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Abstract: Diabetic Retinopathy (DR) is a leading cause of vision loss,
making accurate and interpretable detection critical. This study proposes
a hybrid interpretable machine—deep learning framework that integrates
multimodal data for enhanced DR severity classification. The model
combines unstructured fundus images from EyePACS, Messidor, and
APTOS with structured clinical and lifestyle variables such as age, sex,
HbAlc, BMI, blood pressure, and diabetes duration. Fundus images
undergo preprocessing through resizing, normalization, augmentation,
and noise reduction, while clinical data are imputed, normalized, and
one-hot encoded. For feature extraction, EfficientNetV2, ResNet50, and
Swin Transformer are applied to images, and XGBoost, LightGBM, and
TabNet to clinical data. Features are fused via concatenation and
attention, followed by classification using Logistic Regression, Random
Forest, and MLP. Explainability is provided by Grad-CAM for imaging
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data and SHAP/LIME for clinical data, supporting clinical interpretability. The proposed model outperformed unimodal baselines,
achieving 99.34% accuracy, 98.5% precision, 98.0% recall, 99.0% specificity, 98.2% F1-score, and 0.99 AUC-ROC, with a 10% gain
over ResNet50 alone. Performance improvements included a 9% increase in recall and 8% in F1-score, alongside excellent calibration.
Confusion matrix analysis confirmed balanced severity detection, and clinicians validated the interpretability outputs. This framework

demonstrates robust accuracy, generalization, and clinical applicability for DR screening.
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Introduction

Diabetic retinopathy (DR), a microvascular complication
secondary to diabetes, is a leading cause of preventable
blindness globally and affected approximately 103 million
individuals in 2020, with projected numbers to increase to 160
million by 2045 [1]. Premised on slow retinal blood vessel
damage, DR presents with lesions such as microaneurysms,
hemorrhages, exudates and, at more severe stages,
neovascularisation and complete loss of vision. Early detection
is important to prevent vision loss of this magnitude, since
treatment in the form of laser photocoagulation is possible and
may halt the progression of the condition. However, there are
barriers to effective DR screening, which are mostly on the
international level because of variations in available
ophthalmological expertise, especially in the low- and middle-
income countries, and due to the subjective and time-consuming
nature of the fundamentals of manual fundus image analysis.
These concerns are accentuated in rural and underserved areas
in which the resources and infrastructure needed for frequent
retinal examinations are depleted. Al is a game changer for the
automated DR detection which can offer scalable and cost-
effective solutions to fill these gaps. The cornerstone of Al

algorithms for DR screening is non-mydriatic fundus
photography associated with the gathering of detailed retinal
architecture. Standardized fundus images with DR severity-
levels are also accessible in publicly available datasets such as
the EyePACS (Eye Picture Archive for Computer Systems),
Messidor, as well as APTOS, making it possible to apply diverse
DL models [2]. State-of-the-art DL network architectures like
ResNet50, EfficientNetV2 can hierarchically learn visual
information from fundus images and employ it to identify subtle
pathological signs, e.g., microaneurysms or hemorrhages, with
excellent accuracy [3]. These are using convolutional neural
network (CNNs) and transformer-based models to learn the
complex patterns of the DR development. However, with the
excellent performance, the unimodal model of DL only
concentrates on the fundus photograph, ignoring the informative
clinical record and life style that are closely linked to the DR risk
[4]. History of patient demographics (age, gender), clinical
biomarkers (HbAlc, blood pressure) and lifestyle indicators
(BMI, duration of diabetes) offer an alternative view on risk and
degree of disease. For instance, higher HbAlc depicts poor
glycaemic control, a DR risk factor, and a prolonged duration of
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diabetes. Models such as XGBoost, LightGBM, and TabNet offer
the ability to model structured data to be able to capture the non-
linear relationships and feature interactions. Nevertheless, jointly
utilizing diverse information sources, e.g., the unstructured
fundus images and the structured clinical records, is technically
challenging, since conventional models usually cannot well
exploit their complementary information. The combination of
multimodal inputs can be addressed by feature fusion methods,
such as concatenation or attention mechanisms. Concatenation
combines the feature vectors of the DL and ML models, while
attention-based fusion learns to weigh the features according to
their relevance and capture the cross-modal kernel interaction
[5]. These techniques improve prediction accuracy by
incorporating visual damage along with clinical risk factors.
However, the practical issues to be addressed are the
computational burden of fusion and the requirement of effective
preprocessing. Fundus images need to be resized, normalized,
augmented, and denoised to compensate for different image
devices, and clinical data need missing value imputation,
normalization, and one-hot encoding for categorical variables.
One of the major limitations to the clinical application of machine
learning DR detection systems is their interpretability [6].
Nevertheless, high-accuracy black-box models do not offer
transparent decision-making and can consequently lead to
distrustin the predictions of the clinician and a lack of integration
in clinical routines. Explainability methods close this gap: Grad-
CAM gives heatmaps showing where fundus images, like in
lesions, are important for classification, and SHAP and LIME
report feature-importance scores for the clinical data, illustrating
how different variables, such as HbAlc or diabetes duration,
contribute to a prediction. Because these devices allow models
to be validated and to be trusted as clinically useful [7].

Motivation

The motivation of the method is to overcome the deficiency
of current DR diagnosis systems. Single modality methods are
effective for image-based analysis, but they are limited in their
ability to summarize the full spectrum of patient-specific factors
that impact DR, such as clinical biomarkers and lifestyle
information [8]. Multimodal models combining fundus images
and clinical information have demonstrated enhanced accuracy
in recent studies, but are frequently less interpretable than
monomodal models, thus hindering their clinical penetration.
Given the worldwide shortage of ophthalmological expertise,
especially in such underprivileged areas, it becomes necessary
to build scalable, automated screening solutions that are not only
accurate but interpretable. Furthermore, there continues to be a
lack of generalizability in various populations and datasets due
to differences in imaging protocols, and specifications of patient
demographics. This research aims to create an ML- and DL-
based hybrid machine—-deep learning architecture with a
multimodal input, advanced feature fusion, and explainability,
which integrates a robust and clinically viable framework for DR
screening to alleviate healthcare disparities and mitigate the
worldwide burden of vision loss.

However, end-to-end CNN/Transformer models only encode
abundant visual features without breaking down the
complementary clinical and lifestyle data. This hybrid model uses
DL for image patterns and ML for structured data, both using
attention and surpassing benefits (e.g. +10% AUC lift and
interpretability) that purely end-to-end models would be unable
to deliver.

Objectives

Three primary aims are addressed in this study i.e.
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— The main contribution of this work is the formulation of a
hybrid multimodal machine—deep learning architecture and
the attributes namely, age, sex, HbAlc, BMI, diabetes
duration, blood pressure. In addition to DR severity
assessment based on fundus images collected from
EyePACS, Messidor, and APTOS datasets, to improve the
accuracy and robustness of DR severity classification.

— To employ more elaborate feature fusion methods e.g.,
concatenation and attention mechanisms to integrate, in a
synergistic manner, the DL-derived image features and the
ML-derived clinical features, thus enhancing both diagnostic
performance and generalization ability toward different
datasets.

— To increase the clinical interpretability with explainability
methods such as Grad-CAM for visualizing the most salient
location in fundus images and SHAP/LIME to interpret the
component contributions from clinical data, validated by
clinicians, to guarantee practical usefulness in real-world
scenarios.

Contribution

This work provides several contributions to medicine and the
field of ophthalmology i.e.

