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Abstract: This study explores the solutions of fourth-order
Lane—Emden—Fowler (LEF) equations by employing a refined Modified
Adomian Decomposition Method (MADM). We introduce a novel framework
that features seven specialized differential operators, specifically developed
and utilized to analyze the equations under specific initial and boundary
conditions. Our findings demonstrate that the solutions derived from this
approach not only effectively converge to the exact solutions but also offer
unparalleled accuracy and reliability. A key strength of this methodology lies
in its exceptional flexibility; solutions can be accurately obtained by applying
at least one of these newly developed operators. This work significantly
enhances our comprehension of these intricate equations and highlights the
remarkable efficacy of the MADM in yielding precise solutions across diverse
scenarios, thereby establishing a robust and versatile analytical tool.
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Introduction

The LEF equation represents an essential mathematical model for de-
scribing a wide range of nonlinear physical systems. It is a gener-
alization of both the classical Lane-Emden (LE) and Emden—Fowler
(EF) equations [1-6], combining their structural properties into a unified
higher-order framework. The fourth-order LEF form, in particular, pro-
vides a more accurate representation of complex dynamical systems
in astrophysics, thermodynamics and nonlinear fluid mechanics [7—17].
In general, the fourth-order LEF equation can be expressed as:

3
+ -3 T f(©gn) =0, M

where ¢ €]0,1], n € [0, 3], f(£) and g(n) are arbitrary continuous func-
tions, n represents the dependent variable, ¢ the independent variable,
and n > 1 is a shape factor. This equation arises naturally in mod-
eling stellar interiors, radiation diffusion and thermal behavior of poly-
tropic gas spheres. The inclusion of higher-order derivatives allows
the LEF equation to capture effects neglected in lower-order formu-
lations, such as fourth-order diffusion and nonlinear viscous stresses.
Consequently, it has become a cornerstone in the theoretical investiga-
tion of self-gravitating fluids, plasma dynamics, and certain classes of

gquantum mechanical and relativistic systems [18—22]. Due to its strong
nonlinearity and the presence of variable coefficients, analytical solu-
tions to the LEF equation are rare and typically limited to specific pa-
rameter choices. Hence, modern analytical and semi-analytical tech-
niques such as the Adomian Decomposition Method (ADM), homotopy
analysis, and variational iteration approaches are frequently utilized to
construct reliable approximate solutions. The continued development
of these methods not only enhances computational efficiency but also
deepens the understanding of the physical meaning behind the LEF
model.

The ADM is a powerful semi-analytical approach designed to solve a
wide range of linear and nonlinear differential equations without requir-
ing linearization or small-perturbation assumptions. Initially developed
by George Adomian in the late 20th century, the method decomposes a
complex nonlinear problem into a rapidly convergent series of subcom-
ponents that can be solved iteratively [23-25]. Each term of the solu-
tion is systematically determined through recursive relations, while the
nonlinear terms are represented using specially constructed Adomian
polynomials. This structure makes ADM highly efficient for initial value
and boundary value problems across mathematics, engineering, and
applied physics. Over time, various enhancements of the original ADM
have been proposed to improve its convergence and computational ac-
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curacy. Among these, the MADM has emerged as one of the most
effective refinements. The MADM incorporates additional correction
operators and refined decomposition schemes that accelerate conver-
gence and reduce truncation errors in the computed series. It also pro-
vides greater flexibility in handling strongly nonlinear terms and higher-
order derivatives, making it particularly suitable for complex models
such as the fourth-order LEF equation. A key feature of the MADM
lies in its ability to maintain analytical transparency while achieving nu-
merical precision comparable to direct computational methods. Un-
like conventional perturbation or iteration techniques, MADM requires
no discretization or transformation of variables, preserving the physi-
cal meaning of the problem throughout the solution process. Owing
to these advantages, the MADM has been successfully applied to di-
verse nonlinear systems in heat transfer, fluid dynamics, astrophysics,
and reaction diffusion models, demonstrating superior stability and ef-
ficiency over the traditional ADM [8-10, 16,25—-40].

Although the ADM has been widely recognized as an effective analyt-
ical approach for solving linear and nonlinear differential equations, it
still suffers from several limitations that restrict its performance in cer-
tain cases. In particular, the original ADM exhibits weak performance
when dealing with singular equations, since the linear operator may
not be invertible at singular points, leading to loss of accuracy or even
divergence of the solution. Moreover, the method often shows slow
convergence for highly nonlinear problems, requiring a large number
of Adomian components to achieve acceptable accuracy. These draw-
backs have motivated researchers to develop various modifications and
improvements of the ADM to enhance convergence, stability, and appli-
cability. Accordingly, the present work introduces a new adaptive modi-
fication of the ADM designed to overcome these limitations and provide
more accurate and rapidly convergent solutions for singular and non-
linear differential equations.

This article aims to explore and enhance the analysis of the fourth-
order LEF equation by applying the MADM. This study introduces a tai-
lored framework that comprises seven specialized operators, designed
to facilitate effective solutions under a variety of initial and boundary
conditions. Under different conditions, this method is characterized by
its ability to solve the LEF equation using multiple operators regardless
of the value of n. Notably, the failure of one operator to obtain the so-
lution does not prevent the others from achieving it, which represents
one of its main advantages that overcome the limitations of traditional
approaches, MADM has consistently proven its efficiency and reliability
in addressing both linear and nonlinear equations. It provides succes-
sive components of a solution without requiring ad hoc transformations
or perturbation techniques. To demonstrate the method’s capability
in handling singularities and nonlinearities inherent in various models,
several numerical examples, each with specified conditions, are exam-
ined.

In this study, a set of novel differential operators is introduced to ef-
ficiently solve the LEF equation. Section 2, analysis of the proposed
method for the fourth-order LEF equation provides a comprehensive
examination of the theoretical framework and analytical formulation
of the proposed approach. Section 3, the algorithm presents a de-
tailed description of the computational procedure used to implement
the proposed method for the fourth-order LEF equation, this section
outlines the operational structure and sequential computational steps
of the MADM applied to various forms of the LEF equation. Section
4, numerical examples demonstrates the effectiveness of the proposed
approach through four numerical examples corresponding to different
values of n, the results are illustrated using tables and graphical rep-
resentations highlighting the absolute error values and confirming the
accuracy and reliability of the method. Finally, section 5 summarizes
the main findings, emphasizing the precision and efficiency of the de-
veloped operators in solving nonlinear LEF equations and validating
the robustness of the MADM framework. discusses the implications of
our findings and concludes the paper.
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Analysis of the Proposed Method for the Fourth-
Order LEF Equation

This section outlines the methodological approach employed to ad-
dress the fourth-order LEF equation. Our strategy leverages the ADM
adapted to effectively handle the complexities of this class of non-linear
differential equations. Specifically, we introduce a set of seven distinct
operators meticulously formulated to facilitate the decomposition pro-
cess for fourth-order equations. These operators are:

