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Abstract: This study explores the solutions of fourth-order
Lane–Emden–Fowler (LEF) equations by employing a refined Modified
Adomian Decomposition Method (MADM). We introduce a novel framework
that features seven specialized differential operators, specifically developed
and utilized to analyze the equations under specific initial and boundary
conditions. Our findings demonstrate that the solutions derived from this
approach not only effectively converge to the exact solutions but also offer
unparalleled accuracy and reliability. A key strength of this methodology lies
in its exceptional flexibility; solutions can be accurately obtained by applying
at least one of these newly developed operators. This work significantly
enhances our comprehension of these intricate equations and highlights the
remarkable efficacy of the MADM in yielding precise solutions across diverse
scenarios, thereby establishing a robust and versatile analytical tool.

Keywords: Fourth-Order Lane–Emden–Fowler Equation, Initial and Boundary Value Problems, Modified Adomian Decomposition Method,
Analytical and Numerical Solutions.

Introduction

The LEF equation represents an essential mathematical model for de-
scribing a wide range of nonlinear physical systems. It is a gener-
alization of both the classical Lane–Emden (LE) and Emden–Fowler
(EF) equations [1–6], combining their structural properties into a unified
higher-order framework. The fourth-order LEF form, in particular, pro-
vides a more accurate representation of complex dynamical systems
in astrophysics, thermodynamics and nonlinear fluid mechanics [7–17].
In general, the fourth-order LEF equation can be expressed as:

d4η

dξ4
+

n

ξ

d3η

dξ3
+ f(ξ)g(η) = 0, (1)

where ξ ∈]0, 1], η ∈ [0, 3[, f(ξ) and g(η) are arbitrary continuous func-
tions, η represents the dependent variable, ξ the independent variable,
and n ≥ 1 is a shape factor. This equation arises naturally in mod-
eling stellar interiors, radiation diffusion and thermal behavior of poly-
tropic gas spheres. The inclusion of higher-order derivatives allows
the LEF equation to capture effects neglected in lower-order formu-
lations, such as fourth-order diffusion and nonlinear viscous stresses.
Consequently, it has become a cornerstone in the theoretical investiga-
tion of self-gravitating fluids, plasma dynamics, and certain classes of

quantum mechanical and relativistic systems [18–22]. Due to its strong
nonlinearity and the presence of variable coefficients, analytical solu-
tions to the LEF equation are rare and typically limited to specific pa-
rameter choices. Hence, modern analytical and semi-analytical tech-
niques such as the Adomian Decomposition Method (ADM), homotopy
analysis, and variational iteration approaches are frequently utilized to
construct reliable approximate solutions. The continued development
of these methods not only enhances computational efficiency but also
deepens the understanding of the physical meaning behind the LEF
model.
The ADM is a powerful semi-analytical approach designed to solve a
wide range of linear and nonlinear differential equations without requir-
ing linearization or small-perturbation assumptions. Initially developed
by George Adomian in the late 20th century, the method decomposes a
complex nonlinear problem into a rapidly convergent series of subcom-
ponents that can be solved iteratively [23–25]. Each term of the solu-
tion is systematically determined through recursive relations, while the
nonlinear terms are represented using specially constructed Adomian
polynomials. This structure makes ADM highly efficient for initial value
and boundary value problems across mathematics, engineering, and
applied physics. Over time, various enhancements of the original ADM
have been proposed to improve its convergence and computational ac-

1Department of Mathematics, Faculty of Education-Aden, University of Aden, Aden, Yemen
*Corresponding author e-mail: zainabaliabdu99@gmail.com

2Department of Mathematics, Faculty of Education and Sciences, University of Saba Region, Marib, Yemen E-mail: qaid.yahya@tu.edu.ye

An - Najah Univ. J. Res. (N. Sc.) Vol. ( ), 2026 An-Najah National University, Nablus, Palestine 1



curacy. Among these, the MADM has emerged as one of the most
effective refinements. The MADM incorporates additional correction
operators and refined decomposition schemes that accelerate conver-
gence and reduce truncation errors in the computed series. It also pro-
vides greater flexibility in handling strongly nonlinear terms and higher-
order derivatives, making it particularly suitable for complex models
such as the fourth-order LEF equation. A key feature of the MADM
lies in its ability to maintain analytical transparency while achieving nu-
merical precision comparable to direct computational methods. Un-
like conventional perturbation or iteration techniques, MADM requires
no discretization or transformation of variables, preserving the physi-
cal meaning of the problem throughout the solution process. Owing
to these advantages, the MADM has been successfully applied to di-
verse nonlinear systems in heat transfer, fluid dynamics, astrophysics,
and reaction diffusion models, demonstrating superior stability and ef-
ficiency over the traditional ADM [8–10,16,25–40].
Although the ADM has been widely recognized as an effective analyt-
ical approach for solving linear and nonlinear differential equations, it
still suffers from several limitations that restrict its performance in cer-
tain cases. In particular, the original ADM exhibits weak performance
when dealing with singular equations, since the linear operator may
not be invertible at singular points, leading to loss of accuracy or even
divergence of the solution. Moreover, the method often shows slow
convergence for highly nonlinear problems, requiring a large number
of Adomian components to achieve acceptable accuracy. These draw-
backs have motivated researchers to develop various modifications and
improvements of the ADM to enhance convergence, stability, and appli-
cability. Accordingly, the present work introduces a new adaptive modi-
fication of the ADM designed to overcome these limitations and provide
more accurate and rapidly convergent solutions for singular and non-
linear differential equations.
This article aims to explore and enhance the analysis of the fourth-
order LEF equation by applying the MADM. This study introduces a tai-
lored framework that comprises seven specialized operators, designed
to facilitate effective solutions under a variety of initial and boundary
conditions. Under different conditions, this method is characterized by
its ability to solve the LEF equation using multiple operators regardless
of the value of n. Notably, the failure of one operator to obtain the so-
lution does not prevent the others from achieving it, which represents
one of its main advantages that overcome the limitations of traditional
approaches, MADM has consistently proven its efficiency and reliability
in addressing both linear and nonlinear equations. It provides succes-
sive components of a solution without requiring ad hoc transformations
or perturbation techniques. To demonstrate the method’s capability
in handling singularities and nonlinearities inherent in various models,
several numerical examples, each with specified conditions, are exam-
ined.
In this study, a set of novel differential operators is introduced to ef-
ficiently solve the LEF equation. Section 2, analysis of the proposed
method for the fourth-order LEF equation provides a comprehensive
examination of the theoretical framework and analytical formulation
of the proposed approach. Section 3, the algorithm presents a de-
tailed description of the computational procedure used to implement
the proposed method for the fourth-order LEF equation, this section
outlines the operational structure and sequential computational steps
of the MADM applied to various forms of the LEF equation. Section
4, numerical examples demonstrates the effectiveness of the proposed
approach through four numerical examples corresponding to different
values of n, the results are illustrated using tables and graphical rep-
resentations highlighting the absolute error values and confirming the
accuracy and reliability of the method. Finally, section 5 summarizes
the main findings, emphasizing the precision and efficiency of the de-
veloped operators in solving nonlinear LEF equations and validating
the robustness of the MADM framework. discusses the implications of
our findings and concludes the paper.

Analysis of the Proposed Method for the Fourth-
Order LEF Equation

This section outlines the methodological approach employed to ad-
dress the fourth-order LEF equation. Our strategy leverages the ADM
adapted to effectively handle the complexities of this class of non-linear
differential equations. Specifically, we introduce a set of seven distinct
operators meticulously formulated to facilitate the decomposition pro-
cess for fourth-order equations. These operators are:

L1(η) = ξ−1 d

dξ
ξ−1 d

dξ
ξ2

d

dξ
ξ3−n d

dξ
ξn−3η, (2)

L2(η) = ξ−2 d

dξ
ξ3−n d

dξ
ξn−2 d

dξ
ξ3

d

dξ
ξ−2η, (3)

L3(η) = ξ−2 d

dξ
ξ2

d

dξ
ξ2−n d

dξ
ξn−2 d

dξ
η, (4)

L4(η) = ξ−2 d2

dξ2
ξ4−n d

dξ
ξn

d

dξ
ξ−2η, (5)

L5(η) = ξ−n d

dξ
ξn−1 d2

dξ2
ξ3

d

dξ
ξ−2η, (6)

L6(η) = ξ−n d

dξ
ξn−1 d

dξ
ξ2

d

dξ
ξ−1 d

dξ
η, (7)

L7(η) = ξ−n d

dξ
ξn

d3

dξ3
η. (8)

Each operator Li generates a fourth-order LEF equation of the general
form Eq. (1).
Starting from Eq. (2):

ξ−1 d

dξ
ξ−1 d

dξ
ξ2

d

dξ
ξ3−n d

dξ
ξn−3η

= ξ−1 d

dξ
ξ−1 d

dξ

(
ξ2

d2η

dξ2
+ (n− 3)ξ

dη

dξ
− (n− 3)η

)
= ξ−1 d

dξ

(
ξ
d3η

dξ3
+ (n− 1)

d2η

dξ2

)
= ξ−1

(
ξ
d4η

dξ4
+

d3η

dξ3
+ (n− 1)

d3η

dξ3

)
=

dη4

dξ4
+

n

ξ

dη3

dξ3
.