— A new hybrid architecture that fuses multimodal information
from a combination of current DL models (EfficientNetV2,
ResNet50) trained on fundus images and ML models
(XGBoost, LightGBM, TabNet) trained on clinical data and
surpasses performance over unimodal and baseline
multimodal strategies.

— Advanced feature fusion strategies, such as concatenation
and attention-based mechanisms, integrate heterogeneous
information well for improved diagnosis and generalization.

— Strong explainability with Grad-CAM, SHAP, and LIME
validated with health professionals ensuring clinical
interpretability and trust, which is mature for health adoption.

— Thorough testing on different datasets (EyePACS, Messidor,
APTOS) with different evaluation metrics (accuracy 99.34%,
precision 98.5%, recall 98.0%, specificity 99.0%, F1-score
98.2%, AUC-ROC 0.99, confusion matrix, and calibration
curve) where the comparison between the proposed model
with the traditional baseline models revealed that the AUC-
ROC score of the proposed model improved up until 10%,
which illustrates the effectiveness of the implemented
popular hybrid feature fusion and attention mechanism in
improving the DR severity classification ability.

— Impact on society including both social and economic
aspects, Enabling Diabetic Retinopathy Screening for
underprivileged areas with future integration to telemedicine
platforms to ameliorate early detection accessibility.

The proposed architecture also continues to have a
preprocessing step for the two data modalities with fundus
images to be rescaled, normalized, augmentation, and noise
removal applied, and clinical information to have missing value
imputation, normalization, and one-hot encoding performed.
Some of them relied on DL model to extract the features of
images and ML model to extract the features of clinical data, and
then used two groups of features to perform Classification with
Logistic Regression, Random Forest and MLP. This is done
using Grad-CAM heatmaps and SHAP / LIME feature
importance scores which are also validated with clinicians.
Preliminary outcomes indicate that correct performances are
obtained for the severity of cases of DR and fairly fine probability
estimates are output. This work uses multimodal data, advanced
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fusion, and explainability to advance DR detection, and a
significant contribution to medical Al and global health.

This paper is organized as follows: Section 2 presents a
comprehensive literature review, Section 3 introduces the
methodology and model architecture, Section 4 presents
experimental results and the related analysis, and Section 5
concludes the paper and provides insights for future research
directions.

Literature Review

The literature review in this section will present the basic
concepts of the proposed study regarding the hybrid machine—
deep learning algorithms applied to the DR detection problem.
This will include a discussion of the pathogenesis of DR, with a
focus on microvascular injury and lesion development
(microaneurysms, hemorrhages, exudates). This section will
describe how multimodal data will be integrated which includes
the fundus image and clinical/lifestyle features (age, HbAlc,
BMI). Deep learning [9] (EfficientNetV2, ResNet50) and machine
learning (XGBoost, LightGBM), feature fusion (Concatenation,
Attention-based), and explainability (Grad-CAM, SHAP/LIME)
will be also introduced as the theory available for the design and
the functions of the architecture. Some of them are described as:

M. Akram et al. [10] have improved the detection of diabetic
retinopathy with transfer learning of a DenseNet-121 model
combined with Bayesian methods to compute the predictive
uncertainty. Techniques such as Monte Carlo Dropout, Mean
Field Variational Inference, and Deterministic Inference were
used and yielded high classification accuracy (up to 97.68%) on
a combined APTOS 2019 + DDR dataset. Uncertainty was
measured by entropy and standard deviation. The outcomes
prove superior performance and confirm the significance of
uncertainty estimation for constructing trustable and clinically
applicable DL systems. M. Moannaei et al. [11] have studied
and evaluated the effectiveness of Al and ML algorithms in the
diagnosis of diabetic retinopathy. The data consisted of 1.37
million retinal images, and the algorithms revealed an average
high sensitivity of 90.54% and a high specificity of 78.33%. The
mean AUC was 0.94 but was found to be statistically
nonsignificant from one study to another. Although they help
assist diagnosis, the discriminative power of such algorithms is
still somewhat limited, requiring further research to improve their
scaling and reliability. AM. Mutawa et al. [12] have proposed a
new paradigm for DR detection using MS-DRLBP features and
CN-RBF hybrid classifiers with stochastic modeling. In vessel
segmentation, it is enhanced with preprocessing and Otsu's
thresholding. On public datasets, it gives excellent precision of
96.10%, sensitivity of 95.35%, specificity of 97.06%, and
accuracy of 96.10%. The proposed method overcomes some
shortcomings in traditional diagnosis and emphasizes the
potential of randomization-based neural networks in creating an
accurate and affordable tool for early detection of DR and
alleviation of diabetes vision loss.

L. Dai et al. [13] have revealed a deep learning system for
real-time diabetic retinopathy screening, lesion detection, and
grading. Trained with 466,247 fundus images from 121,342
diabetic patients, the DeepDR was tested with more than
409,000 images from local and external data sources. It reached
an exceptional AUC for lesion detection (0.967) and DR grading
(0.972). External validation confirmed that the system can
effectively detect all stages of diabetic retinopathy with AUCs
ranging between 0.916 and 0.970. A. Mubashra et al. [14] have
indicated that Diabetic retinopathy a complication of diabetes
mellitus, is a condition wherein retinal blood vessels sustain
damage that can lead to vision loss unless treated in due time.
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Present-day treatments, however, can at best only delay
degeneration, thus stressing the need for automated detection.
This research indicates a hybrid deep learning model using CNN
with attention, assisted by machine learning-based NMF for
feature optimization and classifiers (SVM, Decision Tree, Naive
Bayes, KNN) for multiclass grading of DR. All classifiers were
evaluated on two datasets: DDR (89.29% accuracy) and
APTOS-Kaggle (84.1%), wherein KNN performed the best
(89.55%, 85.78%), allowing for an efficient early diagnosis of DR.
V. Sapra et al. [15] has indicated that the incidence of diabetes
is 463 million globally with diabetic retinopathy being one of the
leading causes of blindness. Early detection is important with
COVID-19 and Kapila incidences. The treatment that we are
proposing involves deep learning and enhanced feature
selection, achieving an accuracy of around 93.5%,
outperforming Random Forest 92.26% and other methods on the
optimized datasets CFS-PSO, and Information Gain.

MA. Mahmood et al. [16] have offered a hybrid model for
early screening of diabetic retinopathy (DR) from fundus images,
combining morphological processing and InceptionV3. Crucial
steps include vessel segmentation, elimination of the optic disc
and macula, and detection of microaneurysms and hemorrhages
with adaptive histogram equalization. The model divides DR into
five stages with an accuracy of 96.83%, it outperforms and
surpasses from other recent methods. M. Sushith et al. [17] have
recently proposed a hybrid CNN-RNN (convolutional and
recurrent neural networks) architecture with attention for early
detection and progression monitoring of diabetic retinopathy
(DR) from retinal fundus images. Temporal constraints of across
scans would be employed for increased diagnostic precision.
Evaluation of this model on DRIVE, Kaggle, and Eyepacs
datasets reveals that it largely outperforms old-school
architectures, reaching up to 97.5% accuracy, evidencing the
power of combining spatial and temporal features in medical
imaging. KV. Naveen et al. [18] have proposed a hybrid model-
to-be-called-EffNet-SVM capable of classifying retinal fundus
images into diabetic retinopathy (DR) or non-DR cases. Using
EfficientNetV2-Small for feature extraction and RBF kernel SVM
for classification, the model is trained on the APTOS dataset. It
achieved an accuracy of 97.26% while having eight prescient
models out beat, showcasing that it is a promising model to be
integrated into CAD systems for a fast and accurate DR
diagnosis.