5 d

d d . d
L1(n) =s—1d—€s—1d—€5 d—gs‘f—”d—gsn—%, (2)
d d d d
La(n) = 5_2%53_nd7§§n_2d7§£3d7§£_2n’ (3)
_ 72i 2£ 2777,1 n72i
L) = €72 € TS @
d? d . d
Ly(n) = 5_2@ 4_nd*£5nd*£5_277, (9)
d d2 d
Ls(n) = f_ndfgﬁn_lﬁﬁsdfgf_%% (6)
_ 777.1 nfli Qi 71i
Lan) = € e 26 Se 2 )
d ., d
L7(n) = §_ni§nﬁﬂ~ (8)

Each operator L; generates a fourth-order LEF equation of the general
form Eq. (1).
Starting from Eq. (2):

71i 71i 21 3771,1 n—3
A
o1 b, a0 d (pdn _ayedn )
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Thus,
0" 4+ 20 4 f(€)g(n) =0, € €l0,1],n € [0,3], ©)

n(0) = A,n(a) = B,n'(a) = C,n"(0) = D.
Remark. If « = 0, then A = B.
Where f(¢) and g(n) are given functions of £ and n, respectively, and
n > 1 is called the shape factor, A, B, C, D and a can all be nonzero.
Notice that the singular point £ = 0 appears only once as £ with the
corresponding shape factor n. Moreover, this form of the equation is
by the absence of the first and second-order derivative terms, n’ and
7]”-
When f(£) = 1, Eq. (9) reduces to the classical LE equation of the
fourth order:

(10)

n"" + gn’" +9(n) =0,

n(0) = A,n(a) = B,n'(a) = C,n"(0) = D.
Note. If a = 0, then A = B.
From Eqg. (3) and in accordance with the analysis previously detailed,
get

£ €10,1],m € [0,3], (1)

(12)

n
n'"" + Zn”/ + f(&g(n) =0,
n(a) = A,n(b) = B,n'(0) = C,n'(b) = D. (14)
Remark. The condition a # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
unigueness of the solution. Moreover, if b = 0, then C = D.

£ €]0,1],n € [0,3[, (13)
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Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1lis called the shape factor, A, B, C, D and a, b can all be nonzero.
When the function f(&) is set to 1, Eq. (13) transforms into the fourth-
order LE equation, which is expressed as

n
n"" + En’” +9(n) =0,

77(@) = A777(b) = an,(o) =C, U'(b) =D. (16)
Note. The condition a # b is imposed to guarantee the indepen-

dence of the boundary conditions and consequently, the existence and
unigueness of the solution. Furthermore, if b = 0, then C = D.

£ €]0,1],m € [0,3[, (15)

From Eq.(4) and building on the preceding analysis, get
+ f(€)g(n) =0,

mr ™
o+ Zn
13
n(a) = A,7'(0) = B,n'(b) = C,n" (b) = D.
Remark. If b = 0, then B = C.
Where f(¢) and g(n) are given functions of ¢ and 7, respectively, and
n > 1lis called the shape factor, A, B, C, D and a, b can all be nonzero.
For the case where f(£) = 1, Eq. (17) simplifies to the fourth-order LE
equation which is expressed as

£ €]0,1],m € 0,3[, (17)

(18)

n
n"" + En”' +9(n) =0,

n(a) = A,7'(0) = B,n'(b) = C, 7" (b) = D.
Note. If b = 0, then B = C.
From Eq. (5) and consistent with the analysis presented above, have

(19)

(20)

n'"" + gn"’ + f(&)g(n) =0,

n(0) = A,n(b) = B,n'(0) = C,1"(0) = 0.
Remark. If b = 0, then A = B.
Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1 is called the shape factor, A, B, C and b can all be nonzero.
When the function f(¢) = 1, Eq. (21) reduces to the fourth-order LE
equation, given by

(21)

(22)

n
W () =0,

n(0) = A,n(b) = B,7'(0) = C,n""(0) = 0.
Note. If b = 0, then A = B.
From Eq. (6) by calculating the derivative

d d? 4 d d d? (. d
i S A e S (5—" - 2n)

(23)

(24)

de” ag2” dg e~ de? \"de
e d (pd® dn\ o d o, dn®
BRI (éde ds) =8 (gd&%)
R 1 d nd773 __n ndn4 n71d773 _ d774 nd773
=t d?(f d?s)—f (f@”f @)‘@*E@’
gives,
n
n'"" + En”’ + f(&)g(n) =0, (25)
n(0) = A,n(a) = B,n'(b) = C,n"' (b) = D. (26)

Remark. If a = 0, then A = B.

Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1is called the shape factor, A, B, C, D and a, b can all be nonzero.
By setting f(¢) = 1, Eq. (25) simplifies to the fourth-order LE equation,

expressed as
mr

n +E77 +g(n) =0,

n(0) = A,n(a) = B,n'(b) = C,n"" (b) = D.
Note. If a = 0, then A = B.
From Eq. (7) and as demonstrated in the preceding analysis, obtain

(27)

(28)

0"+ 20" 4 f(€)g(n) =0,

29
¢ (29)
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7](0) =4, 77/(‘1) = B77]/(b) =C, ﬁ//(b) =D. (30)

Remark. The condition a # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
unigueness of the solution.

Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1is called the shape factor, A, B, C, D and a, b can all be nonzero.
When f(¢) = 1, Eq. (29) becomes the LE equation of the fourth order,
which is given by

n
n"" + En”’ +9(n) =0,

n(0) = A,n'(a) = B,n'(b) = C,n""(b) = D.

(31)

(32)

Note. The condition a # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
unigueness of the solution.

Finally, Eq. (8) generalized extension as defined in [14].

The Algorithm

This section provides a detailed description of the algorithm imple-
mented to apply the proposed method for solving the fourth-order LEF
equation, the procedure is formulated to demonstrate the operational
framework and computational steps of the modified ADM in addressing
different forms of the LEF equation. The ADM serves as the analytical
foundation of the proposed approach, being a well-established and ex-
tensively utilized technique in recent studies [16,23-25, 34, 39,40].
The ADM uitilizes an infinite series decomposition

n(€) =D mk(8), (33)
k=0

to obtain the solution 7(£), represented by an infinite polynomial series

8

g(n) = Ak(no’n17"'7nk)7 (34)

k

0

The term g(n) signifies the nonlinear component, while ny (§) repre-
sents the recurrently determined components of the solution n(¢). The
Adomian polynomials, Ay, are derived from the definitional formula de-
tailed [24].

1 dk

k
_ [ —
A = o INF |:g( E A m)});(fk =0,1,2,...
1=0

where Nn = g(n(€)) is the nonlinearity. The formulas of Adomian
polynomials from Ag to A4 as

Ao = g(no),

A1 =mg' (o),

1
Az =n29'(n0) + 577%9”(770),

1
Az =n3g’ (n0) + mn2g” (no) + gni”g”’(no),

" //H(

10).
(35)

1 1 1
Ay = 7749'(770)-"-(771773-1-5775)9”(710)4—577%7129 (no)+1nf9
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The First Operator

For Eg. (9), the proposed framework primarily involves defining the
linear differential operator L1 as a first-derivative expression.