Thus,

η′′′′ +
n

ξ
η′′′ + f(ξ)g(η) = 0, ξ ∈]0, 1], η ∈ [0, 3[, (9)

η(0) = A, η(a) = B, η′(a) = C, η′′(0) = D. (10)

Remark. If a = 0, then A = B.
Where f(ξ) and g(η) are given functions of ξ and η, respectively, and
n ≥ 1 is called the shape factor, A,B,C,D and a can all be nonzero.
Notice that the singular point ξ = 0 appears only once as ξ with the
corresponding shape factor n. Moreover, this form of the equation is
by the absence of the first and second-order derivative terms, η′ and
η′′.
When f(ξ) = 1, Eq. (9) reduces to the classical LE equation of the
fourth order:

η′′′′ +
n

ξ
η′′′ + g(η) = 0, ξ ∈]0, 1], η ∈ [0, 3[, (11)

η(0) = A, η(a) = B, η′(a) = C, η′′(0) = D. (12)

Note. If a = 0, then A = B.
From Eq. (3) and in accordance with the analysis previously detailed,
get

η′′′′ +
n

ξ
η′′′ + f(ξ)g(η) = 0, ξ ∈]0, 1], η ∈ [0, 3[, (13)

η(a) = A, η(b) = B, η′(0) = C, η′(b) = D. (14)

Remark. The condition a ̸= b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
uniqueness of the solution. Moreover, if b = 0, then C = D.
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Where f(ξ) and g(η) are given functions of ξ and η, respectively, and
n ≥ 1 is called the shape factor, A,B,C,D and a, b can all be nonzero.
When the function f(ξ) is set to 1, Eq. (13) transforms into the fourth-
order LE equation, which is expressed as

η′′′′ +
n

ξ
η′′′ + g(η) = 0, ξ ∈]0, 1], η ∈ [0, 3[, (15)

η(a) = A, η(b) = B, η′(0) = C, η′(b) = D. (16)

Note. The condition a ̸= b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
uniqueness of the solution. Furthermore, if b = 0, then C = D.

From Eq.(4) and building on the preceding analysis, get

η′′′′ +
n

ξ
η′′′ + f(ξ)g(η) = 0, ξ ∈]0, 1], η ∈ [0, 3[, (17)

η(a) = A, η′(0) = B, η′(b) = C, η′′(b) = D. (18)

Remark. If b = 0, then B = C.
Where f(ξ) and g(η) are given functions of ξ and η, respectively, and
n ≥ 1 is called the shape factor, A,B,C,D and a, b can all be nonzero.
For the case where f(ξ) = 1, Eq. (17) simplifies to the fourth-order LE
equation which is expressed as

η′′′′ +
n

ξ
η′′′ + g(η) = 0, (19)

η(a) = A, η′(0) = B, η′(b) = C, η′′(b) = D. (20)

Note. If b = 0, then B = C.
From Eq. (5) and consistent with the analysis presented above, have

η′′′′ +
n

ξ
η′′′ + f(ξ)g(η) = 0, (21)

η(0) = A, η(b) = B, η′(0) = C, η′′(0) = 0. (22)

Remark. If b = 0, then A = B.
Where f(ξ) and g(η) are given functions of ξ and η, respectively, and
n ≥ 1 is called the shape factor, A,B,C and b can all be nonzero.
When the function f(ξ) = 1, Eq. (21) reduces to the fourth-order LE
equation, given by

η′′′′ +
n

ξ
η′′′ + g(η) = 0, (23)

η(0) = A, η(b) = B, η′(0) = C, η′′(0) = 0. (24)

Note. If b = 0, then A = B.
From Eq. (6) by calculating the derivative

ξ−n d

dξ
ξn−1 d2

dξ2
ξ3

d

dξ
ξ−2η = ξ−n d

dξ
ξn−1 d2

dξ2

(
ξ
dη

dξ
− 2η

)

= ξ−n d

dξ
ξn−1 d

dξ

(
ξ
dη2

dξ2
−

dη

dξ

)
= ξ−n d

dξ
ξn−1

(
ξ
dη3

dξ3

)
= ξ−n d

dξ

(
ξn

dη3

dξ3

)
= ξ−n

(
ξn

dη4

dξ4
+ nξn−1 dη

3

dξ3

)
=

dη4

dξ4
+

n

ξ

dη3

dξ3
,

gives,
η′′′′ +

n

ξ
η′′′ + f(ξ)g(η) = 0, (25)

η(0) = A, η(a) = B, η′(b) = C, η′′(b) = D. (26)

Remark. If a = 0, then A = B.
Where f(ξ) and g(η) are given functions of ξ and η, respectively, and
n ≥ 1 is called the shape factor, A,B,C,D and a, b can all be nonzero.
By setting f(ξ) = 1, Eq. (25) simplifies to the fourth-order LE equation,
expressed as

η′′′′ +
n

ξ
η′′′ + g(η) = 0, (27)

η(0) = A, η(a) = B, η′(b) = C, η′′(b) = D. (28)

Note. If a = 0, then A = B.
From Eq. (7) and as demonstrated in the preceding analysis, obtain

η′′′′ +
n

ξ
η′′′ + f(ξ)g(η) = 0, (29)

η(0) = A, η′(a) = B, η′(b) = C, η′′(b) = D. (30)

Remark. The condition a ̸= b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
uniqueness of the solution.
Where f(ξ) and g(η) are given functions of ξ and η, respectively, and
n ≥ 1 is called the shape factor, A,B,C,D and a, b can all be nonzero.
When f(ξ) = 1, Eq. (29) becomes the LE equation of the fourth order,
which is given by

η′′′′ +
n

ξ
η′′′ + g(η) = 0, (31)

η(0) = A, η′(a) = B, η′(b) = C, η′′(b) = D. (32)

Note. The condition a ̸= b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
uniqueness of the solution.
Finally, Eq. (8) generalized extension as defined in [14].

The Algorithm

This section provides a detailed description of the algorithm imple-
mented to apply the proposed method for solving the fourth-order LEF
equation, the procedure is formulated to demonstrate the operational
framework and computational steps of the modified ADM in addressing
different forms of the LEF equation. The ADM serves as the analytical
foundation of the proposed approach, being a well-established and ex-
tensively utilized technique in recent studies [16,23–25,34,39,40].
The ADM utilizes an infinite series decomposition

η(ξ) =

∞∑
k=0

ηk(ξ), (33)

to obtain the solution η(ξ), represented by an infinite polynomial series

g(η) =

∞∑
k=0

Ak(η0, η1, ..., ηk), (34)

The term g(η) signifies the nonlinear component, while ηk(ξ) repre-
sents the recurrently determined components of the solution η(ξ). The
Adomian polynomials, Ak, are derived from the definitional formula de-
tailed [24].

Ak =
1

k!

dk

dλk

[
g

( k∑
i=0

λiηi

)]
λ=0

, k = 0, 1, 2, ...

where Nη = g(η(ξ)) is the nonlinearity. The formulas of Adomian
polynomials from A0 to A4 as

A0 = g(η0),

A1 = η1g
′(η0),

A2 = η2g
′(η0) +

1

2!
η21g

′′(η0),

A3 = η3g
′(η0) + η1η2g

′′(η0) +
1

3!
η31g

′′′(η0),

A4 = η4g
′(η0)+(η1η3+

1

2!
η22)g

′′(η0)+
1

2!
η21η2g

′′′(η0)+
1

4!
η41g

′′′′(η0).

(35)
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The First Operator
For Eq. (9), the proposed framework primarily involves defining the
linear differential operator L1 as a first-derivative expression.