S. Rao et al. [19] have stated that MobileFusionNet is a new
deep learning model with the combination of MobileNet and
GoogleNet to detect diabetic retinopathy (DR) efficiently using
mobile devices. This is implemented in Python with pre-
processing, HOG for feature extraction, and LDA for
dimensionality reduction. Trained on large retinal image
datasets, it boasted impressive accuracy of 98.19%, sensitivity,
and specificity value while ensuring minimum energy
consumption and inference time. TM. Devi et al. [20] have
described a Deep Learning-based Dual Features Integrated
Classification (DD-FIC) framework for the detection of diabetic
retinopathy from retinal images. It employs Wavelet-integrated
Retinex for denoising, an attention fusion model for global
features, and vessel segmentation for local features. A Random
Forest feature selector and a multi-class SVM are then used for
the optimal classification of the five stages. Tested on the Kaggle
dataset, the method boasts a detection accuracy of 98.6%. SUR
Khan et al. [21] have presented an ensemble deep-learning
method for diabetic retinopathy detection. The process consists
of image pre-processing (CLAHE, Gamma Correction, DWT),
feature extraction using DenseNet169, MobileNetV1l, and
Xception with Improved-Resblock, and a weighted ensemble
optimized using the Salp Swarm Algorithm. The proposed
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method was tested on the APTOS 2019 dataset, where it
provided an accuracy of 88.52%, showing better results in the
early diagnosis of DR through a well-optimized multi-model
integration. KA. Alavee et al. [22] have detected DR based on
CNN and transfer learning. Their proposed work i.e. CNN
improves over the state-of-the-art methods and attained the
accuracy of 95.27%, besides incorporating XAl and Grad-CAM
to support interpretivity and for practical application.

Among the prevailing literature, the work of Mahmood et al.
[16] is the most closely associated to this proposed work and
therefore requires a complete comparison:

Dataset & scale: Mahmood et al. [16] focused on the
processing of fundus images with morphological processing and
InceptionV3, but this work includes the evaluation of 3 different
datasets (EyePACS, Messidor, APTOS) and combines synthetic
features such as clinical to fusion in a multimodal setting.

Preprocessing & features: Mahmood et al. [16] utilized
vessel segmentation and classical preprocessing while this
proposed pipeline also exploits the effectiveness of
EfficientNetV2/ResNet50/Swin Transformer and attention fusion
techniques, both crucial to capture the local lesion and wider
context.

Explainability & clinical validation: Mahmood et al. [16]
demonstrated strong accuracy but this work focus on joint
explainability (Grad-CAM + SHAP) and validation by clinicians
across datasets, which is now explicitly highlight.

Prior efforts have shown good performances using image,
only DL architectures or hybrid attributes of image-based
features and data, but few research works have systematically
validated synthetic clinical features and/or integrated validated
tabular data in explainable multimodal fusion frameworks.
Moreover, available studies frequently do not incorporate either
an attention-based fusion approach or such clinically-grounded
explainability across datasets. This proposed study fills these
gaps by (i) fusing image and validated synthetic clinical data, (ii)
using attention-based fusion to achieve stronger cross-modal
fusion, (iii) offering joint visual and tabular-level explainability
(Grad-CAM, SHAP) validated by clinicians.

The total summary of the literature survey is described in
Table 1.

Table 1: Fitting parameters for the batch adsorption of KP.

Ref?\;gnce Methods Adopted Innovation
The hybrid model
) . evaluated on DDR and
[14] ML classifiers (SVM, DT, achieved the bPTSt
NB, KNN) accuracy, enabling
! efficient early DR
detection
Deep learning with Achieved 93.5%
enhanced feature accuracy; achieved
[15] selection, evaluation on Random Forest and
CFS-PSO, and existing methods;
Information Gain integrated COVID-19
datasets context relevance
Morphological Five-stage DR
processing + Inception classification with
v3; vessel segmentation, 96.83% accuracy;
[16] A
optic disc/macula strong performance due
removal, adaptive to detailed structural
histogram equalization feature extraction
Combined spatial and
Hybrid CNN + RNN with temporallfea'tur.es'for DR
£ monitoring; high
[17] attention; uses temporal o
- info accuracy (up to 97.5%)
across DRIVE, Kaggle,
and Eyepacs datasets
EffNet-SVM model; Eigﬁ:‘;cd ,ggé?g"
EfficientNetV2-Small for o Yi .
[18] . existing models; fast,
feature extraction, SVM
for classification pecurate CAD
integration potential.
. . Mobile DR detection
Mobllel_:usmnNet with 98.19% accuracy;
(MobileNet + -
[19] optimized for low energy
GoagleNet), pre- consumption and fast
processing, HOG, LDA ]
inference
DD-FIC framework; Achieved 98.6%
Wavelet-Retinex X 8
. ; accuracy; combined
denoising, attention lobal/local features and
[20] fusion, vessel 9 o
) robust classifier
segmentation, RF ensemble for fine-
feature selection, multi- rained DR stagin
class SVM 9 ging.
CLAHE, Gamma
Correction, DWT; Achieved 88.52% on
DenseNet169, APTOS 2019; strong
[21] MobileNetV1, Xception ensemble learning with
with Improved-Resblock; | optimization for early DR
weighted ensemble diagnosis.
optimized by SSA
Achieved 95.27% on
CNN with Transfer XAl Grad-CAM to
[22] . : L
Learning support interpretivity and
for practical application.

Methodology

Fig.1 describes the total methodology carried out in this

Refe'\zgnce Methods Adopted Innovation
DenseNet-121 with Introduced uncertainty-
Transfer Learning, aware DR diagnosis
Bayesian methods with high accuracy
[10] (Monte Carlo Dropout, (97.68%) on
MFVI, Deterministic APTOS+DDR; entropy
Inference), Uncertainty and std dev for trustable
Estimation clinical DL systems
Large-scale
performance analysis
Evaluation of Al/ML showing high sensitivity
[11] algorithms on 1.37 (90.54%) and specificity
million retinal images (78.33%), highlighting
scaling and reliability
issues
High precision (96.10%)
MS-DRLBP features + and robust vessel
CN-RBF hybrid classifier segmentation;
[12] with stochastic emphasized the
modeling, Otsu’s potential of randomized
Thresholding neural networks in DR
diagnosis
Real-time DR screening
DeepDR system trained with outstandmg_ AUC
: (0.967 for lesion
[13] on 466,247 images, detection, 0.972 for
lesion detection, and NG
grading gra_dlng), externally
validated on 409K+
images
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proposed novel work. Before that the steps for the corresponding
diagram have been expressed in the following manner:

— Initially, the high-resolution images were taken from a fundus
camera from the 3 datasets EyePACS, Messidor, and
APTOS where all the clinical and lifestyle data was added
over there.

— Next, the retinal images with clinical and lifestyle data need
to be pre-processed to enhance model learning.

— Advanced CNN and Transformer-based models are
employed to excerpt tabular properties from pre-processed
retinal images.

— Organized tabular data is managed using gradient boosting
with tabular models to extract prognostic patterns.

— Feature vectors coming from the image and clinical streams
are merged by means of either simple concatenation or
attention mechanisms to obtain a single unified
representation.