Li(n) = —f(&)gn),

the linear differential operator L, incorporates the first four derivatives
from Eq. (9), as shown in Eq. (2), to overcome the singular behavior
at ¢ = 0. Consequently, the optimal definition of the inverse operator
Ly is a four-fold definite integration

L7y =€ /11657“3/‘155*2/;&/;5(.) dedgdeds.  (37)

(10) and

(36)

The boundary conditions are implicitly defined by the Eq.
n > 0,n # 2, have

/05( & &5 ch
:53—n/ fni?}/j&”

13
P 3—n n—3 7" _
[ e(egemee et wroa-m)  dedeas

—g3n /g gn—3 /: £2

Qd Qd 3—n n—3 "
[ (e e te e o -me) dcasae

el

3n nS
S o

777,@ n—3
dgé ) d§dgdede

0
253 n/ &-n 3(63 ndé_gn 3 ui)(n_3)&-n73+

af’ (0) n(a)
> N (- 3)) d

(1=n)+n'(a) +

3) +

W(l —n)+

P@+ T w—n)en ) ae

=& (E”’Sn(f) ey (@(n—?ﬂ + —“";(0) (1=n)+n'(a)+

T =3y e — an2nta) - @ =2n(0) - Lt

7'(0) et () — (@) —3)
oo n—2 “ 2)
= n(€) — n(0)—

(263 = ma(0) + 2(=3 + myn(a) — 2a1/(@) + (1 = )" (0))

2a(—2+n) &
a—Sn_ a) — 2ar’ (a a2//

0. " (= 2010) + 20t0) = 201/(@) + a?0)) .
2 2(—24n) ’
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The four-fold integral was evaluated using repeated integration by
parts. Applying the inverse operator Ll‘1 to both sides of Eq. (36)
yields

(2(3 —n)A+2(=3+n)B — 2aC + a?(1 — n)D)

n(§) = a2 1)

&+

Ly F(©)g(m).

(38)
The solution (&) and the nonlinearity g(n) are decomposed in accor-
dance with Egs. (33) and (34), respectively, allowing for the derivation
of the recursive relation for the solution components

SE+ e -

a—3tm ( —2A+2B —2aC + a2D)
D 2
2

2(=2+n)

(2(3 —n)A+2(=3+n)B —2aC +a?(1 — n)D)

=A
o + 2a(—2+n) &
aq—3tn ( —2A 4+ 2B — 2aC + a2D>
252 + 63771
2 2(—2+n) ’
41 = =Ly H(F(©AR), r>0. (39)

The Second Operator

For Eq. (13), the framework defines the second linear differential oper-
ator Lo in terms of its first derivatives

La(n) = = f(&)g(n),

to address the singular behavior at ¢ = 0, the linear differential oper-
ator Lo contains the first four derivatives of Eq. (13), as detailed in
Eq. (3). This structure allows the inverse operator L;l, to be optimally
defined as a four-fold definite integration

L;%):52L55—3/b§s?—”/j£”—3/0§£2()

By the Eq. (14) and n > 0, get

Ly (Lam) = € /)E 5*3/552*” /g gn=3

d d sd
/ 52(5 2?53 n ggn 2 553 fdgn) dededede

(40)

dgdgdgds.  (41)

&€ . ré §/d _od .dé 2y _
_ ¢2 3 2—n S en—2 % 326 Y _ / n—3
e (o [ [ (feme S - 06 ) dsdede

_ ¢2 ¢ -3 ¢ 2—n n—2 d 3d§_277
e [ [ (5 AN

e [ ‘ (di;" + (7O b O b/ ) +200) )€ ) e

+ ?7'(0)5”_2) dédg

=& (200 — 5 (O - 1 ©) ~ 0 @) + 2000) )62
n(a) —n(b) —an’(0) by’ (0) + bn’(b))
a? 2a?

= n(€) — () + 5 (7'(0) + /() ' (0)6

2(n(a) = n(b)) + (=2a +b)n’(0) + b1’ (b) .o
2a? ¢
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The four-fold integral was evaluated using repeated integration by

parts. The application of the inverse operator L ! to both sides of

Eq. (40) results in

2(A - B) + (=2a +b)C +bD
2a?

7€) = B— o (C+D)+0E+

(42)
Using Egs. (33) and (34), both the solution n(¢) and the nonlinearity
g(n) are decomposed, which yields the recursive relation for the solu-
tion components

2(A— B)+ (—2a+b)C +bD
2a2
r > 0.

527
(43)

b
=B~ (C+D)+0¢+

M1 = —L3 (F(€)Ar),

The Third Operator

The third linear differential operator L3 is formulated as a first-derivative
expression for Eq. (17).

Ls(n) = —f(&gn), (44)
as depicted in Eq. (4), the linear differential operator L3 includes the
first four derivatives from Eqg. (17) to handle the singularity at £ = 0.
Therefore Lgl is optimally defined as a four-fold definite integration
operator

—1 _ ¢ 2—n ¢ n—2 ¢ -2 ¢ 2
0= [fem e [Fe [Me) deacacae. @s)
For n > 0,n # 1 with boundary conditions Eq. (18), have

L3 (Lsn) = /j g2n /O& gn2

Soo [Sd pd 5, d g, ody
—&"— — —) d&dédéd
[ [ enem e

:/;527"/55"72

§€/d 2em @ p_odn , 72)
— Tt 4L (n—2 0 deded
/b (d§€ dfg de (n n'(0)¢ £dgde

:/;5

¢ d n—2d7] / n—3
/0 (d—gs M 2y (034

2—n d£
(n 20O ) =W e
€ (dn et 4. (2= 2 (O) = (4) — buf"(b)
— [ (G- -2+ : )ae
= (&) —n(a)—
(20(b — @) + ala — 26)n)n'(0) + a*(2 — w)n' () — @%b (8) _
2b(n — 1)
e - 2O ) + ')

2b(n —1
The four-fold integral was evaluatt(ad usizg repeated integration by
parts. By applying the inverse operator L3 ! to both sides of Eq. (44),
the following is obtained

nE) = A+ (2a(b — a) + a(a — 22bb)n)B +a%2(2—-n)C — a26D+

(n—1)
(2 n;éi _?; 002 p 21 p()g(n).
The decomposition of the solution n(£) and the nonlinearity g(n) is per-
formed using Egs. (33) and (34), which enables the recursive relation
for the solution components to be derived
(2a(b — a) + a(a — 2b)n)B + a?(2 — n)C — a2bDJr
2b(n — 1)
(2—n)(B—-C)+0bD ,
2b(n — 1) &

mr1 = —L3  (F(§)Ar), 720

B¢+ (46)

no=A+

B¢+

(47)
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The Fourth Operator

For Eq. (21), the fourth linear differential operator L, is defined as a

€2—L; ' £(€)dfivst-derivative term within the proposed framework.