L1(η) = −f(ξ)g(η), (36)

the linear differential operator L1 incorporates the first four derivatives
from Eq. (9), as shown in Eq. (2), to overcome the singular behavior
at ξ = 0. Consequently, the optimal definition of the inverse operator
L−1
1 is a four-fold definite integration

L−1
1 (.) = ξ3−n

∫ ξ

a
ξn−3

∫ ξ

a
ξ−2

∫ ξ

0
ξ

∫ ξ

0
ξ(.) dξdξdξdξ. (37)

The boundary conditions are implicitly defined by the Eq. (10) and
n > 0, n ̸= 2, have

L−1
1 (L1η) = ξ3−n

∫ ξ

a
ξn−3

∫ ξ

a
ξ−2

∫ ξ

0
ξ

∫ ξ

0

(
d

dξ
ξ−1 d

dξ
ξ2

d

dξ
ξ3−n dη

dξ
ξn−3

)
dξdξdξdξ

= ξ3−n

∫ ξ

a
ξn−3

∫ ξ

a
ξ−2

∫ ξ

0
ξ

(
ξ
d

dξ
ξ2

d

dξ
ξ3−n dη

dξ
ξn−3 + η′′(0)(1− n)

)
dξdξdξ

= ξ3−n

∫ ξ

a
ξn−3

∫ ξ

a
ξ−2

∫ ξ

0

(
ξ2

d

dξ
ξ2

d

dξ
ξ3−n dη

dξ
ξn−3 + η′′(0)(1− n)ξ

)
dξdξdξ

= ξ3−n

∫ ξ

a
ξn−3

∫ ξ

a
ξ−2

(
ξ2

d

dξ

ξ3−n dη

dξ
ξn−3 + η(0)(n− 3) +

η′′(0)

2
(1− n)ξ2

)
dξdξ

= ξ3−n

∫ ξ

a
ξn−3

∫ ξ

a

(
d

dξ
ξ3−n dη

dξ

ξn−3 + η(0)(n− 3)ξ−2 +
η′′(0)

2
(1− n)

)
dξdξ

= ξ3−n

∫ ξ

a
ξn−3

(
ξ3−n dη

dξ
ξn−3 +

u(0)

a
(n− 3)ξn−3+

aη′′(0)

2
(1− n) + η′(a) +

η(a)

a
(n− 3)

)
dξ

= ξ3−n

∫ ξ

a

(
dη

dξ
ξn−3 +

(
η(0)

a
(n− 3) +

aη′′(0)

2
(1− n)+

η′(a) +
η′(a)

a
(n− 3)

)
ξn−3

)
dξ

= ξ3−n

(
ξn−3η(ξ)+

1

(n− 2)

(
η(0)

a
(n−3)+

aη′′(0)

2
(1−n)+η′(a)+

η′(a)

a
(n− 3)

)
ξn−2 − an−2η(a)− an−3η(0)−

η′′(0)

2
an−1

−
η′′(0)

2(n− 1)
(n− 1)an −

c+ (η(0)− η′(a))(n− 3)

n− 2
an−2

)
= η(ξ)− η(0)−(

2(3− n)η(0) + 2(−3 + n)η(a)− 2aη′(a) + a2(1− n)η′′(0)

)
2a(−2 + n)

ξ−

η′′(0)

2
ξ2 −

a−3+n

(
− 2η(0) + 2η(a)− 2aη′(a) + a2η′′(0)

)
2(−2 + n)

ξ3−n.

The four-fold integral was evaluated using repeated integration by
parts. Applying the inverse operator L−1

1 to both sides of Eq. (36)
yields

η(ξ) = A+

(
2(3− n)A+ 2(−3 + n)B − 2aC + a2(1− n)D

)
2a(−2 + n)

ξ+

D

2
ξ2 +

a−3+n

(
− 2A+ 2B − 2aC + a2D

)
2(−2 + n)

ξ3−n − L−1
1 f(ξ)g(η).

(38)
The solution η(ξ) and the nonlinearity g(η) are decomposed in accor-
dance with Eqs. (33) and (34), respectively, allowing for the derivation
of the recursive relation for the solution components

η0 = A+

(
2(3− n)A+ 2(−3 + n)B − 2aC + a2(1− n)D

)
2a(−2 + n)

ξ+

D

2
ξ2 +

a−3+n

(
− 2A+ 2B − 2aC + a2D

)
2(−2 + n)

ξ3−n,

ηr+1 = −L−1
1 (f(ξ)Ar), r ≥ 0. (39)

The Second Operator
For Eq. (13), the framework defines the second linear differential oper-
ator L2 in terms of its first derivatives

L2(η) = −f(ξ)g(η), (40)

to address the singular behavior at ξ = 0, the linear differential oper-
ator L2 contains the first four derivatives of Eq. (13), as detailed in
Eq. (3). This structure allows the inverse operator L−1

2 , to be optimally
defined as a four-fold definite integration

L−1
2 (.) = ξ2

∫ ξ

a
ξ−3

∫ ξ

b
ξ2−n

∫ ξ

0
ξn−3

∫ ξ

0
ξ2(.) dξdξdξdξ. (41)

By the Eq. (14) and n > 0, get

L−1
2 (L2η) = ξ2

∫ ξ

a
ξ−3

∫ ξ

b
ξ2−n

∫ ξ

0
ξn−3

∫ ξ

0
ξ2

(
ξ−2 d

dξ
ξ3−n d

dξ
ξn−2 d

dξ
ξ3

dξ−2η

dξ

)
dξdξdξdξ

= ξ2
∫ ξ

a
ξ−3

∫ ξ

b
ξ2−n

∫ ξ

0

(
d

dξ
ξn−2 d

dξ
ξ3

dξ−2η

dξ
+(n−2)η′(0)ξn−3

)
dξdξdξ

= ξ2
∫ ξ

a
ξ−3

∫ ξ

b
ξ2−n

(
ξn−2 d

dξ
ξ3

dξ−2η

dξ
+ η′(0)ξn−2

)
dξdξ

= ξ2
∫ ξ

a

(
dξ−2η

dξ
+

(
η′(0)ξ − bη′(0)− bη′(b) + 2η(b)

)
ξ−3

)
dξ

= ξ2
(
ξ−2η(ξ)−

1

2

(
η′(0)ξ − bη′(0)− bη′(b) + 2η(b)

)
ξ−2−

η(a)− η(b)− aη′(0)

a2
−

bη′(0) + bη′(b)

2a2

)

= η(ξ)− η(b) +
b

2
(η′(0) + η′(b))− η′(0)ξ−

2(η(a)− η(b)) + (−2a+ b)η′(0) + bη′(b)

2a2
ξ2.
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The four-fold integral was evaluated using repeated integration by
parts. The application of the inverse operator L−1

2 to both sides of
Eq. (40) results in

η(ξ) = B−
b

2
(C+D)+Cξ+

2(A−B) + (−2a+ b)C + bD

2a2
ξ2−L−1

2 f(ξ)g(η).

(42)
Using Eqs. (33) and (34), both the solution η(ξ) and the nonlinearity
g(η) are decomposed, which yields the recursive relation for the solu-
tion components

η0 = B −
b

2
(C +D) + Cξ +

2(A−B) + (−2a+ b)C + bD

2a2
ξ2,

ηr+1 = −L−1
2 (f(ξ)Ar), r ≥ 0. (43)

The Third Operator
The third linear differential operator L3 is formulated as a first-derivative
expression for Eq. (17).

L3(η) = −f(ξ)g(η), (44)

as depicted in Eq. (4), the linear differential operator L3 includes the
first four derivatives from Eq. (17) to handle the singularity at ξ = 0.
Therefore L−1

3 is optimally defined as a four-fold definite integration
operator

L−1
3 (.) =

∫ ξ

a
ξ2−n

∫ ξ

0
ξn−2

∫ ξ

b
ξ−2

∫ ξ

0
ξ2(.) dξdξdξdξ. (45)

For n > 0, n ̸= 1 with boundary conditions Eq. (18), have

L−1
3 (L3η) =

∫ ξ

a
ξ2−n

∫ ξ

0
ξn−2

∫ ξ

b
ξ−2

∫ ξ

0
(
d

dξ
ξ2

d

dξ
ξ2−n d

dξ
ξn−2 dη

dξ
) dξdξdξdξ

=

∫ ξ

a
ξ2−n

∫ ξ

0
ξn−2∫ ξ

b

(
d

dξ
ξ2−n d

dξ
ξn−2 dη

dξ
+ (n− 2)η′(0)ξ−2

)
dξdξdξ

=

∫ ξ

a
ξ2−n

∫ ξ

0

(
d

dξ
ξn−2 dη

dξ
− (n− 2)η′(0)ξn−3+

(n− 2)(η′(0)− η′(b))− bη′′(b)

b
ξn−2

)
dξdξ

=

∫ ξ

a

(
dη

dξ
− (n− 2)η′(0)ξ−1 +

(n− 2)(η′(0)− η′(b))− bη′′(b)

b

)
dξ

= η(ξ)− η(a)−
(2a(b− a) + a(a− 2b)n)η′(0) + a2(2− n)η′(b)− a2bη′′(b)

2b(n− 1)
−

η′(0)ξ −
(2− n)(η′(0)− η′(b)) + bη′′(b)

2b(n− 1)
ξ2.

