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Abstract: This study explores the solutions of fourth-order
Lane—Emden—Fowler (LEF) equations by employing a refined Modified
Adomian Decomposition Method (MADM). We introduce a novel framework
that features seven specialized differential operators, specifically developed
and utilized to analyze the equations under specific initial and boundary
conditions. Our findings demonstrate that the solutions derived from this
approach not only effectively converge to the exact solutions but also offer
unparalleled accuracy and reliability. A key strength of this methodology lies
in its exceptional flexibility; solutions can be accurately obtained by applying
at least one of these newly developed operators. This work significantly
enhances our comprehension of these intricate equations and highlights the
remarkable efficacy of the MADM in yielding precise solutions across diverse
scenarios, thereby establishing a robust and versatile analytical tool.
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Introduction

The LEF equation represents an essential mathematical model for de-
scribing a wide range of nonlinear physical systems. It is a gener-
alization of both the classical Lane-Emden (LE) and Emden—Fowler
(EF) equations [1-6], combining their structural properties into a unified
higher-order framework. The fourth-order LEF form, in particular, pro-
vides a more accurate representation of complex dynamical systems
in astrophysics, thermodynamics and nonlinear fluid mechanics [7—17].
In general, the fourth-order LEF equation can be expressed as:

3
+ -3 T f(©gn) =0, M

where ¢ €]0,1], n € [0, 3], f(£) and g(n) are arbitrary continuous func-
tions, n represents the dependent variable, ¢ the independent variable,
and n > 1 is a shape factor. This equation arises naturally in mod-
eling stellar interiors, radiation diffusion and thermal behavior of poly-
tropic gas spheres. The inclusion of higher-order derivatives allows
the LEF equation to capture effects neglected in lower-order formula-
tions, such as fourth-order diffusion and nonlinear viscous stresses.
Consequently, it has become a cornerstone in the theoretical investi-
gation of self-gravitating fluids, plasma dynamics, and certain classes

of quantum mechanical and relativistic systems [18-22]. Due to its
strong nonlinearity and the presence of variable coefficients, analyti-
cal solutions to the LEF equation are rare and typically limited to spe-
cific parameter choices. Hence, modern analytical and semi-analytical
techniques such as the Adomian Decomposition Method (ADM), ho-
motopy analysis, and variational iteration approaches are frequently
utilized to construct reliable approximate solutions. The ADM is a pow-
erful semi-analytical approach designed to solve a wide range of lin-
ear and nonlinear differential equations without requiring linearization
or small-perturbation assumptions. Initially developed by George Ado-
mian in the late 20th century, the method decomposes a complex non-
linear problem into a rapidly convergent series of subcomponents that
can be solved iteratively [23-25]. Each term of the solution is sys-
tematically determined through recursive relations, while the nonlinear
terms are represented using specially constructed Adomian polyno-
mials. This structure makes ADM highly efficient for initial value and
boundary value problems across mathematics, engineering, and ap-
plied physics. Over time, various enhancements of the original ADM
have been proposed to improve its convergence and computational
accuracy. Among these, the Modified Adomian Decomposition Method
(MADM) has emerged as one of the most effective refinements. The
MADM incorporates additional correction operators and refined decom-
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position schemes that accelerate convergence and reduce truncation
errors in the computed series. It also provides greater flexibility in han-
dling strongly nonlinear terms and higher-order derivatives, making it
particularly suitable for complex models such as the fourth-order LEF
equation. Owing to these advantages, the MADM has been success-
fully applied to diverse nonlinear systems in heat transfer, fluid dynam-
ics, and singular Emden—Fowler-type models, demonstrating superior
stability and efficiency over the traditional ADM [8,9, 16,25-40].
Although the ADM has been widely recognized as an effective analyt-
ical approach for solving linear and nonlinear differential equations, it
still suffers from several limitations that restrict its performance in cer-
tain cases. In particular, the original ADM exhibits weak performance
when dealing with singular equations, since the linear operator may
not be invertible at singular points, leading to loss of accuracy or even
divergence of the solution. Moreover, the method often shows slow
convergence for highly nonlinear problems, requiring a large number
of Adomian components to achieve acceptable accuracy. These draw-
backs have motivated researchers to develop various modifications and
improvements of the ADM to enhance convergence, stability, and appli-
cability. Accordingly, the present work introduces a new adaptive modi-
fication of the ADM designed to overcome these limitations and provide
more accurate and rapidly convergent solutions for singular and non-
linear differential equations.

This article aims to explore and enhance the analysis of the fourth-
order LEF equation by applying the MADM. This study introduces a tai-
lored framework that comprises seven specialized operators, designed
to facilitate effective solutions under a variety of initial and boundary
conditions. Under different conditions, this method is characterized by
its ability to solve the LEF equation using multiple operators regardless
of the value of n. Notably, the failure of one operator to obtain the so-
lution does not prevent the others from achieving it, which represents
one of its main advantages that overcome the limitations of traditional
approaches, MADM has consistently proven its efficiency and reliability
in addressing both linear and nonlinear equations. It provides succes-
sive components of a solution without requiring ad hoc transformations
or perturbation techniques. To demonstrate the method’'s capability
in handling singularities and nonlinearities inherent in various models,
several numerical examples, each with specified conditions, are exam-
ined.

In this study, a set of novel differential operators is introduced to ef-
ficiently solve the LEF equation. Section 2, analysis of the proposed
method for the fourth-order LEF equation provides a comprehensive
examination of the theoretical framework and analytical formulation
of the proposed approach. Section 3, the algorithm presents a de-
tailed description of the computational procedure used to implement
the proposed method for the fourth-order LEF equation, this section
outlines the operational structure and sequential computational steps
of the MADM applied to various forms of the LEF equation. Section
4, numerical examples demonstrates the effectiveness of the proposed
approach through four numerical examples corresponding to different
values of n, the results are illustrated using tables and graphical rep-
resentations highlighting the absolute error values and confirming the
accuracy and reliability of the method. Finally, section 5 summarizes
the main findings, emphasizing the precision and efficiency of the de-
veloped operators in solving nonlinear LEF equations and validating
the robustness of the MADM framework. discusses the implications of
our findings and concludes the paper.