La(n) = —f(&)g(n), (48)

given its role in overcoming the singular behavior at £ = 0, the linear
differential operator L, is designed to contain the first four derivatives
of Eq. (21), as prescribed by Eq. (5). This setup leads to the definition
of L4‘1 as a four-fold definite integration operator

L) =¢ /: e /j gn /05 /0552«) dedededs.  (49)

Using Eq. (22) and n > 0, have

LZI(L477)262/;§’”/O££"’4/0§

€ d2 47nd nd€72n
/O (@5 i )dfdfdfdf

€ & E/d , d de—2q )
— 2 n n—4 4—n n — / dédéd
¢ /b ¢ /0 ¢ /0 (dfg dE€ dg =2 0) dideds

e /bf e

S/d dem2 _ n74>
/()(zgg e =2 (006" + 200 = 3)n(0)" ) ded

¢2n

252/;(61;5

(02 + 2n(0)£’3>d£

=¢2 (5*277(5) = (062 =7/ (01 + b2 (n(0) — n(b) +bn’(0)))

=n(&) — n(0) — ' (0)€ — b=2(n(b) — n(0) — bn’ (0))&2.

The four-fold integral was evaluated using repeated integration by
parts. The inverse operator Lgl is applied to both sides of Eq. (48),
leading to

n(E€) =A+CE+b 2 (A—B+b0)E — L' f(€)g(n).  (50)

The solution 7(£) and the nonlinearity g(n) are decomposed according
to Egs. (33) and (34) respectively, and derive the recursive relation for
the solution components

no=A+CE+b"2(A— B+bC)E2,

N1 = —Ly ' (F(€)Ar), r>0. (51)
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The Fifth Operator

Within the proposed framework, the fifth linear differential operator L5,
is constructed using a first-derivative form for Eq. (25).

Ls(n) = —f(§)g(n),

where the linear differential operator Ls contains the first four deriva-
tives of Eqg. (25) as Eq. (6), in order to overcome the singular behavior
at ¢ = 0. Based on Eq.(6), the optimal definition of L;l is the four-fold
definite integration operator

ro=e [T [f[fe [feo
From Eq. (26) with . > 0, have

1<L5n):52/55—3/5/:sl—"

/j (déé" 1;‘2253‘125 ’7) dédededs

e[ feles

B £ /de 2
‘52/a ( T
=n(€) —n(0) — (n'(b) — bn" (b))é+

(00 = n(@)a2 + @) = o' G)a )2,

The four-fold integral was evaluated using repeated integration by
parts. Utilizing the inverse operator Lgl on both sides of Eq. (52)
yields

(52)

dededede. (53)

d&n

53 ) dgdgds

by (b) + n’(b)) dede

by (b)€™2 + 7/ (b)E™2 + 277(0)6’3) de

WO = A+ (C =D+ (B = A+ 4D = C)a )2

—L5 ' f(©)g(m). (54)
To obtain the recursive relation for the solution components, both 7(¢)
and the nonlinearity g(n) are decomposed by following Egs. (33) and
(34),

no=A+(CfbD)5+(B‘A+bD_C)§2,

a—2 a—1
M1 = —L3 ' (F(€)Ar), r>0. (55)

The Sixth Operator

For Eq. (29), the final linear differential operator L is defined in terms
of its first derivatives within this framework.

Le(n) = —f(§)g(n),

by including the first four derivatives of Eq. (29), as shown in Eq. (7),
the linea differential operator Lg effectively manages the singularity at
& = 0. Consequently, the inverse operator Lgl is identified as a four-
fold definite integration

- >=/()£5L§5—2/b£51—”/)§£”<.> dedgdede.

When n(0) = A,7'(a) = B,n'(b) = C,n"' (b) =

Ly Lm)/&/ /51"

t/d n-1@ o d 71d77)
[ (G e e ) dsasaeae

(56)

(57)

D,and n > 0, have
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:/()gfof’z/l)E&l*"(ﬁ" 1;552;155 132) dedgde

:/065/;5*2(52%5*1%

= /0 (%2 + 01" (b) =1 (b) — (n'(a) — n'(b) + bn”(b))a—lg> de
= (&) = n(0) = (n'(b) — bn" (b))€ — ’7';1;) + 01" () ;2

The four-fold integral was evaluated using repeated integration by

parts. Applying the inverse operator LG‘1 to both sides of Eq. (56)
yields

() + n'(b)) dede

n'(a) —

B=CDe 15 f(©)tm).
a

The decomposition of the solution n(£) and the nonlinearity g(n) is car-
ried out according to Egs. (33) and (34) in order to obtain the recursive
relation for the solution components

n(§) = A+ (C-bD)E+ (58)

B—-C+bD
2a
r > 0.

no = A+ (C —bD)E + €2,

—Lg ' (£()A), (59)

Nr+1 =

Numerical Examples

This section presents four carefully selected numerical examples to rig-
orously evaluate the performance, convergence, and accuracy of the
proposed method. Each example considers distinct values of n and
specific forms of the functions f(§) and g(n), as cited in [7, 16, 19].
The results are systematically organized in comprehensive tables and
illustrated through graphical plots highlighting the absolute errors and
demonstrating the method’s reliability, precision, and efficiency in solv-
ing fourth-order LEF equations.

Example 1 Example 4.1. We begin by considering the LEF equation
%n’” =96(1 — 106" +56%)e ™,
by substituting n = 3 in Egs. (9), (13), (17), (21), (25), and Eq.(29)
and defining f(€)g(n) = 96(1 — 10£* +5¢8)e=47, with initial conditions
Eqgs. (10), (22) and boundary conditions Eqs. (14), (18), (26), (30),
respectively

n//// + (60)

n(0) =7'(0) =7"(0) =0, a=0,
1(0.0001) = 0,7(0) = n(0) =0, a=0.0001,b=0,
n(0) =7'(0) =7"(0) =0, a=0,b=0.0001,
n(0) =n'(0) =

77 (0) - 07 b= 0’
n(0) = 0,7(0.01) = 1% 108,79/ (0) = »"'(0) =0, a=0.01,b=0,
7(0) = 7'(0) = 0,7/(0.01) =4 %1075, %(0) =0, a=0.01,b=0.

Notice that the conditions are not all zero. Applying these conditions
yields no = 0 when using the operators L1, L2 and L4 explained in
Section 3 of the algorithm (specifically in parts 3.1, 3.2 and 3.4, re-
spectively), while applying the remaining operators L3, Ls and L¢ as
presented in part 3.3, 3.5 and 3.6 of the same section, resulted in dif-
ferent values of ng.