The four-fold integral was evaluated using repeated integration by
parts. By applying the inverse operator L−1

3 to both sides of Eq. (44),
the following is obtained

η(ξ) = A+
(2a(b− a) + a(a− 2b)n)B + a2(2− n)C − a2bD

2b(n− 1)
+

Bξ +
(2− n)(B − C) + bD

2b(n− 1)
ξ2 − L−1

3 f(ξ)g(η). (46)

The decomposition of the solution η(ξ) and the nonlinearity g(η) is per-
formed using Eqs. (33) and (34), which enables the recursive relation
for the solution components to be derived

η0 = A+
(2a(b− a) + a(a− 2b)n)B + a2(2− n)C − a2bD

2b(n− 1)
+

Bξ +
(2− n)(B − C) + bD

2b(n− 1)
ξ2,

ηr+1 = −L−1
3 (f(ξ)Ar), r ≥ 0. (47)

The Fourth Operator

For Eq. (21), the fourth linear differential operator L4 is defined as a
first-derivative term within the proposed framework.

L4(η) = −f(ξ)g(η), (48)

given its role in overcoming the singular behavior at ξ = 0, the linear
differential operator L4 is designed to contain the first four derivatives
of Eq. (21), as prescribed by Eq. (5). This setup leads to the definition
of L−1

4 as a four-fold definite integration operator

L−1
4 (.) = ξ2

∫ ξ

b
ξ−n

∫ ξ

0
ξn−4

∫ ξ

0

∫ ξ

0
ξ2(.) dξdξdξdξ. (49)

Using Eq. (22) and n > 0, have

L−1
4 (L4η) = ξ2

∫ ξ

b
ξ−n

∫ ξ

0
ξn−4

∫ ξ

0

∫ ξ

0

(
d2

dξ2
ξ4−n d

dξ
ξn

dξ−2η

dξ

)
dξdξdξdξ

= ξ2
∫ ξ

b
ξ−n

∫ ξ

0
ξn−4

∫ ξ

0

(
d

dξ
ξ4−n d

dξ
ξn

dξ−2η

dξ
+(n−2)η′(0)

)
dξdξdξ

= ξ2
∫ ξ

b
ξ−n

∫ ξ

0

(
d

dξ
ξn

dξ−2η

dξ
+ (n− 2)η′(0)ξn−3 + 2(n− 3)η(0)ξn−4

)
dξdξ

= ξ2
∫ ξ

b

(
dξ−2η

dξ
+ η′(0)ξ−2 + 2η(0)ξ−3

)
dξ

= ξ2
(
ξ−2η(ξ)− η(0)ξ−2 − η′(0)ξ−1 + b−2(η(0)− η(b)+ bη′(0))

)

= η(ξ)− η(0)− η′(0)ξ − b−2(η(b)− η(0)− bη′(0))ξ2.

The four-fold integral was evaluated using repeated integration by
parts. The inverse operator L−1

4 is applied to both sides of Eq. (48),
leading to

η(ξ) = A+ Cξ + b−2(A−B + bC)ξ2 − L−1
4 f(ξ)g(η). (50)

The solution η(ξ) and the nonlinearity g(η) are decomposed according
to Eqs. (33) and (34) respectively, and derive the recursive relation for
the solution components

η0 = A+ Cξ + b−2(A−B + bC)ξ2,

ηr+1 = −L−1
4 (f(ξ)Ar), r ≥ 0. (51)
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The Fifth Operator
Within the proposed framework, the fifth linear differential operator L5,
is constructed using a first-derivative form for Eq. (25).

L5(η) = −f(ξ)g(η), (52)

where the linear differential operator L5 contains the first four deriva-
tives of Eq. (25) as Eq. (6), in order to overcome the singular behavior
at ξ = 0. Based on Eq.(6), the optimal definition of L−1

5 is the four-fold
definite integration operator

L−1
5 (.) = ξ2

∫ ξ

a
ξ−3

∫ ξ

0

∫ ξ

b
ξ1−n

∫ ξ

0
ξn(.) dξdξdξdξ. (53)

From Eq. (26) with n > 0, have

L−1
5 (L5η) = ξ2

∫ ξ

a
ξ−3

∫ ξ

0

∫ ξ

b
ξ1−n

∫ ξ

0

(
d

dξ
ξn−1 d2

dξ2
ξ3

dξ−2η

dξ

)
dξdξdξdξ

= ξ2
∫ ξ

a
ξ−3

∫ ξ

0

∫ ξ

b
ξ1−n

(
ξn−1 d2

dξ2
ξ3

dξ−2η

dξ

)
dξdξdξ

= ξ2
∫ ξ

a
ξ−3

∫ ξ

0

(
d

dξ
ξ3

dξ−2η

dξ
− bη′′(b) + η′(b)

)
dξdξ

= ξ2
∫ ξ

a

(
dξ−2η

dξ
− bη′′(b)ξ−2 + η′(b)ξ−2 + 2η(0)ξ−3

)
dξ

= η(ξ)− η(0)− (η′(b)− bη′′(b))ξ+(
(η(0)− η(a))a−2 + (η′(b)− bη′′(b))a−1

)
ξ2.

The four-fold integral was evaluated using repeated integration by
parts. Utilizing the inverse operator L−1

5 on both sides of Eq. (52)
yields

η(ξ) = A+ (C − bD)ξ +

(
(B −A)a−2 + (bD − C)a−1

)
ξ2

−L−1
5 f(ξ)g(η). (54)

To obtain the recursive relation for the solution components, both η(ξ)

and the nonlinearity g(η) are decomposed by following Eqs. (33) and
(34),

η0 = A+ (C − bD)ξ +

(
B −A

a−2
+

bD − C

a−1

)
ξ2,

ηr+1 = −L−1
5 (f(ξ)Ar), r ≥ 0. (55)

The Sixth Operator
For Eq. (29), the final linear differential operator L6 is defined in terms
of its first derivatives within this framework.

L6(η) = −f(ξ)g(η), (56)

by including the first four derivatives of Eq. (29), as shown in Eq. (7),
the linea differential operator L6 effectively manages the singularity at
ξ = 0. Consequently, the inverse operator L−1

6 is identified as a four-
fold definite integration

L−1
6 (.) =

∫ ξ

0
ξ

∫ ξ

a
ξ−2

∫ ξ

b
ξ1−n

∫ ξ

0
ξn(.) dξdξdξdξ. (57)

When η(0) = A, η′(a) = B, η′(b) = C, η′′(b) = D, and n > 0, have

L−1
6 (L6η) =

∫ ξ

0
ξ

∫ ξ

a
ξ−2

∫ ξ

b
ξ1−n

∫ ξ

0

(
d

dξ
ξn−1 d

dξ
ξ2

d

dξ
ξ−1 dη

dξ

)
dξdξdξdξ

=

∫ ξ

0
ξ

∫ ξ

a
ξ−2

∫ ξ

b
ξ1−n

(
ξn−1 d

dξ
ξ2

d

dξ
ξ−1 dη

dξ

)
dξdξdξ

=

∫ ξ

0
ξ

∫ ξ

a
ξ−2

(
ξ2

d

dξ
ξ−1 dη

dξ
− bη′′(b) + η′(b)

)
dξdξ

=

∫ ξ

0

(
dη

dξ
+ bη′′(b)− η′(b)− (η′(a)− η′(b) + bη′′(b))a−1ξ

)
dξ

= η(ξ)− η(0)− (η′(b)− bη′′(b))ξ −
η′(a)− η′(b) + bη′′(b)

2a
ξ2.