Analysis of the Proposed Method for the Fourth-
Order LEF Equation

This section outlines the methodological approach employed to ad-
dress the fourth-order LEF equation. Our strategy leverages the ADM
adapted to effectively handle the complexities of this class of non-linear
differential equations. Specifically, we introduce a set of seven distinct
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operators meticulously formulated to facilitate the decomposition pro-
cess for fourth-order equations. These operators are:

e1d o gdpd g, d
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Each operator L; generates a fourth-order LEF equation of the general
form Eq. (1).
Starting from Eq. (2):
,1i 711 21 37711 n—3
3 dgé dgf dgé dgg U]
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Thus,
0" S+ f©g(n) =0, £€0,1ne0,3, (9

3

n(0) = A,n(a) = B,n'(a) = C,n"(0) = D.
Remark. If a = 0, then A = B.
Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1 is called the shape factor, A, B, C, D and a can all be nonzero.
Notice that the singular point & = 0 appears only once as ¢ with the
corresponding shape factor n. Moreover, this form of the equation is
by the absence of the first and second-order derivative terms, n’ and
77H-
When f(§) = 1, Eq. (9) reduces to the classical LE equation of the
fourth order:

"+ gn +g(n) =0, £€)0,1],n€0,3],

7(0) = A,n(a) = B,n'(a) = C,n"(0) = D.
Note. If a = 0, then A = B.
From Eqg. (3) and in accordance with the analysis previously detailed,
get

(10)

(11)

(12)

o
¢ n
77(‘1) = Aﬂ?(b) = an/(o) =C, n,(b) =D. (14)
Remark. The condition a # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
uniqueness of the solution. Moreover, if b = 0, then C = D.
Where f(&) and g(n) are given functions of £ and n, respectively, and
n > 1is called the shape factor, A, B, C, D and a, b can all be nonzero.
When the function f (&) is set to 1, Eq. (13) transforms into the fourth-
order LE equation, which is expressed as

" + gn +g(m) =0, €€J0,1],m€ 0,3,

n(a) = A,n(b) = B,7'(0) = C,n'(b) = D.

77//// +

+ f(&gm) =0, £€]0,1],n€0,3], (13)

(15)

(16)
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Note. The condition @ # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
unigueness of the solution. Furthermore, if b = 0, then C = D.

From Eq.(4) and building on the preceding analysis, get

n
n"" + En’” + f(&)g(n) =0, € €]0,1],n € 0,3],
n(a) = A,7'(0) = B, (b) = C, 7" (b) = D.

Remark. If b = 0, then B = C.
Where f(£) and g(n) are given functions of £ and 7, respectively, and
n > 1is called the shape factor, A, B, C, D and a, b can all be nonzero.
For the case where f(£) = 1, Eq. (17) simplifies to the fourth-order LE
equation which is expressed as

(17)

(18)

n
W () =0,

n(a) = A,n'(0) = B,n'(b) = C,n’'(b) = D.
Note. If b =0, then B = C.
From Eq. (5) and consistent with the analysis presented above, have

+ f(§)g(n) =0,

(19)

(20)

mr . ™
n+ 3 n
n(0) = A,n(b) = B,n'(0) = C,n"(0) = 0.
Remark. If b =0, then A = B.
Where f(£) and g(n) are given functions of £ and 7, respectively, and
n > 1 is called the shape factor, A, B, C and b can all be nonzero.
When the function f(¢§) = 1, Eq. (21) reduces to the fourth-order LE
equation, given by

(21)

(22)

n
W+ gln) =0,

n(0) = A,n(b) = B,7'(0) = C,""(0) = 0.
Note. If b = 0, then A = B.
From Eq. (6) by calculating the derivative

(23)

(24)

7nd n—1 d2 ’3d -2 _ *"’Li "’Lflﬁ djf
§ d?é @5 difg n=¢ d§£ g2 (£d£ 27])
Cen b d (pdn® dn\ _,d o dn®
BT d£<£d£2 ds)_£ a (Ed@)
__ N d ndn3 e n nd 4 n—1d773 _ d774 nd??3
(e ) = (e e ) = i
gives,
n
n'"" + En"’ + f(&)g(n) =0, (25)
n(0) = A,n(a) = B,n'(b) = C,n" (b) = D. (26)

Remark. If a = 0, then A = B.

Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1lis called the shape factor, A, B, C, D and a, b can all be nonzero.
By setting f(¢) = 1, Eq. (25) simplifies to the fourth-order LE equation,
expressed as

n
W () =0,

n(0) = A, n(a) = B,n'(b) = C,n" (b) = D.
Note. If a = 0, then A = B.
From Eq. (7) and as demonstrated in the preceding analysis, obtain

(27)

(28)

" + gn + f(©)g(m) =0, (29)
n(0) = A, 1/ (a) = B,y (b) = C,n (b) = D. (30)

Remark. The condition a # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
unigueness of the solution.

Where f(&) and g(n) are given functions of £ and 7, respectively, and
n > 1lis called the shape factor, A, B, C, D and a, b can all be nonzero.
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When (&) = 1, Eq. (29) becomes the LE equation of the fourth order,
which is given by

n
W () =0,

77(0) = A, ﬁ/(a) = B777/(b) =C, 77//(17) =D. (32)
Note. The condition a # b is imposed to guarantee the indepen-
dence of the boundary conditions and consequently, the existence and
uniqueness of the solution.
Finally, Eq. (8) generalized extension as defined in [14].

(31)

The Algorithm

This section provides a detailed description of the algorithm imple-
mented to apply the proposed method for solving the fourth-order LEF
equation, the procedure is formulated to demonstrate the operational
framework and computational steps of the modified ADM in addressing
different forms of the LEF equation. The ADM serves as the analytical
foundation of the proposed approach, being a well-established and ex-
tensively utilized technique in recent studies [16,23-25, 34, 39, 40].
The ADM utilizes an infinite series decomposition

n(€) =D mk(8), (33)
k=0

to obtain the solution (&), represented by an infinite polynomial series

o0
9(n) =D Ak(m0,m1, k),
k=0
The term g(n) signifies the nonlinear component, while 7y (£) repre-
sents the recurrently determined components of the solution n(¢). The
Adomian polynomials, Ay, are derived from the definitional formula de-
tailed [24].

(34)

1 dk

k
:——g( ,\inv)} k=0,1,2,...
k!dxk{ ;O AP

where Nn = g(n(£)) is the nonlinearity. The formulas of Adomian
polynomials from Ag to A4 as

k

Ao = g(no),
Ar =mg' (o),
1
Az =n2g'(n0) + 577%9”(770),

1
Az =mn3g’ (n0) + mmn2g” (o) + gni”g"’(noL

1 ////(

1 1 1
Ag = nag' (o) +(mns-+5;3)g" (n0) + S;minzg” (m0)+ i g™ (o).