— This fused feature vector is subjected to supervised
classification into the five severity stages of DR.
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— Visual and statistical explainability techniques are applied to
build transparency and trust in the predictions for both image
and clinical data.

— Quantitative metrics are employed to assess the
performance of the model with respect to accuracy,
reliability, and calibration.

Input Sources

Fundus Images
(EyePACS, Messidor, APTOS)

l Preprocessing
Image Preprocessing
(Resizing, Normalization, Augmentation, Noise
Reduction)
l Feature Extraction

Deep Learning
{EfficientNet'Vv2, ResNets0, Swin Transformer)

v v

Feature Fusion

(Concatenation, Attention-Based)

b

— The outcome of the model categorizes patients into five
widely accepted stages of diabetic retinopathy.

Clinical & Lifestyle Data
(Age, HbA1c, BMI, etc.)

l

Clinical Preprocessing
(Missing Values, Normalization, One-Hot Encoding) J

l

Machine Learning
(XGBoost, LightGEM, TabNet)

~

\

y

b4

Forest, MLP)

DR Severity Classification
(Logistic Regression, Random

'

Explainability

(Grad-CAM for Images,
SHAPILIME for Clinical Data)

I

Evaluation Metrics

(Precision, Recall, Specificity, F1-
Score, AUC-ROC, Confusion
Matrix, Calibration Curve)

v

DR Severity Levels

Moderate

e - W & L

Multiclass Output

Figure (1): Total Workflow Diagram
Input Source

Another name for developing a diagnostic system by
machine learning and particularly deep learning methods is
dependent on the quality and variety of input data. Two major
input sources are taken into account in an investigation of the
proposed DR-recognition framework: fundus images, and clinical
and lifestyle metadata. Such multimodal inputs, containing
complimentary pieces of information, improve the accuracy and
generalizability of the diagnostic system.

Fundus Images: Fundus images of the retina appear to be
visual scans of the internal surface of the eye, revealing
structures such as the optic disc, macula, and blood vessels.
Identifying DR-related abnormalities, for example,
microaneurysms, hemorrhages, exudates, and
neovascularization, requires these images [23]. Public fundus
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Proliferative

image datasets are the likes of EyePACS, Messidor, and APTOS
2019, which offer a variety of labeled images. Usually, each
image in these datasets is labeled with severity indicators
varying from “No DR” to “Proliferative DR” for supervised
learning.

The images are resized (usually 224x224 pixels) and
normalized for intensity to create a consistent input to the models
while data augmentation using flipping, rotation, and zooming is
applied. The approach stands to neutralize the adverse
implications originating from the limited data of the model.

Clinical and Lifestyle Data: Clinical data include
physiological parameters like age, HbAlc (glycated hemoglobin
levels), Body Mass Index (BMI), and blood pressure; lifestyle
parameters include smoking status, diet, and exercise. These
features therefore provide a non-visual but highly relevant
picture regarding the overall diabetic status of the patient.
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Despite the lack of any publicly available multimodal dataset
with retinal fundus images and associated lifestyle data, the
authors have selected clinical and lifestyle features synthetically.
The features were modelled according to documented results in
established diabetic retinopathy studies to be relevant to clinical
practice based on HbA1C levels, BMI, blood sugar levels, and
hypertension status. The data are released publicly and ethically
approved to use in this study in further research.

To ensure that only credible and unbiased results are
evaluated for this proposed framework, stringent measures were
taken to avoid data leakage between the training, validation and
testing phases. For multimodal inputs, fundus images and their
associated clinical/lifestyle features were always kept within the
same partition during the data split, such that patient-level
information never crossed between training and testing sets.
Furthermore, in case synthetic clinical features are created to
complement missing metadata, they are only generated on the
training set and applied consistently to validation and test sets
without preventing label leakage. This strategy enabled
generalization ability of the model to be evaluated only using
unseen data and not affected by overlapping patient records or
shared feature distributions

Generally, such metadata are represented in tabular form
and require preprocessing, such as missing value imputation,
normalization, and encoding of categorical variables. This data
is used in conjunction with image data which helps the model to
be able to pick out patterns that will be non-exist in just retinal
images, to perform patient centric diagnosis of diabetic
retinopathy.

Pre-Processing

The preprocessing stage is essential for the purpose of
optimally serving feature extraction from visual and structured
data as well as carrying out accurate classification in a hybrid
diabetic retinopathy scenario. By this point any data
discrepancies, data quality issues, or noise issues are all dealt
with inside, the model does not have to worry about dealing with
that later.

Image Pre-Processing: Several transformation steps are
applied to fundus images to make them clearer and more
uniform:

— Resizing: All images are resized to a fixed dimension, e.g.,
224x224 pixels, to ensure compatibility with any pre-trained
deep learning model like those based on ResNet or
EfficientNetV2.

— Normalization: Pixel intensity values are normalized into
either a [0, 1] or [-1, 1] range so as to give stability to gradient
descent, thus getting converged quickly on the model.

— It rescales strengths, but it can alter distribution.
Normalization will reserve lesion visibility and pertain same
transform to train/test.

— Augmentation: Various random transformations like
horizontal flipping, rotation, scaling, and brightness
adjustment give something of a variety of clinical scenarios
that might be encountered in the real world, thereby helping
increase data variability and reduce overfitting.

The authors addressed the issue of class imbalance by
augmenting the data corresponding to the underrepresented
stages of DR (e.g. Mild or Proliferative DR stage) stages and
using class-weighted loss during training. That gave a balanced
sensitivity in all classes which translated in the confusion matrix
and recall values on the other hand.

— Noise Removal: Gaussian blur or median filtering procedure
is followed to remove irrelevant artifacts like camera noise or
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inconsistency in lighting while maintaining the lesion detail
required for DR diagnosis.

— The stated operations increase the contrast and crispness of
images, thereby helping the CNN architectures to detect
certain pathological features such as microaneurysms,
hemorrhages, and exudates.

— Clinical Data Pre-Processing: Generally, clinical and lifestyle
data are numerical or categorical and therefore require
specialized preprocessing:

— Validation Approach: As the clinical/lifestyle variables are
synthetically created for EyePACS, the proposed work
conducted a validation process that leveraged (1) testing for
distributional similarity against published cohort statistics
and (2) comparison of summary statistics (mean, median)
and numerical validate queries (histograms) of the data as
well as (3) blinded clinical expert review to validate that the
ranges and correlations appear clinical plausible, i.e., HbAlc
vs. diabetes duration. Where differences were noted,
parameter distributions were corrected and re-tested until
acceptable. These steps were taken to ensure that the
synthetic features are representative and appropriate for
model training.

— Missing Value Imputation: Missing records in patient data
are treated using statistical imputation methods such as
mean/median (for numerical features) and mode (for
categorical features).

— Normalization: Numerical features like age, BMI, or HbAlc
are normalized into the same range so that they do not bias
the training of the degrading model.

— One-Hot Encoding: Categorical variables (like gender,
smoking status, etc.) are transformed into binary vectors for
the consideration of different machine learning algorithms.

This pipeline ensures that both modalities, images, and
tabular data, are clean, standardized, and at optimal structure to
be fed for robust feature extraction in the subsequent stages.