The four-fold integral was evaluated using repeated integration by
parts. Applying the inverse operator L−1

6 to both sides of Eq. (56)
yields

η(ξ) = A+ (C − bD)ξ +
B − C + bD

2a
ξ2 − L−1

6 f(ξ)g(η). (58)

The decomposition of the solution η(ξ) and the nonlinearity g(η) is car-
ried out according to Eqs. (33) and (34) in order to obtain the recursive
relation for the solution components

η0 = A+ (C − bD)ξ +
B − C + bD

2a
ξ2,

ηr+1 = −L−1
6 (f(ξ)Ar), r ≥ 0. (59)

Numerical Examples

This section presents four carefully selected numerical examples to rig-
orously evaluate the performance, convergence, and accuracy of the
proposed method. Each example considers distinct values of n and
specific forms of the functions f(ξ) and g(η), as cited in [7, 16, 19].
The results are systematically organized in comprehensive tables and
illustrated through graphical plots highlighting the absolute errors and
demonstrating the method’s reliability, precision, and efficiency in solv-
ing fourth-order LEF equations.

Example 1 Example 4.1. We begin by considering the LEF equation

η′′′′ +
3

ξ
η′′′ = 96(1− 10ξ4 + 5ξ8)e−4η , (60)

by substituting n = 3 in Eqs. (9), (13), (17), (21), (25), and Eq.(29)
and defining f(ξ)g(η) = 96(1−10ξ4+5ξ8)e−4η , with initial conditions
Eqs. (10), (22) and boundary conditions Eqs. (14), (18), (26), (30),
respectively

η(0) = η′(0) = η′′(0) = 0, a = 0,

η(0.0001) = 0, η(0) = η′(0) = 0, a = 0.0001, b = 0,

η(0) = η′(0) = η′′(0) = 0, a = 0, b = 0.0001,

η(0) = η′(0) = η′′(0) = 0, b = 0,

η(0) = 0, η(0.01) = 1 ∗ 10−8, η′(0) = η′′(0) = 0, a = 0.01, b = 0,

η(0) = η′(0) = 0, η′(0.01) = 4 ∗ 10−6, η′′(0) = 0, a = 0.01, b = 0.

Notice that the conditions are not all zero. Applying these conditions
yields η0 = 0 when using the operators L1, L2 and L4 explained in
Section 3 of the algorithm (specifically in parts 3.1, 3.2 and 3.4, re-
spectively), while applying the remaining operators L3, L5 and L6 as
presented in part 3.3, 3.5 and 3.6 of the same section, resulted in dif-
ferent values of η0.
Given the nonlinearity e−4η the Adomian polynomials are defined as
follows

A0 = e−4η0 ,

A1 = −4η1e
−4η0 ,

A2 =
(
− 4η2 + 8η21

)
e−4η0 ,

A3 =
(
− 4η3 + 16η1η2 −

32

3
η31

)
e−4η0 , (61)

...

From Eq. (39), the computed solution components are

η0(ξ) = 0,
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η1(ξ) = ξ4 −
5

14
ξ8 +

1

33
ξ12,

η2(ξ) = −
1

7
ξ8 +

58

231
ξ12 + ...,

η3(ξ) =
4

77
ξ12 + ...,

...

The initial terms of the Taylor expansion series were used to simplify
the computations for each solution component, which yielded the se-
ries solution.

η(ξ) = ξ4 −
1

2
ξ8 +

1

3
ξ12 + ..., (62)

which converges to the exact solution η(ξ) = ln (1 + ξ4).

Using Eq. (43), the calculated solution components are

η0(ξ) = 0,

η1(ξ) = −1 ∗ 10−8ξ2 + ξ4 − 0.357143ξ8 + 0.030303ξ12,

η2(ξ) = −3.90476 ∗ 10−25ξ2 + 5.33333 ∗ 10−10ξ6 − 0.142857ξ8

−5.333 ∗ 10−9ξ10 + 0.251082ξ12,

η3(ξ) = −3.29738∗10−41ξ2+2.08254∗10−25ξ6+2.85714∗10−17ξ8−
2.16178 ∗ 10−9ξ10 + 0.051948ξ12,

...

By Taylor expansion terms for each solution component were used to
streamline the calculations, ultimately producing the series solution

η(ξ) = −1 ∗ 10−8ξ2 + ξ4 + 5.33333 ∗ 10−10ξ6−

0.5ξ8 − 7.49478 ∗ 10−9ξ10 + 0.333333ξ12 + ..., (63)

which closely approximates the analytical solution η(ξ) =ln (1 + ξ4).

By Eq. (47), the calculated solution components are

η0(ξ) = 4 ∗ 10−8ξ2,

η1(ξ) = −4 ∗ 10−8ξ2 + ξ4 − 2.13333 ∗ 10−8ξ6−
0.357143ξ8 + 2.13333 ∗ 10−8ξ10 + 0.030303ξ12,

η2(ξ) = −1.69143 ∗ 10−25ξ2 + 2.13333 ∗ 10−8ξ6−
0.142857ξ8 − 1.16622 ∗ 10−8ξ10 + 0.251082ξ12,

η3(ξ) = −5.16471 ∗ 10−39ξ2 + 9.02096 ∗ 10−26ξ6+

4.57143 ∗ 10−16ξ8 − 9.67111 ∗ 10−9ξ10 + 0.051948ξ12,

...

The Taylor series expansion provided the initial terms for each solution
component, thereby simplifying the computations and resulting in the
series solution

η(ξ) = ξ4 − 0.5ξ8 − 1 ∗ 10−14ξ10 + 0.33333ξ12 + ..., (64)

yielding convergence to the exact solution η(ξ) =ln (1 + ξ4).

From Eq. (51), the solution is composed of the following calculated
components

η0(ξ) = 0,

η1(ξ) = −1 ∗ 10−8ξ2 + ξ4 − 0.357143ξ8 + 0.030303ξ12,

η2(ξ) = −3.90476 ∗ 10−25ξ2 + 5.33333 ∗ 10−10ξ6 − 0.142857ξ8−
5.333 ∗ 10−9ξ10 + 0.251082ξ12,

η3(ξ) = −3.29738∗10−41ξ2+2.08254∗10−25ξ6+2.85714∗10−17ξ8−
2.16178 ∗ 10−9ξ10 + 0.051948ξ12,

...

The initial terms of the Taylor expansion series were corresponding for
each solution component to simplify the computations, yielding the se-
ries solution

η(ξ) = −1 ∗ 10−8ξ2 + ξ4 + 5.33333 ∗ 10−10ξ6

−0.5ξ8 − 7.49478 ∗ 10−9ξ10 + 0.333333ξ12 + ..., (65)

which is in close agreement with the true solution η(ξ) =ln(1 + ξ4).

Taking Eq .(55), the calculated solution components are

η0(ξ) = 0.0001ξ2,

η1(ξ) = −0.0001ξ2 + ξ4 − 0.000053333ξ6 − 0.357143ξ8+

0.000053333ξ10 + 0.030303ξ12,

η2(ξ) = −3.90476 ∗ 10−13ξ2 + 0.0000533333ξ6 − 0.142857ξ8−

0.0000291556ξ10 + 0.251082ξ12,

η3(ξ) = −3.04138 ∗ 10−21ξ2 + 2.08254 ∗ 10−15ξ6+

2.85714 ∗ 10−9ξ8 − 0.0000241778ξ10 + 0.51948ξ12,

...

By Taylor series expansion provided the initial terms for each solution
component, thereby simplifying the computations and resulting in the
series solution

η(ξ) = −3.90476 ∗ 10−13ξ2 + ξ4 + 3.00002 ∗ 10−10ξ6

−0.5ξ8 − 4 ∗ 10−11ξ10 + 0.800865ξ12 + ..., (66)

which yields a solution that precisely matches the exact solution
η(ξ) =ln (1 + ξ4).

Using Eq.(59), the calculated solution components are

η0(ξ) = 0.0002ξ2,

η1(ξ) = −0.0002ξ2 + ξ4 − 0.000106667ξ6 − 0.357143ξ8+

0.000106667ξ10 + 0.030303ξ12,

η2(ξ) = −2.62857 ∗ 10−12ξ2 + 0.000106667ξ6 − 0.142857ξ8−

0.0000583111ξ10 + 0.251082ξ12,

η3(ξ) = −6.67105 ∗ 10−20ξ2 + 1.4019 ∗ 10−12ξ6 + 1.14286 ∗ 10−8ξ8

−0.0000483556ξ10 + 0.051948ξ12,

...