(35)

The First Operator

For Eq. (9), the proposed framework primarily involves defining the
linear differential operator L; as a first-derivative expression.
Li(n) = = f(&)g(n), (36)

the linear differential operator L, incorporates the first four derivatives
from Eq. (9), as shown in Eq. (2), to overcome the singular behavior
at ¢ = 0. Consequently, the optimal definition of the inverse operator
Ly is a four-fold definite integration

Lil() =g / Fgn-s / fe /0 ‘e /0 “e() dededede. (37)

The boundary conditions are implicitly defined by the Eg. (10) and
n > 0,n # 2, have

L7 (L) :53*"/j 5"*3/;5*2/055

(Lerdedoning)
| (e e ) dedeacas
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LIV P S WA
7" (0) n_ct@0)—n'(a))(n—3) ,_
_2(n—1)("_1)a - n—2 “ 2)
=n(&) —n(0)—
(2(3 —n)1(0) + 2(=3 + n)n(a) — 2an’(a) + a?(1 — n)n”(O))
2a(—2+n) &
a73+n _ a) — 2ar’(a a2 2
e (=200 + 200 ~ 200/ @) + a2')) .
2 2(=2+n) ’

The four-fold integral was evaluated using repeated integration by
parts. Applying the inverse operator L1‘1 to both sides of Eq. (36)
yields

(2(3 —n)A+2(—=3+n)B — 2aC + a?(1 — n)D)

n(€) = A+ 2a(—2+n) &
D a=3tn ( —2A+42B —2aC + a2D>
2 3—n —1
FE+ e €7 = L f(©)a(n)-
(38)

The solution 7(£) and the nonlinearity g(n) are decomposed in accor-
dance with Egs. (33) and (34), respectively, allowing for the derivation
of the recursive relation for the solution components

(2(3 —n)A+2(=3+n)B —2aC + a?(1 — n)D)

=A
o + 2a(—2+n) &
a=3tn ( —2A+2B — 2aC + a2D)
262 + 637n
2 2(=2+n) ’
mep1 = —L7H(F(©A), r>0. (39)
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The Second Operator

For Eqg. (13), the framework defines the second linear differential oper-
ator Lo in terms of its first derivatives

La(n) = —f(&)g(0), (40)

to address the singular behavior at ¢ = 0, the linear differential oper-
ator Lo contains the first four derivatives of Eq. (13), as detailed in

Eq. (3). This structure allows the inverse operator L !, to be optimally
defined as a four-fold definite integration

L;l(.):52/;5—3/f§2—”/(J€§"—3/05£2()

By the Eq. (14) and n > 0, get

L(Lyy) = €2 /;5—3/17552—” /05 gn=s

d d od
/ 52(5 2 ££3 n ggn 2 €§3 fdén) dededede

dgdgdgds.  (41)

g2 ¢ -3 ¢ 2—n ¢ d n—2 d 3d§7277 / n—3
—é/a£ /bﬁ /O(d—gs € S 2 0 ) dedede

o S s [ a2 d 3dE /
—5/Gs /bs (s TS

<o>e”-2) dede

+ (006 =0/ 0) = b0/ 0) + 20 ) ) e

= (200 - 5 (O - 1 ©) — 0 ) + 2000) )62

n(a) —n(b) —an’(0) by’ (0) + bn’(b))
a? 2a?

b !/ !
= (&) =n(b) + 5 (0'(0) +1'(b)) — n'(0)6—
2(n(a) —n(b)) + (=2a + b)n’(0) + by’ (b) ¢
2a2
a
The four-fold integral was evaluated using repeated integration by

parts. The application of the inverse operator L, ! to both sides of
Eq. (40) results in

2(A — B) + (—2a + b)C + bD

2a?

n(€) = B—g(C+D)+Cé+

(42)
Using Egs. (33) and (34), both the solution (&) and the nonlinearity
g(n) are decomposed, which yields the recursive relation for the solu-
tion components

2(A — B) + (—2a + b)C + bD

2a2

52’

b
m =B~ (C+D)+C¢+

N1 = —Ly ' (F(€)Ar), r>0. (43)
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The Third Operator

The third linear differential operator L3 is formulated as a first-derivative
expression for Eq. (17).

Lz(n) = —f(§)g(n),

as depicted in Eq. (4), the linear differential operator L3 includes the
first four derivatives from Eq. (17) to handle the singularity at £ = 0.
Therefore L;l is optimally defined as a four-fold definite integration
operator

Ly =/j g2n /055"—2/55—2/0g €2() dedededs.  (45)

For n > 0,n # 1 with boundary conditions Eq. (18), have

Lyt Lo = | fgn / fenee

€ & d od ., d. .dn
2 P2 P e2—n ¥ en—-2%1 dededed
/bf /O(dff e et Ol dedcdcas

(44)

— 62771, ¢ n— N’ (0 n—3
= [ [ (ge R - -0

(n = 2)(#'(0) = 7' (%)) = b0"(b) s
b

) dgdg

_ (S et 4 (1= 20(0) =1/ (8) — b ()
— [ (G- -2+ - )ae

=n(§) —n(a)-
(2a(b — a) +a(a — 2b)n)n’(0) + a*(2 — n)n' (b) — a®by (b)
2b(n — 1)
o (0)€ — (2— ")(77’(;32(; i’(lb))) + bn’’ (b) €2,

The four-fold integral was evaluated using repeated integration by
parts. By applying the inverse operator L3 ! to both sides of Eq. (44),
the following is obtained

(2a(b — a) + a(a — 2b)n) B + a?(2 — n)C — a?bD
2b(n — 1) *

(2—n)(B—C)+bD _
1 &~ Ls [©an).

The decomposition of the solution 7(£) and the nonlinearity g(n) is per-
formed using Egs. (33) and (34), which enables the recursive relation
for the solution components to be derived
(2a(b — a) + a(a — 2b)n)B + a?(2 — n)C — a2bD+
2b(n — 1)

(2—n)(B—-C)+bD ,

2b(n — 1)
mr+1 = =Ly (F(€)Ar),

A+

n(§) =

Bt + (46)

no=A+

B¢+

)

r > 0. (47)

The Fourth Operator

For Eq. (21), the fourth linear differential operator L, is defined as a
first-derivative term within the proposed framework.

La(n) = —f(§)g(n),

given its role in overcoming the singular behavior at £ = 0, the linear
differential operator L4 is designed to contain the first four derivatives

(48)
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of Eq. (21), as prescribed by Eq. (5). This setup leads to the definition
of LZI as a four-fold definite integration operator

1S 1S £ r¢
—1 ) = 2 —n n—4 2' . 49
Ly () E/bé /Oé /O/DE() dgdgdgdg (49)
Using Eq. (22) and n > 0, have
3 13 3
L—l L _ g2 —-n n—4
1 (Lan) E/bﬁ /0£ /O

€ d2 47nd nd§72n
/0 (@s e )dfdfdfdé

13 B £ B £/ d . d d.ﬁ_Qn , )
2 n n—4 P ed—m Y oen _
e [Cem [ent [P (Gemn e -2 () ) dedede

de
e /bf e

/06 (d%gn dEd—;” T (n—2)7' (0" 3 +2(n — 3)77(0)£n_4> dede

§ /de2n _ _
2 / 2 3
—¢ /b ( L 0+ 20(0)¢ )ds

pe (5-%(5) C0)E2 — i (0 + b2 (m(0) — n(b) + bn'<o>>)

=n(¢) = n(0) = n'(0)€ — b~2(n(b) — n(0) — by’ (0))&>.
The four-fold integral was evaluated using repeated integration by
parts. The inverse operator Lzl is applied to both sides of Eq. (48),
leading to

nE) =A+CE+b2(A—B+bC)E — L7 f(©g(m).  (50)

The solution 7(£) and the nonlinearity g(n) are decomposed according
to Egs. (33) and (34) respectively, and derive the recursive relation for
the solution components

no=A+CE+b"2(A— B+bC)E?,
i1 = —L3 N (F(©)A), T>0.