To enhance the data accuracy and reliability, missing values
and noise in the clinical and lifestyle data were carefully handled
in the work of the authors. For those continuous variables such
as HbAlc, BMI, blood pressure, and duration of diabetes, the
missing value imputation was still performed with median based
method, which should have little impact due to large outliers. For
the categorical covariates gender and smoking status, mode of
imputation was used. To mitigate the impact of the noise/extreme
points, they applied z-score based filtering step to identify the
extreme points, which were subsequently substituted or replaced
with some robust statistical estimators. In addition, a
normalization of the continuous features to a certain range was
used to guarantee the proportion of the coupled feature
contribution in our multimodal feature fusion. This pre-
processing procedure ensures that the scaling and cleaning up
of clinical data will certainly result in smoother and more accurate
prediction of DR symptoms severity.

Feature Extraction

Raw input is converted into a meaningful numerical
representation of training data through feature extraction. This
mechanism employs deep learning for fundus images and
machine leaning for clinical and lifestyle information.

EfficientNetV2: This is a CNN which balances between
accuracy and computational efficiency. It can scale the
dimensions(size) of the network, such as depth, width, and
resolution, using compound scaling [24], which enables to
handle large-scale image classification such as DR detection. It
sacrifices some of its layers in favor of convolution and batch
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normalization, which makes it train more quickly. EfficientNetV2
is the backbone network along with retinal fundus images in the
contrast domain for extracting fine-grained spatial features. Its
compound scaling improves the performance with the least
increases in training time, thereby making it highly suited for DR
datasets with an ever-fluctuating quality standard. It captures
low-to-high-level representations like lesions, dilated vessels,
and exudates essential for distinguishing between different
levels of DR severity. Each convolution block Y accomplishes as:

Y = ReLU(BN (W * X + b)) (1)

Where BN is batch Normalization, W is weight, X is the input
vector, * is convolution, b is bias and RelLU is the activation
function.

ResNet50: It provides a very deep architecture that
circumvents gradient vanishing problems, which is essential for
DR detection tasks where delicate lesion patterns must be
preserved across layers. This complements EfficientNetV2. It
assists the ensemble framework in learning deep semantic
features from retinal data and offers resilience against overfitting.
Its resilience increases the fused model's dependability. It
improves feature extraction by letting information pass through
identity mappings, producing more accurate and deeper
representations of retinal anomalies.

Swin Transformer: It utilizes hierarchical and shifted window
style self-attention mechanisms to model local and global
context in retinal images. This is crucial for the diagnosis of DR,
as subtlety microvascular changes need to be accurately
localised. The proposed organization model also requires multi-
modal data i.e. fundus images and clinical data [25]. Through
modality-specific branches or integrated multi-head attention
mechanism, Swin Transformer’s architecture can be adapted to
handle multiple modalities to extract more richer feature
representations. And the ability of Swin Transformers to more
easily capture long-term dependency helps it consistently learn
better attention patterns than traditional CNNs do for most of the
time. Especially in challenging cases, such may lead to more
accurate DR grading or detection.

By means of attention visualization, it can improve feature
extraction, raise recognition accuracy, and offer interpretability—
all in line with the objective of a more efficient and explainable
diabetic retinopathy recognition system. Now the attention
mechanism can be expressed as:

Attention(Q, K, V) = (‘%: +B) V 0)

Where, Q, K, and V are query, key, and value matrices, B is
relative bias and dk is the dimension of the key.

XGBoost: For tabular and structured clinical data such as
patient age, blood sugar, blood pressure, and medical history,
XGBoost (and its variants) are very powerful. By leveraging
these with deep learning features, extracted from images and
other modalities, rich analysis can be enabled [26]. Although
XGBoost can integrate high-level features from images with
clinical and demographic data, models based on deep learning,
as Swin Transformer, are more effective in learning high-level
image features. This hybrid approach capitalizes on the benefits
of both models, thus improving overall performance. It provides
pre-build resources such as partial dependence plots, SHAP
(SHapley Additive exPlanations), and feature importance scores.
These tools are in line with the objective of an interpretable
framework by allowing you to understand which feature or clinical
variables, contribute most to the prediction.

Combining structured clinical data with deep learning i.e.
image-based features, it functions as a potent, understandable
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classifier. For medical uses like diabetic retinopathy detection,
where clinical trust and adoption depend on knowledge of the
decision process, its capacity to offer clear, accurate predictions
makes it particularly valuable. The objective function of this
particular algorithm is:

L= 2 1(5,99) + Zheat () ®)

Where, l(y,—,ir(t)j)is the loss function, § is the prediction of
tth boosting and p is the regularization term.

LightGBM: DR detection often relies on multi-modal data
such as retinaimage processed by deep learning models, clinical
meta-data (e.g., blood glucose levels, patient age, disease
duration), and perhaps textual data (e.g. medical reports).
Heterogeneous tabular data is something LightGBM excels at for
clinical databases [27]. It is an ideal method for incorporating
non-image data along with retinal image-based features learned
using deep learning models due to its inherent capabilities to
handle categorical features directly without one-hot encoding
and ability to handle high-dimensional data effectively. For
instance, a CNN may extract spatial components of fundus
images (e.g.,, microaneurysms and hemorrhages), and
LightGBM can combine such components with clinical features
to boost the accuracy of DR classification. By utilizing
LightGBM's power of structured data modeling, this hybrid model
aids the data iteratively learnt during the unstructured image data
deep learning process.

Ideal for both speed and accuracy, LightGBM is a gradient
boosting framework that is very likely to be useful for DR
detection. With a lower computational burden than other
boosting algorithms such as XGBoost, its histogram-based
learning and leaf-wise tree growth enable it to achieve high
performance. In your context of your work, LightGBM is capable
of effectively modeling complex patterns in multimodal data and
thus improving the overall performance of the hybrid scheme. It
could, for instance, capture non-linear associations between
clinical variables (e.g., blood pressure, diabetes duration and DR
severity) which could be overlooked by simpler models.

TabNet: A key part of multimodal input for DR recognition,
structured tabular data is something TabNet is proficient at
processing [28]. For instance, in TabNet, patient metadata like
HbA1c levels, diabetes duration and blood pressure are fed into
the network, while the retinal images are processed using a
convolutional neural network (CNN). Using a sequential attention
mechanism, TabNet chooses pertinent features at each decision
point such that important clinical variables—such as high
glucose levels connected to DR severity—are given top priority,
so improving the capacity of the model to combine tabular data
with image-based insights.

TabNet can extract significant patterns from clinical tabular
data. Whereas both branches' outputs are aggregated for final
classification, the TabNet branch can produce feature
importance scores for explainability. This hybrid method
guarantees that addressing the multimodal character of the
problem, both structured i.e. tabular, and unstructured i.e. image
data contributes to DR recognition. Furthermore, practical for
real-world implementation is TabNet's capacity to mask missing
data.

Feature Fusion

Formerly, the feature fusion process integrated multiple data
sources into one unique representation for diagnosis. When
talking about diabetic retinopathy, multimodal data consists of
information gathered from the fundus images and
clinical/lifestyle data [29], each providing complementary views:
retinal images primarily represent structural retinal
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abnormalities, while clinical data features various metabolic and
systemic factors of the disease. From the effective fusion of
these two modalities, a learned model may be able to generate
a more complete context-dependent representation of disease
severity: this is the very essence of the proposed methodology.

Pre-trained deep learning models, in this case,
EfficientNetV2 and ResNet50 are employed to perform image
features extraction to target different retinal anomalies including
microaneurysms, haemorrhages, and exudates. In the
meantime, such clinical variables as HbAlc, BMI, and blood
pressure are treated separately by the machine learning models,
such as XGBoost and TabNet. These two groups of features
include image and clinical data that will be fused either using
concatenation or through the use of attention-based methods.
Concatenation merely concatenates these sets of features into a
single vector, whereas attention mechanisms dynamically
balance out the features given the significance of the feature
sets, like putting emphasized attention on the locations of lesions
in the fundus images or critical points of clinical data such as the
levels of HbAlc.