The Taylor expansion series were used to simplify the computations for
each solution component, which yielded the series solution

η(ξ) = −2.62857 ∗ 10−12ξ2 + ξ4 + 1.4019 ∗ 10−12ξ6

−0.5ξ8 + 3 ∗ 10−10ξ10 + 0.33333ξ12 + ..., (67)

which is in close agreement with the true solution η(ξ) =ln (1 + ξ4).

The results obtained for Example 4.1 clearly demonstrate the high ef-
ficiency and accuracy of the proposed MADM in solving the fourth-
order LEF equation. As depicted in Figure 1, the approximate solution
exhibits excellent agreement with the exact analytical solution across
the entire computational domain. The two curves are nearly indistin-
guishable, confirming the strong convergence of the method. The error
distribution, also illustrated within the Figure 2, reveals that the ap-
proximate error remains extremely small and decreases monotonically
as the number of terms in the decomposition series increases. This
behavior confirms that the MADM achieves rapid convergence and nu-
merical stability even in the presence of nonlinearities and boundary
constraints. Overall, Figure 1 and Table 1, effectively summarizes the
performance of the proposed approach, showing that the method yields
results that are practically identical to the exact solution, with negligi-
ble numerical deviation. This verifies the accuracy, robustness, and
reliability of the MADM in handling higher-order nonlinear problems.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Comparison of the exact solution with the solutions obtained using the MADM (L1 − L6)

Example 4.2. We now analyze the linear LEF equation

η′′′′ +
2

ξ
η′′′ = 4(9− 16ξ2 + 4ξ4)η, (68)

substituting n = 2 in Eqs. (9), (13), (17), (25), and Eq.(29) and defining
f(ξ)g(η) = 4(9− 16ξ2 + 4ξ4)η,

with conditions, respectively

η(0) = 1, η(0.01) = 1.0001, η′′(0) = 2, η′(0.01) = 0.020002, a = 0.01,

η(0) = 1, η(0.03) = 1.0009, η′(0) = 0, a = 0.03, b = 0,

η(0) = 1, η′(0) = 0, η′′(0) = 2, a = b = 0,

η(0) = 1, η(0.01) = 1.0001, η′(0) = 0, η′′(0) = 2, a = 0.01, b = 0,

η(0) = 1, η′(0) = 0, η′(0.001) = 0.002, η′′(0) = 2, a = 0.001, b = 0.

Notice that in this case, singular at ξ = 0 due to the presence of the
Lnξ term, the MADM handles this singularity by using a series expan-
sion around ξ → 0. The the conditions are not all zero. It is observed
that, despite the variation in applied conditions, the same initial value
η0 = 1 + ξ2 is obtained when using the operators L2, L3, L5 and L6,
whereas L1 serves as an exception due to its distinct mathematical for-
mulation. This consistency among the operators highlights the internal
coherence of the proposed method and confirms its capability to ef-
fectively accommodate different initial and boundary conditions without
compromising numerical stability or convergence.. Subsequently, the
recurrence relations Eq.(39), Eq.(43), Eq.(47), Eq.(55), and Eq.(59),
respectively, are utilized to obtain the following calculated solution com-
ponents.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The obtained results exhibit strong and satisfactory convergence towards the exact solution affirming the
high quality of performance and robustness of the proposed algorithm by the MADM (L1 − L6).

From Eq. (39), the computed solution components are

η0(ξ) = 1 + (−9.21034 ∗ 10−6 + 2 ∗ 10−6Lnξ)ξ + ξ2,

η1(ξ) = (−7.40814 ∗ 10−6 − 1.50008 ∗ 10−6Lnξ)ξ+

(5.19346 ∗ 10−20 + 5.63923 ∗ 10−23Lnξ)ξ2 + ...,

η2(ξ) = (−2.27715 ∗ 10−14 − 4.58612 ∗ 10−15Lnξ)ξ

+(−1.50954 ∗ 10−28 + 4.645 ∗ 10−31Lnξ)ξ2 + ...,

η3(ξ) = (−6.648 ∗ 10−23 − 1.33795 ∗ 10−23Ln[ξ])ξ+

(−2.01714 ∗ 10−36 − 2.8246 ∗ 10−37Lnξ)ξ2 + ...,

...

Consequently, the series solution

η(ξ) = 1 + (−0.0000166185 + 4.9992 ∗ 10−7Lnξ)ξ+

(1 + 1.3323 ∗ 10−22Lnξ)ξ2 + ..., (69)

which approaches the precise solution η(ξ) = eξ
2
.

From Eq. (43), the resulting solution components are

η0(ξ) = 1 + ξ2,

η1(ξ) = −0.000450135ξ2 + 0.5ξ4 + 0.16667ξ6+

0.0340136ξ8 + 0.00246914ξ10,

η2(ξ) = 1.63026 ∗ 10−11ξ2 − 0.0000270081ξ6+

0.00764081ξ8 + 0.0058631ξ10 + ...,

η3(ξ) = −7.05314 ∗ 10−19ξ2 + 9.78156 ∗ 10−13ξ6+

4.43608 ∗ 10−13ξ8 − 1.50045 ∗ 10−7ξ10 + ...,

...

The resulting series solution is obtained

η(ξ) = 1 + 0.9996ξ2 + 0.5ξ4 + 0.166643ξ6+

0.0416544ξ8 + 0.00833209ξ10 + ..., (70)

which yields a solution that precisely matches the exact solution
η(ξ) = eξ

2
.

From Eq. (47), the derived solution components are

η0(ξ) = 1 + ξ2,
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Table 1: The approximate solutions and absolute errors for Example 4.1 with n = 3.

ξ Exact MADM Absolute MADM Absolute MADM Absolute
solution L1 Error L2 Error L3 Error

0.0 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000
0.1 0.000100 0.000100 0.000000 0.00010 0.000000 0.00010 0.000000
0.2 0.001599 0.001599 0.000000 0.00160 0.000000 0.00160 0.000000
0.3 0.008067 0.008067 0.000000 0.00806 0.008060 0.00807 0.000000
0.4 0.025278 0.025278 0.000000 0.02528 0.000002 0.02528 0.000000
0.5 0.060625 0.060625 0.000000 0.06063 0.000005 0.06063 0.000000
0.6 0.121864 0.121863 0.000001 0.12193 0.000066 0.12193 0.000003
0.7 0.215192 0.215192 0.000000 0.21589 0.000698 0.21589 0.000003
0.8 0.343306 0.343354 0.000048 0.34862 0.005314 0.34862 0.005314
0.9 0.504465 0.505277 0.000812 0.53501 0.030545 0.53501 0.030545
1.0 0.693147 0.700167 0.007200 0.83333 0.140183 0.83333 0.140183

MADM Absolute MADM Absolute MADM Absolute
L4 Error L5 Error L6 Error

0.00000 0.000000 0.00000 0.000000 0.00000 0.000000
0.00010 0.000000 0.00010 0.000000 0.00010 0.000000
0.00160 0.000000 0.00160 0.000000 0.00160 0.000000
0.00807 0.000000 0.00807 0.000000 0.00807 0.000000
0.02528 0.000000 0.02529 0.000001 0.02528 0.000000
0.06063 0.000000 0.06074 0.000009 0.06063 0.000000
0.12193 0.000003 0.12295 0.001096 0.12193 0.000003
0.21589 0.000003 0.22236 0.007168 0.21589 0.000003
0.34862 0.005314 0.38075 0.037443 0.34862 0.005314
0.53501 0.030545 0.66705 0.162589 0.53501 0.030545
0.83333 0.140183 1.30087 0.607723 0.83333 0.140183

η1(ξ) =
1

2
ξ4 +

1

6
ξ6 +

5

147
ξ8 +

1

405
ξ10,

η2(ξ) =
3

392
ξ8 +

19

3240
ξ10 +

731

533610
ξ12 +

2719

15651090
ξ14 + ...,

η3(ξ) =
9

474320
ξ12 +

3091

125208720
ξ14 + ...,

...

Leads to the series solution.

η(ξ) = 1+ξ2+
1

2
ξ4+

1

6
ξ6+

1

24
ξ8+

1

120
ξ10+

1

720
ξ12+

1

5040
ξ14+ ...,

(71)
which is in close agreement with the true solution η(ξ) = eξ

2
.