The Fifth Operator

Within the proposed framework, the fifth linear differential operator Ls,
is constructed using a first-derivative form for Eq. (25).

Ls(n) = —f(§)g(n), (52)

where the linear differential operator L5 contains the first four deriva-
tives of Eqg. (25) as Eq. (6), in order to overcome the singular behavior
at ¢ = 0. Based on Eq.(6), the optimal definition of L5‘1 is the four-fold
definite integration operator

£ & r€ 3
—1 2 -3 1—n n
L3i() =¢ / ¢ /O/bs /OE(-) dededede.  (53)
From Eq. (26) with n > 0, have
13 & r€
Lgl(Lsﬁ):E2/ 5*3/0 /b glon

¢ d n—1 d2 3d§_277
/0 (d—££ P ) dededede

£ B & ré _ L d? d§7277)
_ ¢2 3 1-n n—1" ¢3
—¢ /as /O/bs (5 i) dcacas

—_ g2 N -3 C(d 3d§7277 " ’
e [T [ (@B -0 ) dede

§ /de—2
_ / (%—bn"(b)§’2+n’(b)£’2+2n(0)§’3) de

=n(&) = n(0) — (n'(b) — bn" (b))€+
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(000 = ntana™ =+ (' 4) — b 4y ) .

The four-fold integral was evaluated using repeated integration by
parts. Utilizing the inverse operator Lgl on both sides of Eq. (52)
yields

() = A+ (C—-bD)E+ ((B — A)a=? 4 (bD — C)crl)g2

—L5 ' f(©)g() (54)
To obtain the recursive relation for the solution components, both 7(¢)
and the nonlinearity g(n) are decomposed by following Egs. (33) and
(34),
B—-A W -C
m=a+©-we+ (22 + 220,

a1

M1 =—L3 ' (F(©)Ar), r>0. (55)

The Sixth Operator

For Eq. (29), the final linear differential operator L is defined in terms
of its first derivatives within this framework.
Le(n) = —f(&)g(n),

by including the first four derivatives of Eq. (29), as shown in Eq. (7),
the linea differential operator Lg effectively manages the singularity at
£ = 0. Consequently, the inverse operator LG‘1 is identified as a four-
fold definite integration

>=/j£/j§*2/:£1*" /j&"c) dedgdgde.

A,n'(a) = B,n'(b) = C,n"(b) =

Ly Lm)/&/ /51"

¢ d . d dn)
n—1 2 1 dddd
/0 (55 Seaee ) dcaaca

e e (e i)
:/Oﬁg/aﬁ

¢
N /0 <d§ +bn" (b) —n'(b) — (' (a) — 0’ (b) + b (b))a™

(56)

(57)

When 7(0) = D, and n > 0, have

1d77

(e me )+ 0)) dede

15) d¢

=n(€) — n(0) — (7' (b) — bn" (b))€ — 7' (a) — ;a) + bn”(b)

The four-fold integral was evaluated using repeated integration by

parts. Applying the inverse operator Lg ! to both sides of Eq. (56)
yields
B—-C+bD _
(€)= A+ (C = bD)s + ————¢€ — Lg ' [()g(n).  (58)

The decomposition of the solution n(¢) and the nonlinearity g(n) is car-
ried out according to Egs. (33) and (34) in order to obtain the recursive
relation for the solution components

B—-C+bD
o= A+ (C - bD)E+ = o,

N1 = —Lg  (F(€)Ar), r>0. (59)
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Numerical Examples

This section presents four carefully selected numerical examples to rig-
orously evaluate the performance, convergence, and accuracy of the
proposed method. Each example considers distinct values of n and
specific forms of the functions f(£) and g(n), as cited in [7, 16, 19].
The results are systematically organized in comprehensive tables and
illustrated through graphical plots highlighting the absolute errors and
demonstrating the method’s reliability, precision, and efficiency in solv-
ing fourth-order LEF equations.

Example 1 Example 4.1. We begin by considering the LEF equation
//// + 377/// (60)
3

by substituting n = 3 in Egs. (9), (13), (17), (21), (25), and Eq.(29)
and defining f(€)g(n) = 96(1 — 10&* + 5¢8)e=47, with initial conditions
Egs. (10), (22) and boundary conditions Eqs. (14), (18), (26), (30),
respectively

=96(1 — 10&* + 5¢8)e ™47,

n(0) =7'(0) =7"(0) =0, a=0,
1(0.0001) = 0,7(0) = 7’(0) =0, a = 0.0001,b=0,
n(0) = n'(0) = 7" (0) =0, a=0,b=0.0001,
n(0) =n'(0) =7"(0) =0, b=0,
n(0) = 0,7(0.01) = 1% 1078, 9/ (0) = »"'(0) =0, a=0.01,b=0,
n(0) =7’ (0) = 0,7/(0.01) =4%107%,7"(0) =0, a=0.01,b=0.

Notice that the conditions are not all zero. Applying these conditions
yields no = 0 when using the operators L1, Lo and L4 explained in
Section 3 of the algorithm (specifically in parts 3.1, 3.2 and 3.4, re-
spectively), while applying the remaining operators L3, Ls and Lg as
presented in part 3.3, 3.5 and 3.6 of the same section, resulted in dif-
ferent values of ng.