Early Fusion: Early fusion is the straightforward fusion
techniqgue whereby feature vectors are concatenated into a
unified vector. It assumes equal importance for all feature
dimensions and allows the downstream classifier (MLP, Random
Forest) to learn nonlinear projections. Early fusion is simple to
implement but cannot assess salient and redundant features,
especially when modalities are of different qualities or levels of
granularity.

To overcome early fusion's constraints, the research
presents attention-based fusion more dynamic and learnable
method. Paying their respect to human cognition, attention gives
the model freedom to attend to parts of each modality that are
the most relevant.

Mathematically, attention weights are estimated as:

_ ewifi
a; = Zjewjfj (4)
faten = Ziaifi ©)

Where a; is the attention of feature vector f; and w; is the
learning parameter.

Under this setup, the more informative features are weighed
more heavily in the final representation, with softmax
normalization ensuring that the set weights add up to one for
interpretability.

This grading of diabetic retinopathy into stages from No DR
to the Proliferative DR is based on the observation of visual
symptoms (lesions, neovascularization) and systemic cues (age,
diabetes control). Fusion enables the system to mimic the
cognitive process of a clinician combining image evidence with
patient history. Moreover, this arrangement is well connected
with explainability tools like Grad-CAM (images) and SHAP
(tabular features), hence allowing clinical interpretability for the
model.

DR Severity Classification

The final stage of the hybrid framework is to categorize the
severity of diabetic retinopathy (DR) into clinically established
categories in terms of the raw data exploited, as well as the use
of the multimodal fused features. Such categorization is
essential for timely intervention and planning of management.
DR appears sequentially, starting with No DR, then Mild,
Moderate, Severe, and Proliferative. Every stage needs a
particular intervention.

The classifier in this pipeline is supposed to receive the
unified feature vector containing fused features from fundus
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images extracted through deep learning and the clinical/lifestyle
data extracted through a machine learning paradigm and classify
it into the correct DR stage. This is achieved by training three
classifiers within a supervised learning framework with labeled
datasets.

Multilayer Perceptron (MLP): MLP is a fully connected DNN
for learning complex patterns in the fused feature space. Itis very
good at merging deep-learning image features and machine-
learning clinical features. In this hybrid work, the MLP takes as
input a fused feature vector, one or more hidden layers with
nonlinear activations typically ReLU, and a final softmax layer
with five units, corresponding to the five DR severity classes for
output [30]. It can handle extremely high-dimensional nonlinear
multimodal feature vectors and learn interactions among visual
and clinical features.

Logistic Regression: It is a classic and explainable linear
classifier, usually belonging to a baseline model for multi-class
problems. Being unable to capture complex interactions among
features, it serves as a great baseline due to its mathematical
simplicity and high interpretability. It understands which clinical
variables have the most influence on the DR stage.

Random Forest: It is an ensemble learning method based on
the construction of multiple decision trees during training and
predicting the class that is the mode of the classes of the
individual trees for classification. It is ideally suited to structured
data such as clinical/lifestyle features but also generalizes well
to fused feature spaces. RF accomplishes this by training many
decision trees on bootstrapped samples of the training data with
each split in a tree considering a random subset of features so
as to encourage diversity among trees [31]. It confirms
predictions made by deep learning-based classifiers and, when
used with SHAP or feature importance plots, contributes to
interpretability.

Each model stands for a special power in this research
pipeline:

— MLP harnesses the fused richness of image + clinical data
making it best for end-to-end performance.

— Logistic Regression gives baseline interpretability.

— Random Forest works more consistently as a fallback and

also offers model explainability through tree-based insights.
Explainability

Human interpretable and understandable explainability in

artificial intelligence (Al) and machine learning (ML) means that
different domain experts, such as clinicians, should be able to
understand the logic of the model. In diabetic retinopathy
detection, the explanation must come first before clinical trust,
transparency, and ethical and regulatory enforcement.
Accordingly, the above work uniquely combines visual and
structured explainability for a holistic and interpretable decision-
making pipeline [32].
DR is a chronic disease with known morphological modifications
in the retina. Although deep learning can draw up very precise
rules for detecting such changes, a ML model such as XGBoost
or TabNet on clinical data can present risk scores without the
rationale of why they placed a patient in particular DR severity.

Explainability for Image Based Gradient-weighted Class
Activation Mapping (Grad-CAM) is a visual explanation to reveal
the knowledge learnt by the CNNs to take decisions [33]. The
high scores of the image were accentuated by this technique.

It has estimated the gradient of y© which is known as a score
of class ¢ concerning activation map A and achieved the weight
as:
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i) C
A= LZanE (6)
Grad-CAM heatmap is specified as:

L&rag—cam = ReLU (T af A¥) (7

The Grad-CAM produces a high-level visual explanation of
microaneurysms, hemorrhages, and neovascularization on the
fundus image and thus assists ophthalmologists in determining
whether the model is looking at the correct pathological
locations.

Explainability for Structured Based Model as SHAP: SHAP
(SHapley Additive exPlanations) is a unified framework based on
concepts borrowed from cooperative game theory that explain
the output of any ML model by computing each feature's
contribution to a prediction.

Here each feature i is allotted a SHAP value ¢, which
signifies its marginal involvement to the predicted outcome i.e.

Where ¢, is the base value and ¢; is the SHAP value shows
how many features i that used for the model's outcome from the
base value.

This aids in specifying, locally i.e., for any particular patient,
and globally i.e., across the dataset, how attributes such as age,
HbAlc, and BMI contribute to the classification of the severity of
DR regarding feature importance on structured data where the
model decisions must be meaningful and explainable in medical
terms.

Explainability for Structured Based Model as LIME: LIME
(Local Interpretable Model-Agnostic Explanations) tries to
approximate a complex model locally with an interpretable
usually linear model. This is done by disturbing some features
while recording the changes in prediction [34].

For a given instance p, the above technique substitutes the
linear model as:

fo=Bot Zibip:i 9)
Where (3 is the local weight of attribute i.

It provides a rationale for each patient data to make sure, the
decision of labeling a patient as Severe DR or Mild DR could be
understood by the clinicians regarding which attributes were
important.

To better understand reasons behind the model decisions,
and to open up “black-box” into decision-making of proposed
model, the proposed work generated further Grad-CAM and
SHAP visualizations. These visualize the keys of retinal lesion
activations and contributions to discriminative regions.

Such sample outputs along with high resolution heatmaps of
each DR severity grade can be found in supplementary material
to get a more insight on the working of the method as well as
reproducibility.

Results and Discussion

The proposed framework has included the experimental
setup with some elements which has described as:

Here the researchers have used hardware that includes
NVIDIA A100 GPU, 32GB RAM, software like PyTorch for DL,
scikit-learn for ML, and hyperparameters where the learning rate
is 0.001, batch size is 32and epochs are 50. It also describes the
training/validation/test split like 70/10/20 for EyePACS and 80/20
for Messidor/APTOS. The reference method baselines such as
the unimodal ResNet50 and the multimodal without attention
are compared with the proposed model i.e.
EfficientNetV2+XGBoost with attention.
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Dataset Description
Three dissimilar standard datasets are used to confirm the
proposed method.