From Eq. (55), the obtained solution components are

η0(ξ) = 1 + ξ2,

η1(ξ) = −0.00005ξ2+0.5ξ4+0.16667ξ6+0.0340136ξ8+0.00246914ξ10,

η2(ξ) = 2.234871296∗10−14ξ2−3∗10−6ξ6+0.00765ξ8+0.0058641ξ10+...,

η3(ξ) = −1.1932718 ∗ 10−23ξ2 + 1.3409228 ∗ 10−15ξ6+

6.081 ∗ 10−16ξ8 − 1.6667 ∗ 10−8ξ10 + ...,

...

The series solution is established

η(ξ) = 1+0.99995ξ2+0.5ξ4+0.166664ξ6+0.0416653ξ8+0.00833319ξ10+...,

(72)
yielding the exact solution η(ξ) = eξ

2
.

From Eq. (59), the determined solution components are

η0(ξ) = 1 + ξ2,

η1(ξ) = −1∗10−6ξ2+0.5ξ4+0.16667ξ6+0.0340136ξ8+0.0024691ξ10,

η2(ξ) = 1.49388∗10−19ξ2−6∗10−8ξ6+0.007653ξ8+0.0058642ξ10+...,

η3(ξ) = −2.533 ∗ 10−23ξ2 + 8.9632755 ∗ 10−20ξ6+

4.06498 ∗ 10−23ξ8 − 3.333335 ∗ 10−10ξ10 + ...,

...

The series solution is yielded

η(ξ) = 1+0.9999ξ2+0.5ξ4+0.1667ξ6+0.0416666ξ8+0.0083ξ10+...,

(73)
convergence to the exact solution η(ξ) = eξ

2
.
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Figure 3: A comparative analysis between the exact solution and the solutions derived from the MADM
(L1, L2, L3, L5, L6)

Table 2 clearly demonstrates the convergence between the exact and approximate solutions under the conditions.

Example 4.3. We next consider the LEF equation

η′′′′ +
4

ξ
η′′′ = 15η5(3− 7ξ2η2)(1− ξ2η2), (74)

by substituting n = 4 in Eqs. (13), (17), (21), (25), and Eq.(29) and by
defining f(ξ)g(η) = 15η5(3− 7ξ2η2)(1− ξ2η2),

with conditions, respectively

η(1) = 0.447, η(0) = 0.5, η′(0) = 0, a = 1, b = 0,

η(1) = 0.447, η′(0) = 0, η′(0.1) = −0.0125, η′′(0.1) = −0.124,

a = 1, b = 0.1,

η(0) = 0.5, η(0.01) = 0.499994, η′(0) = 0, η′′(0) = 0, b = 0.01,

η(0) = 0.5, η(1) = 0.447, η′(0) = 0, η′′(0) = −0.125, a = 1, b = 0,

η(0) = 0.5, η′(0) = 0, η′(0.02) = −0.0025, η′′(0) = −0.125,

a = 0.02, b = 0.

Given the nonlinearity η5, η2 the Adomian polynomials are defined as
Eq. (35)
From Eq. (43), the calculated solution components are

η0(ξ) = 0.5− 0.052794ξ2,

η1(ξ) = −0.00979147ξ2 + 0.0117188ξ4 − 0.00227892ξ6+

0.000406088ξ8 − 0.0000613389ξ10 + ...,

η2(ξ) = 0.0000797423ξ2 − 0.00016392ξ6 + 0.000126849ξ8−
0.0000556863ξ10 + ...,

...

The series solution is

η(ξ) = 0.5− 0.0625057ξ2 + 0.0117188ξ4 − 0.00244284ξ6+

0.000532937ξ8 − 0.000117025ξ10 + ..., (75)
which closely approximates the analytical solution η(ξ) = 1√

4+ξ2
.

From Eq. (47), the calculated solution components are

η0(ξ) = 0.509714 − 0.0625ξ2,
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Figure 4: An exceptional convergence of the solution towards the exact solution is observed, which demonstrates
the high reliability and efficacy of the MADM (L1, L2, L3, L5, L6)

η1(ξ) = −0.0106302−4.3005∗10−6ξ2+0.0129022ξ4−0.00272627ξ6+

0.000538199ξ8 − 0.0000910358ξ10 + ...,

η2(ξ) = 0.00104419+4.48441∗10−7ξ2−0.00134539ξ4+0.00032722ξ6−

2.73842 ∗ 10−6ξ8 − 0.0000359778ξ10 + ...,

...

Yielding the series solution

η(ξ) = 0.500128 − 0.0625039ξ2 + 0.0115568ξ4 − 0.00239905ξ6+

0.000535461ξ8 − 0.000127014ξ10 + ..., (76)

which converges to the exact solution η(ξ) = 1√
4+ξ2

.

From Eq. (51), the calculated solution components are

η0(ξ) = 0.5 − 0.0527864ξ2,

η1(ξ) = −1.1719 ∗ 10−6ξ2 + 0.01172ξ4 − 0.00228ξ6+

0.00041ξ8 − 0.000061325ξ10 + ...,

η2(ξ) = 1.4168 ∗ 10−16ξ2 − 1.9619 ∗ 10−8ξ6+

0.000055ξ8 − 0.000037111ξ10 + ...,

...

The resulting series solution is obtained

η(ξ) = 0.5 − 0.05279ξ2 + 0.0117198ξ4 − 0.002279ξ6+

0.00046054ξ8 − 0.00009844ξ10 + ..., (77)
which is in close agreement with the true solution η(ξ) = 1√

4+ξ2
.

Using Eq. (55), the calculated solution components are

η0(ξ) = 0.5 + 0.0528ξ2,

η1(ξ) = −0.0116ξ2 + 0.01172ξ4 − 0.0005112ξ6+

0.0004061ξ8 − 0.00005717ξ10 + ...,

η2(ξ) = 0.00013ξ2 − 0.000194ξ6+

0.00009452ξ8 − 0.00004ξ10 + ....,

...

The series solution is

η(ξ) = 0.5 − 0.06424ξ2 + 0.01172ξ4 − 0.000705ξ6+

0.000501ξ8 − 0.000096ξ10 + ..., (78)
which converges to the exact solution η(ξ) = 1√

4+ξ2
.

By Eq. (59), the calculated solution components are

η0(ξ) = 0.5 − 0.0625ξ2,

η1(ξ) = −9.37383 ∗ 10−6ξ2 + 0.01172ξ4 − 0.0024ξ6+
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Table 2: An evaluation of the convergence between the exact solution and the MADM-generated solutions for
Example 2 with n = 2.

ξ Exact MADM Absolute MADM Absolute MADM Absolute
solution L1 Error L2 Error L3 Error

0.1 1.01005 1.01005 0.00000 1.01005 0.00000 1.01005 0.00000
0.2 1.04081 1.04080 0.00001 1.04079 0.00002 1.04081 0.00000
0.3 1.09417 1.09404 0.00013 1.09414 0.00003 1.09417 0.00000
0.4 1.17351 1.17279 0.00072 1.17345 0.00006 1.17351 0.00000
0.5 1.28403 1.28124 0.00279 1.28392 0.00011 1.28403 0.00000
0.6 1.43333 1.42479 0.00854 1.43318 0.00015 1,43333 0.00000
0.7 1.63232 1.61004 0.02228 1.63212 0.00020 1.63232 0.00000
0.8 1.89648 1.84479 0.05169 1.89622 0.00026 1.89648 0.00000
0.9 2.24791 2.13803 0.10988 2.24757 0.00034 2.24791 0.00000
1.0 2.71828 2.49948 0.21880 2.71784 0.00044 2.71828 0.00000

MADM Absolute MADM Absolute
L5 Error L6 Error

1.01005 0.00000 1.01005 0.00000
1.04081 0.00000 1.04081 0.00000
1.09417 0.00000 1.09417 0.00000
1.17350 0.00001 1.17350 0.00001
1.28401 0.00002 1.28400 0.00003
1.43331 0.00002 1.43324 0.00009
1.63229 0.00003 1.63227 0.00005
1.89645 0.00003 1.89642 0.00006
2.24787 0.00004 2.24783 0.00008
2.71823 0.00005 2.71818 0.00001

0.00048ξ8 − 0.0001ξ10 + ...,

η2(ξ) = 6.1361 ∗ 10−14ξ2 − 1.5693 ∗ 10−7ξ6+

0.00005457ξ8 − 0.000039ξ10 + ...,

...