Given the nonlinearity e=*" the Adomian polynomials are defined as
follows

Ay = 6—47107
Ay = —dme=40,
Az = (—dn2 +8ni)e™ M0,

32
As = (—4nz + 16m1n2 — gnf)e*‘”"’, (61)

From Eq. (39), the computed solution components are

no(§) =0,
mE) = - L&+ e,
() = —%58 + %5” +
n3(§) = %512 + o

The initial terms of the Taylor expansion series were used to simplify
the computations for each solution component, which yielded the se-
ries solution. 1 1
n(€) =& =S+ 2e +
which converges to the exact solution n(&) = In (1 + €*).
Using Eq. (43), the calculated solution components are
Tlo (5 ) =0,
N (€) = —1%x1078¢2 4+ €* — 0.357143¢% + 0.030303¢12,

(62)

n2(€) = —3.90476 % 10—25¢2 4 5.33333 % 10—10£% — 0.142857¢8
—5.333 % 107 2¢10 + 0.251082¢12,
n3(€) = —3.29738+10741¢242.08254%10725¢642.85714%10 7 17¢8 —

2.16178 * 1072¢10 4+ 0.051948¢12,

By Taylor expansion terms for each solution component were used to
streamline the calculations, ultimately producing the series solution

n(€) = —1%1078¢2 4+ ¢* +5.33333 % 107 10¢5—

0.5¢% — 7.49478 x 1079¢1° 4 0.333333¢12 + (63)
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which closely approximates the analytical solution n(¢) =In (1 + €*).
By Eq. (47), the calculated solution components are
no(€) = 4%107°¢2,
(&) = —4% 10782 4 ¢* —2.13333 % 107 8¢0—
0.357143£% + 2.13333 x 10~ 8¢'° + 0.030303¢12,
n2(€) = —1.69143 % 1072562 4+ 2.13333 % 107 86—
0.142857£% — 1.16622 x 10~ 3¢ + 0.251082¢12,
n3(€) = —5.16471 % 107392 + 9.02096 10266+
4.57143 % 107168 — 9.67111 %« 1072£1° + 0.051948¢12,

The Taylor series expansion provided the initial terms for each solution
component, thereby simplifying the computations and resulting in the
series solution

n(€) = €4 — 0.5¢8 — 1% 1071410 4 0.33333¢12 + .,

yielding convergence to the exact solution n(€) =In (1 + &4).
From Eq. (51), the solution is composed of the following calculated
components

(64)

no(§) =0,
(&) = —1 % 107862 4+ ¢* — 0.357143¢8 + 0.030303¢ 12,
n2(€) = —3.90476 + 10725¢2 4 5.33333 % 107 10% — 0.142857¢5 —
5.333 % 107 9¢10 4 0.251082¢12,
—3.29738+10741£242.08254+1072%¢542.85714%10717¢8—
2.16178 x 1072¢10 4 0.051948¢12,

n3(§) =

The initial terms of the Taylor expansion series were corresponding for
each solution component to simplify the computations, yielding the se-
ries solution

=—1x10"8¢%2 4+ ¢* +5.33333 %107 10¢6
n

—0.56% — 7.49478 x 1072£1° + 0.333333¢12 + ..., (65)

which is in close agreement with the true solution n(€) =In(1 + ¢*).
Taking Eq .(55), the calculated solution components are

no(€) = 0.0001€2,

n1(€) = —0.0001€2 + £* — 0.000053333£% — 0.357143¢3+
0.000053333¢19 + 0.030303¢12,

N2(€) = —3.90476 * 107132 + 0.0000533333¢5 — 0.142857£8 —
0.0000291556¢10 4 0.251082¢12,
n3(€) = —3.04138 % 107 21¢2 4 2.08254 % 10~ 12¢0 4

Example 4.2. We now analyze the linear LEF equation

7]”” + ?n/// _ 4(9 _ 16{2 + 4&-4),’]7
substituting n = 2 in Egs. (9), (13), (17), (25), and Eq.(29) and defining
F(€)g(n) = 4(9 — 1662 + 4¢%)n,
with conditions, respectively

(68)

n(0) = 1,1(0.01) = 1.0001,n”'(0) = 2,7'(0.01) = 0.020002, a = 0.01
n(0) = 1,7(0.03) = 1.0009,7'(0) =0, a=0.03,b=0,
7(0) = 1,7'(0) = 0,7"(0) =2, a=b=0,

n(0) = 1,1(0.01) = 1.0001,7'(0) = 0,17”(0) =2, a=0.01,b=0,
n(0) = 1,7'(0) = 0,17/(0.001) = 0.002,1”(0) =2, a = 0.001,b=0.
Notice that in this case, singular at ¢ = 0 due to the presence of the
Ln¢ term, the MADM handles this singularity by using a series expan-
sion around £ — 0. The the conditions are not all zero. It is observed
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2.85714 % 107 2¢8 — 0.0000241778¢10 4 0.51948¢12,

By Taylor series expansion provided the initial terms for each solution
component, thereby simplifying the computations and resulting in the
series solution

n(€) = —3.90476 * 107132 4+ £* + 3.00002 * 10~ 10¢6

—0.568 —4%10711¢10 4+ 0.800865¢12 + ..., (66)

which yields a solution that precisely matches the exact solution
n(€) =In (1 +¢*).
Using Eq.(59), the calculated solution components are

m0(€) = 0.0002¢2,
—0.0002¢2 + ¢* — 0.000106667¢% — 0.357143¢8+
0.000106667¢1° + 0.030303¢12,
n2(€) = —2.62857 * 10~ 12¢2 4 0.000106667¢% — 0.142857¢5 —
0.0000583111£10 4 0.251082¢12,
—6.67105 x 10729¢2 4 1.4019 % 10~ 12¢5 4 1.14286 » 10~ 8¢8
—0.0000483556£0 + 0.051948¢12,

() =

n3(§) =

The Taylor expansion series were used to simplify the computations for
each solution component, which yielded the series solution

n(§) =

—0.5¢% + 3% 1071910 4 0.33333¢12 + ..., (67)
which is in close agreement with the true solution n(&) =In (1 + £4).

—2.62857 % 10712¢2 4 ¢* 4+ 1.4019 107 12¢6

The results obtained for Example 4.1 clearly demonstrate the high ef-
ficiency and accuracy of the proposed MADM in solving the fourth-
order LEF equation. As depicted in Figure 1, the approximate solution
exhibits excellent agreement with the exact analytical solution across
the entire computational domain. The two curves are nearly indistin-
guishable, confirming the strong convergence of the method. The error
distribution, also illustrated within the Figure 2, reveals that the ap-
proximate error remains extremely small and decreases monotonically
as the number of terms in the decomposition series increases. This
behavior confirms that the MADM achieves rapid convergence and nu-
merical stability even in the presence of nonlinearities and boundary
constraints. Overall, Figure 1 and Table 1, effectively summarizes the
performance of the proposed approach, showing that the method yields
results that are practically identical to the exact solution, with negligi-
ble numerical deviation. This verifies the accuracy, robustness, and
reliability of the MADM in handling higher-order nonlinear problems.