Given the nonlinearity e=" the Adomian polynomials are defined as
follows

Ay = e““’“,

Al = 747716_4770,
AQ = ( — 47’]2 + 877%)674770,
32 _
Az = (—4nz + 16mn2 — gﬂ?)e o, (61)

From Eq. (39), the computed solution components are

7]0(5) =0,
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5 1

4 2.8, L2
m(e) =t - 2+ 6,

_ l 8 ﬁ 12
na(§) = 265+ 4

m(E) = €%+

The initial terms of the Taylor expansion series were used to simplify
the computations for each solution component, which yielded the se-
ries solution. 1 1
nE) =¢* - 558 + §§12 + o (62)
which converges to the exact solution n(¢) = In (1 + &4).
Using Eq. (43), the calculated solution components are
no(§) =0,
1 (€) = —1%x1078¢2 4 ¢* — 0.357143¢8 + 0.030303¢12,
n2(€) = —3.90476 * 10—2562 + 5.33333 * 10—10£¢ — 0.142857¢8
—5.333 % 1072¢1% + 0.251082¢12,
n3(€) = —3.29738+10741£2 42.08254+10725¢5 42.85714%10717¢8—
2.16178 % 1072¢10 4 0.051948¢12,

By Taylor expansion terms for each solution component were used to
streamline the calculations, ultimately producing the series solution

() = —1%1078¢2 4 ¢4 4+ 5.33333 % 1071065

0.5¢% — 7.49478 % 1072¢10 4 0.333333¢12 + ..., (63)
which closely approximates the analytical solution n(¢) =In (1 + €*).
By Eq. (47), the calculated solution components are

n0(§) = 4% 107%¢%,

(€)= —4%107862 4 ¢* —2.13333 x 107 8¢5 —
0.357143£% +2.13333 x 10~ 3¢1° + 0.030303¢12,
n2(£) = —1.69143 % 1072562 4+ 2.13333 x 10 8¢5 —
0.142857£% — 1.16622 x 10~ 3¢ + 0.251082¢12,
n3(€) = —5.16471 % 1073%¢2 4 9.02096 + 10266+
4.57143 %107 16¢8 — 9.67111 % 107210 + 0.051948¢12,

The Taylor series expansion provided the initial terms for each solution
component, thereby simplifying the computations and resulting in the
series solution

n(€) = £* —0.5¢% — 1% 1071410 1+ 0.33333¢12 + ...,
yielding convergence to the exact solution n(€) =In (1 + &4).
From Eq. (51), the solution is composed of the following calculated
components

(64)

n0(§) =0,
(&) = —1 % 10782 + ¢* — 0.357143¢3 + 0.030303¢'2,
n2(€) = —3.90476 * 107252 4 5.33333 % 107 10¢% — 0.142857¢8 —
5.333 % 1079¢10 4+ 0.251082¢12,
n3(€) = —3.29738+10741£2 42.08254+10725¢64-2.85714%10717¢8—
2.16178 x 1072¢10 4 0.051948¢12,

The initial terms of the Taylor expansion series were corresponding for
each solution component to simplify the computations, yielding the se-
ries solution

n(€) = —1% 10732 + ¢* +5.33333 x 107 10¢0
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—0.568 — 7.49478 + 1079¢10 + 0.333333¢12 4 ..., (65)
which is in close agreement with the true solution n(&) =In(1 + £4).
Taking Eq .(55), the calculated solution components are

m0(€) = 0.0001€2,

m (€) = —0.0001£2 + £* — 0.000053333¢% — 0.357143¢8+
0.000053333£1° + 0.030303¢2,
n2(€) = —3.90476 * 107 13£2 + 0.0000533333¢6 — 0.142857£8 —
0.0000291556£1° 4 0.251082¢12,
n3(€) = —3.04138 % 10721¢2 4 2.08254 % 10~ °¢0 4
2.85714 % 107 2¢8 — 0.0000241778¢10 4 0.51948¢12,

By Taylor series expansion provided the initial terms for each solution
component, thereby simplifying the computations and resulting in the
series solution

n(€) = —3.90476 x 107 13¢2 4 £* + 3.00002 x 107106

—0.56% — 4% 1071110 4 0.800865¢12 + ..., (66)

which yields a solution that precisely matches the exact solution

n(€) =In (1+€%).
Using Eq.(59), the calculated solution components are

10(€) = 0.0002¢2,

m (€) = —0.0002¢2 + £* — 0.000106667£% — 0.357143¢8+
0.000106667¢1° + 0.030303¢12,
n2(€) = —2.62857 * 10712£2 + 0.000106667¢ — 0.142857¢8 —
0.0000583111£° + 0.251082¢12,
n3(€) = —6.67105 % 1072062 + 1.4019 % 10~ 12£0 4+ 1.14286 10~ 8¢8
—0.0000483556£1° + 0.051948¢12,

The Taylor expansion series were used to simplify the computations for
each solution component, which yielded the series solution

n(€) = —2.62857 10_12§2 + §4 +1.4019 * 10—1256

—0.5¢% + 3% 1071910 4 0.33333¢12 + ..., (67)
which is in close agreement with the true solution n(¢) =In (1 + &4).

The results obtained for Example 4.1 clearly demonstrate the high ef-
ficiency and accuracy of the proposed MADM in solving the fourth-
order LEF equation. As depicted in Figure 1, the approximate solution
exhibits excellent agreement with the exact analytical solution across
the entire computational domain. The two curves are nearly indistin-
guishable, confirming the strong convergence of the method. The error
distribution, also illustrated within the Figure 2, reveals that the ap-
proximate error remains extremely small and decreases monotonically
as the number of terms in the decomposition series increases. This
behavior confirms that the MADM achieves rapid convergence and nu-
merical stability even in the presence of nonlinearities and boundary
constraints. Overall, Figure 1 and Table 1, effectively summarizes the
performance of the proposed approach, showing that the method yields
results that are practically identical to the exact solution, with negligi-
ble numerical deviation. This verifies the accuracy, robustness, and
reliability of the MADM in handling higher-order nonlinear problems.
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Figure 1: Comparison of the exact solution with the solutions obtained using the MADM (L, — Lg)

Example 4.2. We now analyze the linear LEF equation

11 2 1"

L = 4(9 — 16¢% + 4¢*)n, (68)

substituting n = 2 in Egs. (9), (13), (17), (25), and Eq.(29) and defining

F(€)g(n) = 4(9 — 16€% + 4¢%)n,
with conditions, respectively

n(0) = 1,1(0.01) = 1.0001, 7" (0) = 2,7'(0.01) = 0.020002,

n(0) = 1,7(0.03) = 1.0009,7'(0) =0, a = 0.03,b=0,
n(0) =1,7'(0) =0,7"(0) =2, a=b=0,
n(0) = 1,1(0.01) = 1.0001,7'(0) = 0,17”(0) =2, a=0.01,b=0,
7(0) = 1,7'(0) = 0,7/ (0.001) = 0.002,7”(0) =2, a=0.001,b=0.
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Notice that in this case, singular at £ = 0 due to the presence of the
Ln& term, the MADM handles this singularity by using a series expan-
sion around £ — 0. The the conditions are not all zero. It is observed
that, despite the variation in applied conditions, the same initial value
1o = 1 + &2 is obtained when using the operators Lz, L3, Ls and Lg,
whereas L serves as an exception due to its distinct mathematical for-
mulation. This consistency among the operators highlights the internal
coherence of the proposed method and confirms its capability to ef-

a = 0.01, fectively accommodate different initial and boundary conditions without

compromising numerical stability or convergence.. Subsequently, the
recurrence relations Eq.(39), Eq.(43), Eq.(47), Eq.(55), and Eq.(59),
respectively, are utilized to obtain the following calculated solution com-
ponents.
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Figure 2: The obtained results exhibit strong and satisfactory convergence towards the exact solution affirming the
high quality of performance and robustness of the proposed algorithm by the MADM (L; — Lg).