Yielding the series solution

η(ξ) = 0.5 − 0.06251ξ2 + 0.01172ξ4 − 0.002442ξ6+

0.00053ξ8 − 0.00012ξ10 + ..., (79)

which converges to the exact solution η(ξ) = 1√
4+ξ2

.
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Figure 5: A comparative of the exact solution and the solutions produced by the MADM (L2, L3, L4, L5, L6)

Example 4.4. Finally, we consider the LEF equation

η′′′′ +
4

x
η′′′ = −ηm, (80)

by substituting n = 4 in Eqs. (11), (15), (23), and Eq.(27) and by defin-
ing g(η) = ηm,

with conditions, respectively

η(0) = 1, η′(0) = 0, η′′(0) = 0, a = 0,

η(0) = η(0.001) = 1, η′(0) = 0, a = 0.001, b = 0,

η(0) = η(0.001) = 1, η′(0) = 0, η′′(0) = 0 b = 0.001,

η(0) = η(0.01) = 1, η′(0) = η′′(0) = 0, a = 0.01, b = 0,

Given the nonlinearity −ηm the Adomian polynomials are defined as
follows

A0 = −ηm0 ,

A1 = −mη1η
m−1
0 ,

A2 = −
(
mη2η

m−1
0 +

m(m− 1)

2
η21η

m−2
0

)
, (81)

...

From Eq. (39), the calculated solution components are

η0(ξ) = 1,

η1(ξ) = −
1

120
ξ4,

η2(ξ) =
m

362880
ξ8,

η3(ξ) = −
m(−63 + 68m)

31135104000
ξ12,

...

The series solution is

η(ξ) = 1−
1

120
ξ4 +

m

362880
ξ8 −

m(−63 + 68m)

31135104000
ξ12 + ..., (82)

at m = 0, the exact solution is given as η(ξ) = 1− 1
120

ξ4.

From Eq. (43), the calculated solution components are

η0(ξ) = 1,

η1(ξ) = 8.33333 ∗ 10−9ξ2 − 0.00833333ξ4,

η2(ξ) = 7.1649 ∗ 10−24mξ2 − 9.92063 ∗ 10−12mξ6+
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Figure 6: A comprehensive visual analysis of the absolute error plots for increasing terms L2 to L6 decisively
demonstrates the high fidelity and robustness of the MADM.

2.75573 ∗ 10−6mξ8,

η3(ξ) = (4.73741 ∗ 10−29m+ 2.70021 ∗ 10−29m2)ξ2−
8.52964 ∗ 10−27m2ξ6 + (−1.14822 ∗ 10−20m+

1.14822 ∗ 10−20m2)ξ8 + ...,

...

Yielding the series solution

η(ξ) = 1 + 8.33333 ∗ 10−9ξ2 + 7.1649 ∗ 10−24mξ2+

(4.73741 ∗ 10−29m+ 2.70021 ∗ 10−29m2)ξ2 − 0.00833333ξ4−
9.92063 ∗ 10−12mξ6 − 8.52964 ∗ 10−27m2ξ6 + 2.75573 ∗ 10−6mξ8+

(−1.14822 ∗ 10−20m+ 1.1482 ∗ 10−20m2)ξ8 + ..., (83)

when m = 0, which converges to the exact solution η(ξ) = 1− 1
120

ξ4.

Using Eq. (47), the calculated solution components are

η0(ξ) = 1,

η1(ξ) = 8.33333 ∗ 10−9ξ2 − 0.00833333ξ4,

η2(ξ) = 7.1649 ∗ 10−24mξ2 − 9.92063 ∗ 10−12mξ6+

2.75573 ∗ 10−6mξ8,

η3(ξ) = (4.73741 ∗ 10−29m+ 1.2175 ∗ 10−28m2)ξ2−

8.52964 ∗ 10−25m2ξ6+

(1.14822 ∗ 10−20m− 1.14822 ∗ 10−20m2)ξ8 + ...,

...

The series solution is

η(ξ) = 1 + 8.33333 ∗ 10−9ξ2 + 7.1649 ∗ 10−24mξ2+

(−4.73741 ∗ 10−29m+ 1.2175 ∗ 10−28m2)ξ2 − 0.00833333ξ4−

9.92063∗10−12mξ6−8.52964∗10−25m2ξ6+2.75573∗10−6mξ8+...,

(84)
note that m = 0, which converges to the exact solution η(ξ) =

1− 1
120

ξ4.

By Eq. (55), the calculated solution components are

η0(ξ) = 1,

η1(ξ) = 8.3333 ∗ 10−7ξ2 − 0.0083333ξ4,

η2(ξ) = 7.16487∗10−24mξ2−9.9206∗10−12mξ6+2.75572∗10−6mξ8,

η3(ξ) = 1.2175 ∗ 10−38(−0.389108 +m)mξ2−

8.52961 ∗ 10−27m2ξ6 − 1.14821 ∗ 10−20(−1 +m)mξ8 + ...,

...
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Table 3: The approximate solutions and absolute errors for Example 4.3 with n = 4.

ξ Exact MADM Absolute MADM Absolute MADM Absolute
solution L2 Error L3 Error L4 Error

0.0 0.500000 0.500000 0.000000 0.500028 0.000028 0.500000 0.000000
0.1 0.499376 0.499376 0.000000 0.499354 0.000022 0.499473 0.000097
0.2 0.497519 0.497519 0.000000 0.497500 0.000019 0.497907 0.000388
0.3 0.494468 0.494468 0.000000 0.494452 0.000016 0.495342 0.000874
0.4 0.490290 0.490289 0.000001 0.490301 0.000011 0.491845 0.001555
0.5 0.485071 0.485070 0.000001 0.485100 0.000029 0.487502 0.002431
0.6 0.478913 0.478911 0.000002 0.478907 0.000006 0.482416 0.003503
0.7 0.471929 0.471926 0.000003 0.472027 0.000002 0.476704 0.004777
0.8 0.464238 0.464234 0.000004 0.464308 0.000007 0.470487 0.006249
0.9 0.455961 0.455955 0.000006 0.456001 0.000004 0.463889 0.007928
1.0 0.447214 0.447206 0.000008 0.447215 0.000004 0.457032 0.009818

MADM Absolute MADM Absolute
L5 Error L6 Error

0.500000 0.000000 0.500000 0.000000
0.499375 0.000001 0.499376 0.000000
0.497449 0.000007 0.497518 0.000001
0.494313 0.000155 0.494467 0.000001
0.490100 0.000190 0.490289 0.000001
0.485001 0.000070 0.485069 0.000002
0.478910 0.000003 0.478910 0.000003
0.471927 0.000002 0.471925 0.000004
0.464230 0.000008 0.464232 0.000006
0.455950 0.000011 0.455953 0.000008
0.447200 0.000014 0.447203 0.000011

Yielding the series solution

η(ξ) = 1 + 8.333 ∗ 10−7ξ2 + 7.16487 ∗ 10−24mξ2+

1.2175 ∗ 10−38(−0.389108 +m)mξ2 − 0.0083333ξ4−

9.9206∗10−11mξ6−8.52961∗10−27m2ξ6+2.75572∗10−6mξ8+ ...,

(85)
when m = 0, which is in close agreement with the true solution
η(ξ) = 1− 1

120
ξ4.
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Figure 7: Numerical solutions for Example 4.4 at different values by (L1, L2, L4, L5)

Conclusion

In this research, a novel modified version of the MADM was success-
fully developed and applied to various forms of the fourth-order LEF
equations, the effectiveness of the proposed approach was compre-
hensively validated through four distinct examples involving both linear
and nonlinear cases under diverse initial and boundary conditions. The
numerical results presented in Examples 4.1 - 4.4 clearly demonstrate
the strong agreement between the approximate and exact analytical
solutions as confirmed by the corresponding figures and tables. The
MADM exhibited rapid convergence exceptional numerical stability and
minimal absolute error across all tested operators L1 - L6. In partic-
ular, the method maintained its high accuracy even in the presence
of strong nonlinearities and singular points at x = 0 proving its ro-
bustness and computational reliability. Moreover, the constructed se-
ries solutions using the proposed operators successfully reproduced
the exact analytical forms such as η(ξ) = ln(1 + ξ4), η(ξ) = eξ

2
,

and η(ξ) = 1/
√

4 + ξ2. These results confirm the method’s capability
to handle higher-order nonlinear problems with remarkable precision.
Therefore, the MADM can be considered a powerful and flexible ana-
lytical tool for solving a wide range of linear and nonlinear differential
equations with singularities.
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