that, despite the variation in applied conditions, the same initial value
no = 1+ &2 is obtained when using the operators Ls, L3, Ls and Lg,
whereas L serves as an exception due to its distinct mathematical for-
mulation. This consistency among the operators highlights the internal
coherence of the proposed method and confirms its capability to ef-
fectively accommodate different initial and boundary conditions without
compromising numerical stability or convergence.. Subsequently, the
recurrence relations Eq.(39), Eq.(43), Eq.(47), Eq.(55), and Eq.(59),
> respectively, are utilized to obtain the following calculated solution com-
ponents.
From Eq. (39), the computed solution components are

no(€) =1+ (—9.21034 % 1076 + 2« 1075 Ln&)¢ + €2,

n1(€) = (—7.40814 % 1076 — 1.50008 * 106 Lng)e+
(5.19346 * 1072 4 5.63923 * 10~ 23 Lng)e? + ...,
n2(€) = (—2.27715 % 10714 — 4.58612 * 10~ ° Lng)e
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Figure 1: Comparison of the exact solution with the solutions obtained using the MADM (L, — Lg)

+(—1.50954 % 10728 4 4.645 * 10731 Lng)e2 + ...,
n3(€) = (—6.648 + 10723 — 1.33795 « 10~ 23 Ln[¢])e+
(—2.01714 % 10736 — 2.8246 + 10737 Ln&)e? + ...,

Consequently, the series solution

n(€) = 14 (—0.0000166185 + 4.9992 + 10~ 7 Lné)E+
(14 1.3323% 10722 Lne)e? + ...,
which approaches the precise solution 7(£) = €2,

From Eq. (43), the resulting solution components are

n1(€) = —0.000450135¢2 4 0.56* + 0.16667£5+

no(§) =1+ &2,

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

0.0340136¢8 + 0.00246914¢1°,
n2(€) = 1.63026 * 10~ 11£2 — 0.0000270081£5+
0.00764081£8 + 0.0058631£10 + ...,
n3(€) = —7.05314 % 107192 4+ 9.78156 « 10~ 130+
4.43608 * 107138 — 1.50045 « 107 7¢10 .|

(69) The resulting series solution is obtained

n(€) =14 0.9996¢2 + 0.5¢* + 0.166643¢6 +

0.0416544£8 + 0.00833209¢10 + ...,

which yie2[ds a solution that precisely matches the exact solution
() = e

(70)
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Figure 2: The obtained results exhibit strong and satisfactory convergence towards the exact solution affirming the
high quality of performance and robustness of the proposed algorithm by the MADM (L; — Lg).

From Eq. (47), the derived solution components are

no(€) =1+ €2,
14 1, 5 g, 1 g9
771(6)—25 +6£ +147£ +405£ ;

3 4 19 10 731, 2719 4,
n2(8) = 3925 * 32405 * 5336105 * 15651090£ Fo
9 3091
n3(¢) = g2+ gt

474320 125208720

Leads to the series solution.
1 1 1 1 1 1
-1 P ) 8 10 12 14 -
M) =14+ 5858+ O+ 58 ¢ om0’ J(rm

which is in close agreement with the true solution n(¢) = €2,
From Eq. (55), the obtained solution components are

no(é) =1+ &2,

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

n1(€) = —0.00005¢240.5¢44-0.16667£64-0.0340136£54+0.00246914£1°
n2(€) = 2.234871296%10~ 14¢2 —3x1076£640.00765¢3+0.0058641£ 0+ ...,
n3(€) = —1.1932718 » 107232 4 1.3409228 x 10~ 15¢5+
6.081 % 10~ 16¢8 — 1.6667 « 10810 4 ...,

The series solution is established

n(€) = 140.99995¢2+0.5¢* +0.166664£°+0.0416653¢5+0.008333196 10+ .
(72)

yielding the exact solution n(§) = 7.

From Eq. (59), the determined solution components are

m() =1+,
n1(€) = —1x107%£240.56*+0.16667¢6+0.0340136£5+0.0024691£1°,
n2(€) = 1.49388%1071%¢2 —6+1078£%40.007653¢6540.00586426 10+ ...,
n3(€) = —2.533 % 107 23¢2 4 8.9632755 » 10~ 20¢5 4
4.06498 * 10723¢® — 3.333335 % 107 10¢10 1 |
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Table 1: The approximate solutions and absolute errors for Example 4.1 with n = 3.

§

Exact
solution

MADM
L,

Absolute
Error

MADM
Ly

Absolute
Error

MADM
Ls

Absolute
Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.000000
0.000100
0.001599
0.008067
0.025278
0.060625
0.121864
0.215192
0.343306
0.504465
0.693147

0.000000
0.000100
0.001599
0.008067
0.025278
0.060625
0.121863
0.215192
0.343354
0.505277
0.700167

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000001
0.000000
0.000048
0.000812
0.007200

0.00000
0.00010
0.00160
0.00806
0.02528
0.06063
0.12193
0.21589
0.34862
0.53501
0.83333

0.000000
0.000000
0.000000
0.008060
0.000002
0.000005
0.000066
0.000698
0.005314
0.030545
0.140183

0.00000
0.00010
0.00160
0.00807
0.02528
0.06063
0.12193
0.21589
0.34862
0.53501
0.83333

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000003
0.000003
0.005314
0.030545
0.140183

MADM
Ly

Absolute
Error

MADM
Ly

Absolute
Error

MADM
Lg

Absolute
Error

0.00000
0.00010
0.00160
0.00807
0.02528
0.06063
0.12193
0.21589
0.34862
0.53501
0.83333

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000003
0.000003
0.005314
0.030545
0.140183

0.00000
0.00010
0.00160
0.00807
0.02529
0.06074
0.12295
0.22236
0.38075
0.66705
1.30087

0.000000
0.000000
0.000000
0.000000
0.000001
0.000009
0.001096
0.007168
0.037443
0.162589
0.607723

0.00000
0.00010
0.00160
0.00807
0.02528
0.06063
0.12193
0.21589
0.34862
0.53501
0.83333

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000003
0.000003
0.005314
0.030545
0.140183

The series solution is yielded
n(€) = 140.999962 +0.56* +0.166765 +-0.0416666£° +-0.0083¢ 10+ ..,
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(73)

convergence to the exact solution n(§) = 2.
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Figure 3: A comparative analysis between the exact solution and the solutions derived from the MADM

(Lla L23 L37L57 LG)

Table 2 clearly demonstrates the convergence between the exact and approximate solutions under the conditions.

Example 4.3. We next consider the LEF equation

4
77”// + g7]/// _ 15775(3 _ 7§2n2)(1 _ 52772)7 (74)

by substituting n = 4 in Egs. (13), (17), (21), (25), and Eq.(29) and by
defining f(€)g(n) = 157° (3 — 7€*n°)(1 — €*n?),
with conditions, respectively

n(1) = 0.447,7(0) = 0.5,7'(0) =0, a=1,b=0,

n(1) = 0.447,7'(0) = 0,7/ (0.1) = —0.0125, 7" (0.1) = —0.124,
a=1,b=0.1,

n(0) = 0.5,7(0.01) = 0.499994, ' (0) = 0,1”(0) =0, b=0.01,
n(0) = 0.5,7(1) = 0.447,7'(0) = 0,7” (0) = —0.125, a=1,b=0,
7(0) = 0.5,7'(0) = 0,71’(0.02) = —0.0025, 1" (0) = —0.125,

a=0.02,b=0.