From Eq. (39), the computed solution components are

no(€) =1+ (—9.21034 % 106 4 2 % 10~ Lng)¢ + £2,

N1 (€) = (—7.40814 * 1078 — 1.50008 % 10~ Ln&)e+
(5.19346 * 1072° 4 5.63923 * 10~ 23 Lng)e? + ...,

n2(€) = (—2.27715 + 10714 — 4.58612 % 1015 Lng)ée
+(—1.50954 % 10728 4 4.645 103 Lng)e? + ...,

n3(€) = (—6.648 * 10723 — 1.33795 « 10~ 23 Ln[¢])é+
(—2.01714 % 10736 — 2.8246 + 10737 Ln&)e? + ...,

Consequently, the series solution
n(&) = 14 (—0.0000166185 + 4.9992 % 10~ Ln&)&+
(14 1.3323 % 10722 Ln€)e? + ...,

which approaches the precise solution n(§) = €2,
From Eq. (43), the resulting solution components are

no() =1+ &2,
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n1(€) = —0.000450135¢2 + 0.5¢* + 0.16667£5+
0.0340136£8 + 0.00246914¢£1°,
n2(€) = 1.63026 « 10~ 11£2 — 0.0000270081¢5+
0.00764081£8 + 0.0058631£10 + ...,
n3(€) = —7.05314 % 107 1%¢2 4+ 9.78156 % 10~ 3¢0 4
4.43608 * 10~ 13¢8 — 1.50045 « 10~ 7¢10 + .

The resulting series solution is obtained

n(€) = 1+ 0.9996¢% + 0.56* + 0.166643¢°+

0.0416544¢8 + 0.00833209¢10 + ..., (70)
(69) which yieZ[ds a solution that precisely matches the exact solution
n(E) = et
From Eq. (47), the derived solution components are
m0(€) = 1+ €2,
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Table 1: The approximate solutions and absolute errors for Example 4.1 with n = 3.

19 Exact MADM Absolute MADM  Absolute MADM  Absolute
solution Ly Error Ly Error L3 Error

0.0 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000
0.1 0.000100 0.000100 0.000000 0.00010 0.000000 0.00010 0.000000
0.2 0.001599 0.001599 0.000000 0.00160 0.000000 0.00160 0.000000
0.3 0.008067 0.008067 0.000000 0.00806 0.008060 0.00807 0.000000
0.4 0.025278 0.025278 0.000000 0.02528 0.000002 0.02528 0.000000
0.5 0.060625 0.060625 0.000000 0.06063 0.000005 0.06063 0.000000
0.6 0.121864 0.121863 0.000001 0.12193 0.000066 0.12193 0.000003
0.7 0.215192 0.215192 0.000000 0.21589 0.000698 0.21589 0.000003
0.8 0.343306 0.343354 0.000048 0.34862 0.005314 0.34862 0.005314
0.9 0.504465 0.505277 0.000812 0.53501 0.030545 0.53501 0.030545
1.0 0.693147 0.700167 0.007200 0.83333 0.140183 0.83333 0.140183

MADM  Absolute MADM  Absolute MADM  Absolute
Ly Error Ly Error Lg Error
0.00000 0.000000 0.00000 0.000000 0.00000 0.000000
0.00010 0.000000 0.00010 0.000000 0.00010 0.000000
0.00160 0.000000 0.00160 0.000000 0.00160 0.000000
0.00807 0.000000 0.00807 0.000000 0.00807 0.000000
0.02528 0.000000 0.02529 0.000001 0.02528 0.000000
0.06063 0.000000 0.06074 0.000009 0.06063 0.000000
0.12193 0.000003 0.12295 0.001096 0.12193 0.000003
0.21589 0.000003 0.22236 0.007168 0.21589 0.000003
0.34862 0.005314 0.38075 0.037443 0.34862 0.005314
0.53501 0.030545 0.66705 0.162589 0.53501 0.030545
0.83333 0.140183 1.30087 0.607723 0.83333 0.140183

1, 1lg 5 ¢ 1 19 . o .
m(é) = 25 + 6§ + 1475 + 405§ , The series solution is established
2 (€) = igs " ﬂgm " 731 £12 2719 g n(€) = 140.99995¢2+0.5¢*+0.166664£54-0.0416653£54-0.00833319¢ 10+
392 3240 533610 15651090 ‘ (72)
13 (€) = 9 £12 3091 ey yielding the exact solution n(¢) = €.
474320 125208720 From Eq. (59), the determined solution components are
Leads to the series solution. no(§) =1+ €2,

n(€) = 1+£2+1§4+}56+%§8+L510+L§12+L514+“_, 1(€) = —1%105¢240.5¢4+0.166676°+0.0340136£5+0.0024691¢ 1°,
25 760 2

120 720 5040 19 »2 8.6 3 10
72 =1. * —6% +0. +0. “+...,
(71) (€) = 1.49388%107 1962 —6+1078¢5+0.007653¢84-0.0058642¢
. . . . 2
which is in close agreement with the true solution n(¢) = €& . n3(€) = —2.533 + 10~23¢2 4 8.9632755 + 10~ 2064

From Eq. (55), the obtained solution components are
a- (39) P 4.06498 * 10~23¢% — 3.333335 % 10~ 10¢10 1 |

,'70(5) =1+ 627
71(§) = —0.00005¢°+0.5¢*+0.166675°+0.0340136£540.002469146 ™, 1o series solution is yielded

n2(€) = 2.234871296%1014£2 —3x107%¢540.00765684+0.0058641£ 10+ .., , . . . o
ns(€) = — 11032718 » 10-23¢% 1 1.3400228 x 10155 1 n(€) = 1+0.9999¢2 +0.564 +0.1667£540.0416666£5 +0.0083¢ 0+,

(73)
—16 ¢#8 —8¢#10
6.081 % 107 °£% — 1.6667 « 10~ """ + ..., convergence to the exact solution 1(¢) = e€”.
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Figure 3: A comparative analysis between the exact solution and the solutions derived from the MADM

(L17 L2a L37L57L6)

Table 2 clearly demonstrates the convergence between the exact and approximate solutions under the conditions.