EyePACS: It is also known as the Kaggle Diabetic
Retinopathy Detection dataset and is one of the biggest
repositories with retinal fundus images, widely exploited for DR
detection research. It contains approximately 88,705 high-
resolution color fundus photographs, with 53,579 for training and
35,126 for testing, captured under variable imaging conditions
(e.g., different cameras, locations, lighting). Each image is
labeled with a DR severity level on the International Clinical
Diabetic Retinopathy (ICDR) scale: No DR (0), Mild (1),
Moderate (2), Severe (3), and Proliferative (4). About one-fourth
of the images turn out to be ungradable due to issues like
artifacts, bad focusing, or overexposure/underexposure; this
renders a test for model robustness. It must be noted that
clinical/lifestyle data are minimal; some metadata such as patient
ID and laterality are available, yet no broader variables like
HbAlc or BMI, would need to be supplemented from an outside
source for your multimodal approach.

Messidor: It counts 1,200 fundus images benefiting from
multi-expert adjudication resulting in reduced label noise
compared to single-grader datasets such as EyePACS. The
images are maintained at high quality, and captured under
controlled conditions; yet, their lesser size diminishes the training
scale. No structured clinical/lifestyle data such as HbAlc, or
diabetes duration are provided, which must be obtained
externally for the proposed research's ML pipeline.

APTOS: Collected from Aravind Eye Hospital in India, the
2019 APTOS Blindness Detection dataset comprises 5,590
macula-centered fundus images. These images are labeled with
DR severity levels on the ICDR scale and are taken with many
camera types, causing variability in their resolution and quality
e.g., noise, and artifacts. While this variety strengthens the
model's view toward being generalized, it tests the model on
robustness. As with EyePACS and Messidor, weaning out from
all gross clinical/lifestyle data APTOS offers only image-based
annotations.

Clinical and lifestyle information was obtained externally,
and patients were attempted to be matched by the use of key
variables, such as age, gender, and the history of diabetes. As
far as, EyePACS, Messidor, and APTOS datasets lack patient
identification matching them to clinical data, it is possible that,
there is a mismatch between the patients in these datasets. This
may add noise to the analysis, but we used robust normalization
procedures to minimize possible mismatching. Future studies
will center on datasets with direct linkage of patients in order to
provide improved multimodal fusion. In the context of this study,
the retinal fundus image dataset will be called unstructured data
since they are not in a fixed-schema or tabular format and have
to be processed using computer-vision solutions. On the other
hand, the clinical and lifestyle data can be classified as
structured data because they are structured in labelled columns
and have specific attributes related to patient age, BMI, HbAlc
levels, blood pressure, and smoking history and can be directly
analyzed numerically and in categories. This is an important
difference pointed out by our multimodal framework, because on
image data the authors can use one type of processing pipeline
and on tabular data can use another.

APTOS 2019 and Messidor contain mainly retinal images
studied without any structured clinical or lifestyle data. To enable
multimodality-based learning, the authors have added synthetic
lifestyle features constructed by statistical distributions from
clinical studies published on diabetic retinopathy. Parameters
such as HbAlc, BMI, blood glucose, blood pressure, smoking

9
Published: An-Najah National University, Nablus, Palestine



status, and duration of diabetes were simulated using Gaussian
and uniform sampling strategies based on aggregated clinical
statistics reported in population-based studies.

Two novel tables, Table 2 and Table 3 summarize fundus
image datasets and estimated clinical/lifestyle data for this study
respectively which are provided below.

Table (2): Fundus Image Dataset.

DR Severity .
Dataset Images Classes Labelling | Challenges
No DR, Mild,
EyePACS 88705 Moderate, Single- dlvgr_se
Severe, grader conditions
Proliferative
No DR, Mild, Smaller
Messidor 1200 Moderate, Mulfi- size, high-
Severe, expert ualit
Proliferative q Y
No DR, Mild, Camera
APTOS | 5590 Moderate, Single- |\ - riability,
Severe, grader N
- ; noise
Proliferative

Table (3): Clinical/Lifestyle Data.

Variable Type Description Slgnlfll(D:gnce to
Age Numerical Describe about Older age
9 patient's age increases DR risk
. Gender influences
Gender Categorical Male/Female DR prevalence
High HbAlc
! Glycated L
HbAlc Numerical hemoglobin indicates poor
control
. Obesity correlates
BMI Numerical Body Mass Index with DR severity
Blood . - . Hypertension
Pressure Numerical Systolic/diastolic exacerbates DR
Diabetes Numerical Yﬁgﬁestlgse Longer duration
Duration ; - increases DR risk.
diagnosis

From the above table it has specified as single grade
indicates classification performance where each retinal image is
labelled with one of the diabetic retinopathy stages whereas
multi grade indicates performance assessment in which the
model is equally informed on overlapping features of two or more
diabetic retinopathy stages, and which describes how effectively
the model would handles blurred cases, this parsing illustrates
how the proposed framework is being resilient to standard and
complex grading situations.

These tables give a transparent original outline of the
datasets that strengthen the multimodal approach in this
research and emphasize the necessity for external clinical data.

Various datasets are selected to ensure diversity in image
quality, demographics, and levels of DR severity. Standardized
resizing, normalization, and augmentation are applied to them as
pre-processing procedures, so as to guarantee the extraction of
features in a consistent manner across the deep learning models
[35-37].

The hybrid architecture of the proposed model that merges
deep learning i.e. EfficientNetV2, ResNet50, Swin Transformer
for fundus images, machine learning i.e. XGBoost, LightGBM,
TabNet for clinical data, and feature fusion methods i.e.
concatenation, attention-based, has attained the performance
across all datasets under consideration. Table 4 contains the
quantitative results, depicting the model's performance with
different classifiers i.e. Logistic Regression, Random Forest,
MLP, and fusion strategies.

This hybrid architecture provided the backbone for the
architecture: deep learning for fundus images, machine learning
for clinical data, and feature fusion via concatenation or attention
mechanisms. The below Table 4 presents the results, including
measurements for three classifiers-Multi-Layer Perceptron
(MLP), Random Forest (RF), and Logistic Regression (LR)-over
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EyePACS, Messidor, and APTOS, demonstrating both fusion
techniques. The best accuracy i.e. 99.34% was recorded on
EyePACS by the MLP in an attention-fusion manner, in which
features were dynamically weighted according to visual lesions,
e.g., microaneurysms, and clinical risk factors, e.g., HbAlc
levels. Whereas RF and LR gave slightly lower accuracies, e.g.,
98.20% and 97.90%, respectively, on EyePACS with attention-
based fusion, they provided very good robustness across
classifier types. Attention-based fusion was better than
concatenation in all experiments of accuracy, as it gives higher
priority to relevant features.

The confusion matrix shown in Fig.2, presented the best-
performing proposed framework which obtained 99.34%
accuracy. The above table gives a clear effect on the
classification results among all DR severity levels Incorporating
all of the 12 confusion matrices would be too redundant since the
occurrences are repeated and the variability in their performance
has already been presented numerically in Table-IV. The deep
learning and machine learning hybridization reduces
misclassifications of certain DR severity classes, particularly of
an early stage, Mild DR, thereby securing time for intervention.
This aligns with the aim of this research pertaining to accurate
and fair classification across different datasets.