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

Given the nonlinearity n®, n? the Adomian polynomials are defined as
Eq. (35)

From Eq. (43), the calculated solution components are

no(€) = 0.5 — 0.052794¢€2,
n1(€) = —0.00979147¢2 + 0.0117188¢* — 0.00227892¢6+
0.000406088¢% — 0.0000613389¢0 + ...,
n2(€) = 0.0000797423£2 — 0.00016392£¢ + 0.000126849£8 —
0.0000556863¢0 + ...,

The series solution is
n(€) = 0.5 — 0.0625057¢2 + 0.0117188¢* — 0.00244284£5+
0.000532937¢% — 0.000117025¢° + ...,
which closely approximates the analytical solution = LS
y app y &) = 7

(75)

From Eq. (47), the calculated solution components are
70(€) = 0.509714 — 0.0625¢2,
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Figure 4: An exceptional convergence of the solution towards the exact solution is observed, which demonstrates
the high reliability and efficacy of the MADM (L1, Lo, L3, L5, Lg)

—0.0106302—4.3005%10~5£24-0.0129022¢* —0.00272627¢5+
0.000538199¢% — 0.0000910358¢10 + ...,

n2(€) = 0.00104419 +4.48441x10~7¢2—0.00134539¢* +0.00032722£6 —

2.73842 % 107%¢% — 0.0000359778¢10 + ..,

m(§)

Yielding the series solution
n(€) = 0.500128 — 0.0625039¢2 + 0.0115568¢ — 0.00239905£6+

0.000535461£% — 0.000127014£° + ...,
1

Vires

From Eq. (51), the calculated solution components are

(76)
which converges to the exact solution n(¢) =

n0(€) = 0.5 — 0.0527864¢2,

n1(€) = —1.1719 % 1076¢2 4 0.01172¢* — 0.00228¢% +
0.00041¢8 — 0.000061325¢1° + ...,
n2(€) = 1.4168 % 1071662 — 1.9619 + 10786+
0.000055¢% — 0.000037111£10 + ...,
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The resulting series solution is obtained
n(€) = 0.5 — 0.05279¢2 + 0.0117198¢* — 0.002279¢5+

0.00046054£% — 0.00009844¢1° + .., (77)
which is in close agreement with the true solution = L
g 77(5) m
Using Eq. (55), the calculated solution components are
n0(€) = 0.5 + 0.0528¢2,
n1(€) = —0.0116£2 + 0.01172¢* — 0.0005112€5+
0.0004061£8 — 0.00005717£10 + ...,
n2(€) = 0.00013¢2 — 0.000194¢5+
0.00009452¢8 — 0.00004¢° + ...,
The series solution is
n(€) = 0.5 — 0.06424£2 4 0.01172¢* — 0.000705¢°+
0.000501£% — 0.000096£1° + ..., (78)
which converges to the exact solution = S
[¢] 77(&) \/@
By Eq. (59), the calculated solution components are
no(€) = 0.5 — 0.0625¢2,
n1(€) = —9.37383 % 1076¢2 4+ 0.01172¢6* — 0.0024¢5+
An-Najah National University, Nablus, Palestine 12



Table 2: An evaluation of the convergence between the exact solution and the MADM-generated solutions for

Example 2 with n = 2.

£ Exact MADM  Absolute MADM  Absolute MADM  Absolute
solution Ly Error Lo Error L3 Error
0.1 1.01005 1.01005 0.00000 1.01005 0.00000 1.01005 0.00000
0.2 1.04081 1.04080 0.00001 1.04079 0.00002 1.04081 0.00000
0.3 1.09417 1.09404 0.00013 1.09414 0.00003 1.09417 0.00000
04 1.17351 1.17279 0.00072 1.17345 0.00006 1.17351 0.00000
0.5 1.28403 1.28124 0.00279 1.28392 0.00011 1.28403 0.00000
0.6 1.43333 1.42479 0.00854 1.43318 0.00015 1,43333 0.00000
0.7 1.63232 1.61004 0.02228 1.63212 0.00020 1.63232 0.00000
0.8 1.89648 1.84479 0.05169 1.89622 0.00026 1.89648 0.00000
0.9 224791 2.13803 0.10988 2.24757 0.00034 2.24791 0.00000
1.0 2.71828 2.49948 0.21880 2.71784 0.00044 2.71828 0.00000
MADM  Absolute MADM  Absolute
Ly Error Lg Error

1.01005 0.00000

1.04081

0.00000

1.09417 0.00000
1.17350 0.00001

1.28401
1.43331

0.00002
0.00002

1.63229 0.00003
1.89645 0.00003
2.24787 0.00004
2.71823 0.00005

1.01005 0.00000
1.04081 0.00000
1.09417 0.00000
1.17350 0.00001
1.28400 0.00003
1.43324 0.00009
1.63227 0.00005
1.89642 0.00006
2.24783 0.00008
2.71818 0.00001

0.00048¢8 — 0.0001£1° + ...,

N2(€) = 6.1361 107 14¢2 — 1.5693 % 10~ 7¢0+

0.00005457£8 — 0.000039¢1° + ...,

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

Yielding the series solution

n(€) = 0.5 — 0.06251€2 + 0.011726* — 0.002442¢%+

0.00053¢8 — 0.00012¢0 + ...,
1

Vat+e?'

which converges to the exact solution n(§) =
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Figure 5: A comparative of the exact solution and the solutions produced by the MADM (Ls, L3, Ly, Ls, Lg)

Example 4.4. Finally, we consider the LEF equation

é "o_ m

"+ =" = -, (80)
T

by substituting n» = 4 in Egs. (11), (15), (23), and Eq.(27) and by defin-
ing g(n) =n",
with conditions, respectively
n(0) =1,7'(0) = 0,7"(0) =0,
7(0) = 7(0.001) = 1,7 (0) =0, a = 0.001,b=0,
n(0) = n(0.001) = 1,7/ (0) = 0,7(0) =0 b= 0.001,
n(0) = n(0.01) = 1,7'(0) =7""(0) =0, a=0.01,b=0,

Given the nonlinearity —»n™ the Adomian polynomials are defined as
follows

a=0,

Ao = _77(T)nv
A = —77”7177(7)”_17
m—1 m(m_ 1) 2, m—2
Az = = (mmang" ™ + ———ming" "), (81)

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

From Eq. (39), the calculated solution components are

no(§) = 1,
m(e) = - o€,
n2(§) = 36?880687
my(§) = ~ LIS O 1o,
The series solution is
n() =1- %054 * 36;238058 B 72(1_12?13460?5)512 to
at m = 0, the exact solution is given as n(¢) = 1 — 135&*.