Example 4.3. We next consider the LEF equation Given the nonlinearity 1°, 2 the Adomian polynomials are defined as
4 Ea. (35)
" + gn”’ =15n°(3 — 7¢2n%)(1 — £21?), (74) From Eq. (43), the calculated solution components are

n0(€) = 0.5 — 0.052794¢€2,
m (&) = —0.00979147¢2 + 0.0117188¢% — 0.00227892£6 +
0.000406088¢% — 0.0000613389¢10 + ...,
72(&) = 0.0000797423£2 — 0.00016392£% 4 0.000126849¢% —
n(1) = 0.447,7(0) = 0.5,7(0) =0, a=1,b=0, 0.0000556863¢10 + ...

by substituting n = 4 in Egs. (13), (17), (21), (25), and Eq.(29) and by
defining f(£)g(n) = 1517°(3 — 7¢2n%)(1 — €21?),
with conditions, respectively

n(1) = 0.447,7'(0) = 0,7/(0.1) = —0.0125, %" (0.1) = —0.124,
a=1,b=0.1,
7(0) = 0.5,7(0.01) = 0.499994, ' (0) = 0,1”(0) =0, b=0.01,

The series solution is
n(€) = 0.5 — 0.0625057¢2 + 0.0117188¢* — 0.00244284£5+

0.000532937¢% — 0.000117025¢1° + .., (75)
1(0) = 0.5,n(1) = 0.447,7'(0) = 0,7”(0) = —0.125, a=1,b=0, \hich closely approximates the analytical solution 7(¢) = \/4:_?.
n(0) = 0.5,7'(0) = 0,7'(0.02) = —0.0025, 7" (0) = —0.125, From Eq. (47), the calculated solution components are
a=0.02b=0. 70(€) = 0.509714 — 0.0625¢2,
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Figure 4: An exceptional convergence of the solution towards the exact solution is observed, which demonstrates
the high reliability and efficacy of the MADM (L1, Lo, L3, L5, Lg)

—0.0106302—4.3005%10~5£240.0129022¢* —0.00272627¢5+
0.000538199¢8 — 0.0000910358¢1° + ...,

72(€) = 0.00104419 +4.48441x10~7¢2-0.00134539¢* +0.00032722£6 —

2.73842 % 10~6¢8 — 0.0000359778¢1° + ...,

n(§)

Yielding the series solution
n(€) = 0.500128 — 0.0625039¢2 + 0.0115568¢4 — 0.002399056¢ +

0.000535461€8 — 0.000127014€° + ...,
1

Ve

From Eq. (51), the calculated solution components are

(76)
which converges to the exact solution n(¢) =

no(€) = 0.5 — 0.0527864¢£2,

—1.1719 % 10752 + 0.01172¢* — 0.00228¢5+
0.00041¢8 — 0.000061325¢1° + ...,

n2(&) = 1.4168 + 10~ 16¢2 — 1.9619 + 10~ 8¢5+

0.000055¢% — 0.000037111£10 + ...,

n1(§)
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The resulting series solution is obtained
n(€) = 0.5 — 0.05279¢2 + 0.0117198¢* — 0.002279¢5+

0.00046054£8 — 0.00009844£1° + ., (77)
[PRISE ; ; _ 1
which is in close agreement with the true solution n(§) = Jire
Using Eq. (55), the calculated solution components are
no(€) = 0.5 + 0.0528¢2,
n1(€) = —0.0116£2 + 0.01172¢* — 0.0005112€5+
0.0004061£8 — 0.00005717£10 + ...,
n2(€) = 0.00013¢2 — 0.000194£5+
0.00009452¢8 — 0.00004¢° + ...,
The series solution is
n(€) = 0.5 — 0.06424£2 4 0.01172¢* — 0.000705¢5+
0.000501£% — 0.000096¢1° + ..., (78)
which converges to the exact solution =1
g n(§) Jater
By Eq. (59), the calculated solution components are
no(€) = 0.5 — 0.0625¢2,
n1(€) = —9.37383 % 1076£2 4+ 0.01172¢* — 0.0024£5+
An-Najah National University, Nablus, Palestine 12



Table 2: An evaluation of the convergence between the exact solution and the MADM-generated solutions for

Example 2 with n = 2.

£ Exact MADM  Absolute MADM  Absolute MADM  Absolute
solution Ly Error Lo Error L3 Error
0.1 1.01005 1.01005 0.00000 1.01005 0.00000 1.01005 0.00000
0.2 1.04081 1.04080 0.00001 1.04079 0.00002 1.04081 0.00000
0.3 1.09417 1.09404 0.00013 1.09414 0.00003 1.09417 0.00000
04 1.17351 1.17279 0.00072 1.17345 0.00006 1.17351 0.00000
0.5 1.28403 1.28124 0.00279 1.28392 0.00011 1.28403 0.00000
0.6 1.43333 1.42479 0.00854 1.43318 0.00015 1,43333 0.00000
0.7 1.63232 1.61004 0.02228 1.63212 0.00020 1.63232 0.00000
0.8 1.89648 1.84479 0.05169 1.89622 0.00026 1.89648 0.00000
0.9 224791 2.13803 0.10988 2.24757 0.00034 2.24791 0.00000
1.0 2.71828 2.49948 0.21880 2.71784 0.00044 2.71828 0.00000
MADM  Absolute MADM  Absolute
Ly Error Lg Error

1.01005 0.00000

1.04081

0.00000

1.09417 0.00000
1.17350 0.00001

1.28401
1.43331

0.00002
0.00002

1.63229 0.00003
1.89645 0.00003
2.24787 0.00004
2.71823 0.00005

1.01005 0.00000
1.04081 0.00000
1.09417 0.00000
1.17350 0.00001
1.28400 0.00003
1.43324 0.00009
1.63227 0.00005
1.89642 0.00006
2.24783 0.00008
2.71818 0.00001

0.00048¢8 — 0.0001£1° + ...,

N2(€) = 6.1361 107 14¢2 — 1.5693 % 10~ 7¢0+

0.00005457£8 — 0.000039¢1° + ...,

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

Yielding the series solution

n(€) = 0.5 — 0.06251€2 + 0.011726* — 0.002442¢%+

0.00053¢8 — 0.00012¢0 + ...,
1

Vat+e?'

which converges to the exact solution n(§) =

An-Najah National University, Nablus, Palestine
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Figure 5: A comparative of the exact solution and the solutions produced by the MADM (Ls, L3, Ly, Ls, Lg)

Example 4.4. Finally, we consider the LEF equation
1" 4 " m
n" + 0" =-n", (80)
x
by substituting n = 4 in Egs. (11), (15), (23), and Eq.(27) and by defin-
ing g(n) =n",
with conditions, respectively
n(0) = 1,7'(0) =0,7"(0) =0, a=0,
7(0) = n(0.001) = 1,7'(0) =0, a = 0.001,b=0,
1(0) = 1(0.001) = 1,7'(0) = 0,7”(0) =0 b= 0.001,
n(0) = n(0.01) = 1,7/(0) = n""(0) =0, a=0.01,b=0,

Given the nonlinearity —n™ the Adomian polynomials are defined as
follows
AO = _776”7

Ar = —mmng

m— m(m —1 m—
A3 = (= 4 P21 5 Lopng =), (81)

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

Eq. (39), the calculated solution components are

From
no(§) = 1,
m(§) = —%547
m2(8) = o€
m(e) = "L S o,
The series solution is
() =1- %54 + 36;?38058 B né(ﬂgglzfoi?ém te

at m = 0, the exact solution is givenas n(§) =1 — 1—;)54.

