrid model for diabetic retinopathy 

classification using retinal Fundus Images. IEEE Access 

[Internet]. 2025 Jan 1;1. Available from: 

https://doi.org/10.1109/access.2025.3566073 

19] Rao S, Rao S, Kulkarni SD, Marakini V. VisionGuard: 

enhancing diabetic retinopathy detection with hybrid deep 

learning. Expert Review of Medical Devices [Internet]. 2025 

Mar 29; Available from: 

https://doi.org/10.1080/17434440.2025.2486476 

20] Devi TM, Karthikeyan P, Kumar BM, Manikandakumar M. 

Diabetic retinopathy detection via deep learning based dual 

features integrated classification model. Technology and 

Health Care [Internet]. 2024 Dec 1; Available from: 

https://doi.org/10.1177/09287329241292939 

21] Khan, Asim, Vollmer, Dengel. AI-Driven Diabetic 

Retinopathy Diagnosis Enhancement through Image 

Processing and Salp Swarm Algorithm-Optimized Ensemble 

Network. arXiv Preprint arXiv. 2025;(2503.14209). 

22] Alavee KA, Hasan M, Zillanee AH, Mostakim M, Uddin J, 

Alvarado ES, de la Torre Diez I, Ashraf I, Samad MA. 

Enhancing early detection of diabetic retinopathy through the 

integration of deep learning models and explainable artificial 

intelligence. IEEE Access. 2024 May 27;12:73950-69. 

Available from:  doi: 10.1109/ACCESS.2024.3405570. 

23] Salamat N, Missen MMS, Rashid A. Diabetic retinopathy 

techniques in retinal images: A review. Artificial Intelligence 

in Medicine [Internet]. 2018 Nov 15;97:168–88. Available 

from: https://doi.org/10.1016/j.artmed.2018.10.009 

24] Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-

Shamma O, et al. Review of deep learning: concepts, CNN 

architectures, challenges, applications, future directions. 

Journal of Big Data [Internet]. 2021 Mar 31;8(1). Available 

from: https://doi.org/10.1186/s40537-021-00444-8 

25] Boulaabi M, Gader TBA, Echi AK, Bouraoui Z. Enhancing 

DR Classification with Swin Transformer and Shifted 

Window Attention. In: Lecture notes in computer science 

[Internet]. 2025. p. 57–61. Available from: 

https://doi.org/10.1007/978-3-031-95841-0_11 

26] Fu X, Wang Y, Cates RS, Li N, Liu J, Ke D, et al. 

Implementation of five machine learning methods to predict 

the 52-week blood glucose level in patients with type 2 

diabetes. Frontiers in Endocrinology [Internet]. 2023 Jan 

20;13. Available from: 

https://doi.org/10.3389/fendo.2022.1061507 

27] Tsiknakis N, Theodoropoulos D, Manikis G, Ktistakis E, 

Boutsora O, Berto A, et al. Deep learning for diabetic 

retinopathy detection and classification based on fundus 

images: A review. Computers in Biology and Medicine 

[Internet]. 2021 Jun 25;135:104599. Available from: 

https://doi.org/10.1016/j.compbiomed.2021.104599 

28] Afrin R, Mohammed EA, Far B. Visual representation of 

tabular electronic health records for predicting sudden 

cardiac arrest [Internet]. Annu Int Conf IEEE Eng Med Biol 

Soc. 2024. Available from: 

https://doi.org/10.1109/embc53108.2024.10782678 

29] El-Ateif S, Idri A. Multimodality fusion Strategies in eye 

disease diagnosis. Deleted Journal [Internet]. 2024 Apr 

19;37(5):2524–58. Available from: 

https://doi.org/10.1007/s10278-024-01105-x 



 

14 
An - Najah Univ. J. Res. (N. Sc.) Vol. ×× (×),  ××××            Published: An-Najah National University, Nablus, Palestine 

30] Kruse R, Mostaghim S, Borgelt C, Braune C, Steinbrecher 

M. Multi-layer perceptrons. In: Texts in computer science 

[Internet]. 2022. p. 53–124. Available from: 

https://doi.org/10.1007/978-3-030-42227-1_5 

31] Abdullah AA, Mohammed NS, Khanzadi M, Asaad SM, 

Abdul ZKh, Maghdid HS. In-depth analysis on machine 

learning approaches. ARO-The Scientific Journal of Koya 

University [Internet]. 2025 May 22;13(1):190–202. Available 

from: https://doi.org/10.14500/aro.12038 

32] Ennab M, Mcheick H. Enhancing interpretability and 

accuracy of AI models in healthcare: a comprehensive 

review on challenges and future directions. Frontiers in 

Robotics and AI [Internet]. 2024 Nov 28;11. Available from: 

https://doi.org/10.3389/frobt.2024.1444763 

33] Nazim S, Alam MM, Rizvi SS, Mustapha JC, Hussain SS, 

Suud MM. Advancing malware imagery classification with 

explainable deep learning: A state-of-the-art approach using 

SHAP, LIME and Grad-CAM. PLoS ONE [Internet]. 2025 

May 28;20(5):e0318542. Available from: 

https://doi.org/10.1371/journal.pone.0318542 

34] Nezhadsistani, Stiller. Leveraging Explainable AI for 

Cybersecurity. In: Challenges and Solutions for 

Cybersecurity and Adversarial Machine Learning. 2024. 

35] Huynh NP, Ngo TL, Pham TTH, Nguyen TN, Nguyen NM, Le 

NB. Enhancing pneumonia diagnosis through pre-

processing approaches and advanced AI models: a 

comparative study and deployment on web and mobile 

platforms. International Journal of Biomedical Engineering 

and Technology [Internet]. 2025 Jan 1;48(1):27–54. 

Available from: https://doi.org/10.1504/ijbet.2025.146422 

36] Sahu P, Mohapatra SK, Punia U, Sarangi PK, Mohanty J, 

Rohra M. Deep Learning techniques-based brain tumor 

detection. 2022 10th International Conference on Reliability, 

Infocom Technologies and Optimization (Trends and Future 

Directions) (ICRITO) [Internet]. 2024 Mar 14;1–5. Available 

from: https://doi.org/10.1109/icrito61523.2024.10522358 

37] Dwickat T, Hamad H. Detecting diabetic retinopathy 

exudates in fundus images using fuzzy c-means (FCM). An-

Najah University Journal for Research - a (Natural Sciences) 

[Internet]. 2021 Feb 1;35(1):37–64. Available from: 

https://doi.org/10.35552/anujr.a.35.1.1861 

 

 