From Eq. (43), the calculated solution components are

7]0(5) = 15
n1(€) = 8.33333 % 1072¢2 — 0.00833333¢*4,
n2(€) = 7.1649 * 1072 me? — 9.92063 * 10~ 2meb+

An-Najah National University, Nablus, Palestine
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Figure 6: A comprehensive visual analysis of the absolute error plots for increasing terms Lo to Lg decisively
demonstrates the high fidelity and robustness of the MADM.

2.75573 % 10" Sme8,
n3(€) = (4.73741 + 10~ 29m + 2.70021 * 107 2%9m?)e2 —
8.52964 * 107 27m2¢5 4 (—1.14822 x 10~ 2%m+
1.14822 % 10729m2)e8 + ...,

Yielding the series solution

n(€) =1+ 8.33333 % 10792 + 7.1649 « 1024 me2+

(4.73741 % 10~ 2%m + 2.70021 * 10~ 22m?)¢? — 0.00833333¢% —
9.92063 * 10~ 12meb — 8.52964 10727 m2¢% + 2.75573 % 10~ Smed+
(—1.14822 % 10~ 2%m, + 1.1482 + 10~ 29m2)e® + ..., (83)
when m = 0, which converges to the exact solution n(¢) = 1 — 135£%.
Using Eq. (47), the calculated solution components are
770(&) = 17
n1(€) = 8.33333 % 107 2¢2 — 0.00833333¢%,
n2(€) = 7.1649 + 10~ 24me? — 9.92063 « 10~ 12meb+
2.75573 % 10" 5me8,
n3(€) = (4.73741 % 10~ 2%m + 1.2175 + 10~ 28m?2)e2 -

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

8.52964 x 10 22m2¢6+
(1.14822 % 10~ 2% — 1.14822 % 10~ 20m2)¢8 + ..,

The series solution is
n(€) =1+ 8.33333 % 107%¢2 + 7.1649 10~ 24 mg2+

(—4.73741 % 107 2%m 4 1.2175 + 10~ 28m?)e2 — 0.00833333¢4 —
0.92063%1012m¢e® —8.52964x10725m2¢8 +2.75573 %10 Sme8 +.

(84)
note that m = 0, which converges to the exact solution 7n(§) =
~ 158"
By Eq. (55), the calculated solution components are

no(§) = 1,
n(€) = 8.3333 x 107 7¢2 — 0.0083333¢%,
n2(€) = 7.16487x10™ **mE2—9.9206%10 12 me®42.75572+10~*me8,
n3(€) = 1.2175 % 10738(—0.389108 + m)me? —
8.52961 10727 m2¢% — 1.14821 + 10729 (=1 + m)me® + ...,

An-Najah National University, Nablus, Palestine 15



Table 3: The approximate solutions and absolute errors for Example 4.3 with n = 4.

19 Exact MADM Absolute MADM Absolute MADM Absolute
solution Lo Error Ls Error Ly Error
0.0 0.500000 0.500000 0.000000 0.500028 0.000028 0.500000 0.000000
0.1 0.499376 0.499376 0.000000 0.499354 0.000022 0.499473 0.000097
0.2 0.497519 0.497519 0.000000 0.497500 0.000019 0.497907 0.000388
0.3 0.494468 0.494468 0.000000 0.494452 0.000016 0.495342 0.000874
0.4 0.490290 0.490289 0.000001 0.490301 0.000011 0.491845 0.001555
0.5 0.485071 0.485070 0.000001 0.485100 0.000029 0.487502 0.002431
0.6 0.478913 0.478911 0.000002 0.478907 0.000006 0.482416 0.003503
0.7 0.471929 0.471926 0.000003 0.472027 0.000002 0.476704 0.004777
0.8 0.464238 0.464234 0.000004 0.464308 0.000007 0.470487 0.006249
0.9 0.455961 0.455955 0.000006 0.456001 0.000004 0.463889 0.007928
1.0 0.447214 0.447206 0.000008 0.447215 0.000004 0.457032 0.009818

MADM Absolute MADM Absolute

Ly Error Lg Error

0.500000 0.000000 0.500000 0.000000

0.499375 0.000001 0.499376 0.000000

0.497449 0.000007 0.497518 0.000001

0.494313 0.000155 0.494467 0.000001

0.490100 0.000190 0.490289 0.000001

0.485001 0.000070 0.485069 0.000002

0.478910 0.000003 0.478910 0.000003

0.471927 0.000002 0.471925 0.000004

0.464230 0.000008 0.464232 0.000006

0.455950 0.000011 0.455953 0.000008

0.447200 0.000014 0.447203 0.000011

Yielding the series solution

n(€) = 1+ 8.333 % 107 7¢2 4+ 7.16487 * 10~ 24me2 4

1.2175 % 10738(—0.389108 + m)m&? — 0.0083333¢% —

An - Najah Univ. J. Res. (N. Sc.) Vol. (), 2026

9.9206% 10~ 11 meb —8.52961 %1027 m2£6 +2.75572 %10 Smed + ..,

(85)

when m = 0, which is in close agreement with the true solution
n€) =1— 5¢*

An-Najah National University, Nablus, Palestine
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Figure 7: Numerical solutions for Example 4.4 at different values by (L1, Lo, L4, L5)

Conclusion

In this research, a novel modified version of the MADM was success-
fully developed and applied to various forms of the fourth-order LEF
equations, the effectiveness of the proposed approach was compre-
hensively validated through four distinct examples involving both linear
and nonlinear cases under diverse initial and boundary conditions. The
numerical results presented in Examples 4.1 - 4.4 clearly demonstrate
the strong agreement between the approximate and exact analytical
solutions as confirmed by the corresponding figures and tables. The
MADM exhibited rapid convergence exceptional numerical stability and
minimal absolute error across all tested operators L; - Lg. In partic-
ular, the method maintained its high accuracy even in the presence
of strong nonlinearities and singular points at = 0 proving its ro-
bustness and computational reliability. Moreover, the constructed se-
ries solutions using the proposed operators successfully reproduced
the exact analytical forms such as n(¢) = In(1 + £¢%), n(¢) = 652,
and n(€) = 1/4/4 + £2. These results confirm the method’s capability
to handle higher-order nonlinear problems with remarkable precision.
Therefore, the MADM can be considered a powerful and flexible ana-
lytical tool for solving a wide range of linear and nonlinear differential
equations with singularities.
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