From

Eq. (43), the calculated solution components are

7]0(5) = 15
m (&) = 8.33333 % 1079¢2 — 0.00833333¢*,
n2(€) = 7.1649 * 10~ 24me? — 9.92063 * 10~ 12meb+

An-Najah National University, Nablus, Palestine
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Figure 6: A comprehensive visual analysis of the absolute error plots for increasing terms L, to Lg decisively
demonstrates the high fidelity and robustness of the MADM.

2.75573 * 10~ 5me8,
n3(€) = (4.73741 + 10729m + 2.70021 * 107 29m?)e2 —
8.52964 % 107 27m2e% 4 (—1.14822 % 10~ m+
1.14822 % 10720m?2)¢® + ..

Yielding the series solution

n(€) =1+ 8.33333 % 10792 + 7.1649 « 10~ 24me2+

(4.73741 * 10™2%m + 2.70021 * 10~22m?2)¢2 — 0.00833333¢* —
9.92063 * 10~ 12meb — 8.52964 * 1072"m2¢% + 2.75573 % 10~ Smed+
(—1.14822 % 10~ 2%m, + 1.1482 « 10~ 29m2)e® + ..., (83)
when m = 0, which converges to the exact solution n(¢) = 1 — 135£*.
Using Eq. (47), the calculated solution components are
no(§) =1,
n1(€) = 8.33333 % 1072£2 — 0.00833333¢*,
n2(€) = 7.1649 % 10~ 2*m&? — 9.92063 * 10~ 2meb+
2.75573 % 10~ me8,
n3(€) = (4.73741 % 10~ 2%m + 1.2175 + 10~ 28m?2)e2 -

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

8.52964 % 10 22m 26+
(1.14822 % 10729 — 1.14822 % 10~ 20m?)¢8 + .|

The series solution is
n(€) =1+ 8.33333 % 1072¢2 + 7.1649 10~ 24mg2+

(—4.73741 % 10~ 2%m 4 1.2175 * 10~ 28m2)¢2 — 0.00833333¢4 —
9.92063%1012me® —8.52964x10725m2¢6 4+2.75573 %10 S med + ...

Pasiig

(84
note that m = 0, which converges to the exact solution 7n(§) =
1
1— 558t _
By Eq. (55), the calculated solution components are

no(§) =1,
n1(€) = 8.3333 % 10772 — 0.0083333¢4,
n2(€) = 7.16487%1024me2—9.9206%10 " 12meb+2.75572+10 " me8,
n3(€) = 1.2175 % 10738 (—0.389108 + m)mée? —
8.52961 10727 m2€% — 1.14821 + 10729 (=1 + m)me® + ...,

An-Najah National University, Nablus, Palestine 15



Table 3: The approximate solutions and absolute errors for Example 4.3 with n = 4.

19 Exact MADM Absolute MADM Absolute MADM Absolute
solution Lo Error Ls Error Ly Error
0.0 0.500000 0.500000 0.000000 0.500028 0.000028 0.500000 0.000000
0.1 0.499376 0.499376 0.000000 0.499354 0.000022 0.499473 0.000097
0.2 0.497519 0.497519 0.000000 0.497500 0.000019 0.497907 0.000388
0.3 0.494468 0.494468 0.000000 0.494452 0.000016 0.495342 0.000874
0.4 0.490290 0.490289 0.000001 0.490301 0.000011 0.491845 0.001555
0.5 0.485071 0.485070 0.000001 0.485100 0.000029 0.487502 0.002431
0.6 0.478913 0.478911 0.000002 0.478907 0.000006 0.482416 0.003503
0.7 0.471929 0.471926 0.000003 0.472027 0.000002 0.476704 0.004777
0.8 0.464238 0.464234 0.000004 0.464308 0.000007 0.470487 0.006249
0.9 0.455961 0.455955 0.000006 0.456001 0.000004 0.463889 0.007928
1.0 0.447214 0.447206 0.000008 0.447215 0.000004 0.457032 0.009818

MADM Absolute MADM Absolute

Ly Error Lg Error

0.500000 0.000000 0.500000 0.000000

0.499375 0.000001 0.499376 0.000000

0.497449 0.000007 0.497518 0.000001

0.494313 0.000155 0.494467 0.000001

0.490100 0.000190 0.490289 0.000001

0.485001 0.000070 0.485069 0.000002

0.478910 0.000003 0.478910 0.000003

0.471927 0.000002 0.471925 0.000004

0.464230 0.000008 0.464232 0.000006

0.455950 0.000011 0.455953 0.000008

0.447200 0.000014 0.447203 0.000011

Yielding the series solution

n(€) = 1+ 8.333 % 107 7¢2 4+ 7.16487 * 10~ 24me2 4

1.2175 % 10738(—0.389108 + m)m&? — 0.0083333¢% —

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

9.9206% 10~ 11 meb —8.52961 %1027 m2£6 +2.75572 %10 Smed + ..,

(85)

when m = 0, which is in close agreement with the true solution
n€) =1— 5¢*

An-Najah National University, Nablus, Palestine
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Figure 7: Numerical solutions for Example 4.4 at different values by (L1, Lo, L4, Ls)

Conclusion

In this research, a novel modified version of the MADM was success-
fully developed and applied to various forms of the fourth-order LEF
equations, the effectiveness of the proposed approach was compre-
hensively validated through four distinct examples involving both linear
and nonlinear cases under diverse initial and boundary conditions. The
numerical results presented in Examples 4.1 - 4.4 clearly demonstrate
the strong agreement between the approximate and exact analytical
solutions as confirmed by the corresponding figures and tables. The
MADM exhibited rapid convergence exceptional numerical stability and
minimal absolute error across all tested operators L; - Lg. In partic-
ular, the method maintained its high accuracy even in the presence
of strong nonlinearities and singular points at + = 0 proving its ro-
bustness and computational reliability. Moreover, the constructed se-
ries solutions using the proposed operators successfully reproduced
the exact analytical forms such as 7n(¢) = In(1 + €*%), n(¢) = e
and n(&) = 1/+/4 + £2. These results confirm the method’s capability
to handle higher-order nonlinear problems with remarkable precision.
Therefore, the MADM can be considered a powerful and flexible ana-
lytical tool for solving a wide range of linear and nonlinear differential
equations with singularities.
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