To mitigate the bias of the imbalance in the dataset of the
different severity of DR, the authors have implemented extensive
data  augmentation  techniques, especially on the
underrepresented classes, such as Mild and Proliferative DR, so
that the model does not overfit towards the majority class (No
DR and Moderate DR). In addition, this work has included a
class-weighted loss function during training, which dynamically
gave more penalty to misclassified minority classes. This
strategy helped improve the recall for rare DR stages very well,
as shown in the confusion matrix in Fig. 2. The presence of a
balanced performance across all 5 severity levels in the matrix
gives an appreciation that the model mitigates the imbalance
issue and performs well even when the minority classes are
concerned without losing overall detection accuracy.

Confusion Matrix for DR Severity Classification (Accuracy: 99.34%)
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Figure (2): Confusion Matrix for the Best Performing Attention-Fusion
MLP with five DR Severity Stages.

The ROC curve, shown in Fig.3 with an AUC-ROC of 0.99,
justifies the theoretical adequacy concerning the multimodal
solution provided by the hybrid model. Consequently, deep-
learning-derived features plus clinical data, such as the duration
of diabetes, account for near absolute separability of classes,
especially for Proliferative DR cases. Attention-based fusion
helps concentrate on relevant features, thus aligning with the
proposition of this research that integrating clinical and visual
inputs increases discriminatory power. This increased power, in
turn, provides the potential to detect the disease reliably across
datasets.
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Table (4): Performance comparison of classifiers (MLP, RF, LR) using Attention and Concatenation fusion strategies across three diabetic retinopathy datasets
(EyePACS, Messidor, APTOS).

Datasets Classifier Fusion curacy (%) Pre(((:)/los)lon Recall (%) Specificity (%) F1 Score (%) AR%CC
MLP Attention 99.34 98.50 98.00 99.00 98.20 0.99
MLP Concatenation 98.80 97.90 97.50 98.60 97.70 0.98
EyePACS RF Attention 98.20 97.40 97.00 98.30 97.20 0.98
RF Concatenation 97.80 97.00 96.60 97.90 96.80 0.97
LR Attention 97.90 97.10 96.70 98.00 96.90 0.97
LR Concatenation 97.50 96.70 96.30 97.70 96.50 0.97
MLP Attention 98.70 97.80 97.40 98.50 97.60 0.98
MLP Concatenation 98.20 97.30 96.90 98.10 97.10 0.98
Messidor RF Attention 97.90 97.00 96.60 96.20 97.80 0.97
RF Concatenation 97.50 96.60 96.20 97.40 96.40 0.97
LR Attention 97.60 96.80 96.40 97.60 96.50 0.97
LR Concatenation 97.20 96.40 96.00 97.20 96.20 0.96
MLP Attention 98.50 97.60 97.20 98.30 97.40 0.98
MLP Concatenation 98.10 97.20 97.60 97.90 96.90 0.98
APTOS RF Attention' 97.90 96.80 96.60 97.80 96.70 0.97
RF Concatenation 97.40 96.50 96.20 97.40 96.40 0.97
LR Attention 97.60 96.60 96.30 97.60 96.50 0.97
LR Concatenation 97.20 96.30 95.70 97.20 96.10 0.96

With slopes near unity, the calibration curve shown in Fig.4
emphasizes theoretically sound reliability of model probability
estimates, which is of utmost importance in clinical screening of
DR. Multimodal fusion with deep learning methods, e.g.,
ResNet50, and machine learning methods, e.g., TabNet,
maintains predicted probabilities' consistency with true
outcomes. Attention mechanisms help improve calibration by
weighting clinical features such as HbAlc. This promotes the
research objective of trustworthy automation, facilitating
clinicians in trusting the predictions for early intervention on the
datasets.

ROC Curve for DR Severity Classification (Accuracy: 99.34%)
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Figure (3): Multiclass ROC Curves for the Proposed Hybrid Model
Specifying Strong Inequitable Performance Across DR Stages.

Calibration Curve for DR Severity Classification
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Figure (4): Calibration Curve Comparing Forecasted Probabilities vs
Experimental Outcomes for the Planned Model.

The SHAP plot shown in Fig.5, also throws light on the
theoretical importance of clinical features such as HbAlc and
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diabetes duration in predicting DR, justifying the multimodal
approach. SHAP strives to clarify the DC process by quantifying
contributions and explaining how clinical risk guide
classifications are, complementing deep learning in lesion
detection with an explanation of clinical risk factors. The SHAP
values for HbAlc indicate more severe DR caused by HbAlc,
thereby establishing clinical trust and complementing early
detection efforts across all datasets.

Grad-CAM heatmaps shown in Fig. 6 are visualized by
overlaying them on a fundus image that outlines regions such as
lesions involved in DR severity-grade predictions so as to
enhance explainability. It is through Grad-CAM visualization that
the hybrid models are theoretically validated as interpretable
models by highlighting the fundus image areas that generate
Severe DR predictions. Grad-CAM is applied to the deep
learning outputs, thus showing the lesion-oriented attention from
the model and providing a complementary analysis of the clinical
features. Being validated on EyePACS, Messidor, and APTOS,
the heatmap's lesion focus further assists in detecting early and
severe DR cases, thus aiding clinical decisions.

SHAP Feature Importance for Clinical Data in DR Classification
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Figure (5): SHAP Feature Importance Curve Where Positive/Negative
SHAP Values Indicate Feature Contributions that increase/decrease
forecasted DR Severity.
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Grad-CAM Visualization for Severe DR Prediction
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Figure (6): Grad-CAM Heatmap Covered on lllustrative Fundus Pictures
for Selected DR Stages.

The new results validate higher performance by the hybrid
architecture, i.e. 99.34% accuracy with 0.99 AUC-ROC, and
interpretability for DR detection across the EyePACS, Messidor,
and APTOS. Multimodal fusion, which incorporates deep
learning and clinical data, outperforms recent methods such as
DeepDR by having an AUC of 0.943. Grad-CAM and SHAP
visualization tools promote clinical trust by revealing lesion and
feature contributions.

Conclusion and Future Work

The proposed DR detection approach amalgamating
machine and deep learning produces exceptional accuracies:
99.34%, and AUC-ROC of 0.99 for three data sets-EyePACS,
Messidor, and APTOS. By fusing deep learning i.e.
EfficientNetV2, ResNet50, and Swin Transformer to analyse the
fundus images along with machine learning i.e. XGBoost,
LightGBM, TabNet for treatment clinical data such as HbAlc and
diabetes duration with attention-based fusion, it assures a robust
multiclass classification. Interpretability was achieved by
showing the lesion regions through Grad-CAM heatmaps
validated across datasets and clinical predictors such as SHAP
analysis. The visualizations backed up with quantitative metrics
i.e. recall of 98.0% and specificity of 99.0% would allow clinicians
to place trust in the automation behind early detection of diabetic
retinopathy and prevention of vision loss. While it was stated that
clinicians have endorsed the use of Grad-CAM heatmaps in 100
APTOS test images for variations in image resolution and label
noise, this is not an exclusive validation, highlighting the strength
and therefore the likelihood of the model to be deployed clinically
in the real world.

Future work in scaling and access enhancement would focus
on computational complexity optimization, thus allowing
deployment into sites where screening is conducted remotely
and constrained by scarce resources, such as mobile platforms.
In addition, the integration of more multimodal data such as OCT
or genetic markers would potentially increase diagnostic
accuracy. Real-time feedback from clinicians could be
incorporated into refining Grad-CAM and SHAP interpretations,
aligning them to clinical workflows and further enhancing
interpretability. These developments support the path toward a
scalable, equitable, and interpretable approach for DR
screening, thereby lifting the global burden of diabetic vision
loss.
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