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ABSTRACT

Abstract: We apply th van Kampen-Steinwedel principal axis transformation
to the problem of finding time-dependent prob ability distributions for
decaying states of the harmonic oscillator.
The result lends itself easily to computer simulation. Results for the decay of
levels 1,2, and 15 are given.
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I. Introduction

It is well known that the problem of the interaction of an elastically
bound electron with e:iantized radiation field can be solved exactly within the
dipole approximation. problem was discussed long ago by Van Kampen')
, and by steinwedel 2) . The problem reduces to one of finding normal modes of
an oscillating system. Van Kampen derived a system of normal coordinates
that permit one to find time dependent probability distributions for the
electron. These distrib ations collapse in time to the ground state distribution
(altered by the electromagnetic field's vacuum fluctuations).

These solutions for the electron's probability distribution were studied
over thirty years ago by one of us(W.C.H)3 ). At that time , computers were
not readily available. A is therefore worthwhile to reexamine the problem and
present new results.

In the van Kampen-Steinwedel model, the electron is elastically bound
to the origin of the coordinate system by a spring of constant MK2 , and the
radiation is confined to a sphere of radius L. The boundary conditions are
AFL)= 0 = 0. VJ eset h =c=Xin this work.

In general, it .s necessary to formulate the problem in terms of the
normal coordinates. The canonical transformation has no corresponding
unitary transformation in quantum theory. Any attempt to formulate intial
conditions in the quantum problem in terms of the original particle and field
coordanates leads to divergences. Representations of communation relations in
the new and old coordinate systems are not unitarily equivalent. Inequiva1ent
representations were first  noticed by van Hove 4) and by Friedricks5) . A
comprensive discussion of this general topic has been given by Haag 6).

The transformed Hamiltonian has the simple form

11.= 11 -F Ys_2-fk.2 )+ 1ECt' 2 + Xcl
11. 	 tx

(1)
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The old variables are then recoverd from the new variables by means of the
transformation

11
= T 	

cosIC.1Du,, 	
L 	

1°'

2 	 11 	 c,osiCt
= - 	 TS,nk u - — itT 	 '

4 	 4 	 I, 	 INt.

=

=  	 IS/VIC %.11-1 7111

I tIC 	 e kOn
M -

(2)
In the above a 	 is the vector potential in the Coulomb gauge and

	

cl 	 -
= 	 = - 1 -V, where t, is the transverse electric field. R is the

	

4ga 	 4 zr
electron displacement and 	 is the electron's canonical momentum. The
functions un(r) are give) by

3 sin(k n r - 
L 	 knr

(3 )

and Lk is given by

Lk = L +
e 2 K 2

(4)
In the first two equations of (2), the symbol T means that the

transverse part of the vector field is to be taken. The boundary conditions at r
= L imply that

knL - Tln = nit , n = integer
(5)

and the phase shifts are given by

k 	 k nl 
tank n	 tan 77 n = 	 \c2

u ( 
)

3M

(6)
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with K = 
3 M

. For further details , the reader is referred to refs. 2 and 3.
2e2

II. Review of previous results
For completeness, v e first collect relevant results of reference 3.
The width of the ground state wave packet was shown in ref. 3 to be

1 , 2K 	 1 
<	 >Gs -= 	 L1 + 	 — — )1

2 MK	 TCK K 2
(7)

Eq. (7) shoe s the spreading of the packet due to the vacuum
fluctuations of the electromagnetic field. In the following, we consider
excitations of the oscillator in the Z direction (one dimensional excitation of a
three dimensional oscil] Ator).

We first consider the decay of the first excited state. The initial
condition is formulated by demanding that the field energy be a minimum, that
<Z> vanish, and that the state function be a superposition of single quantum
states

CC

>.= 	 c n In>
n=0

(8)
The state I n> is one in which the nth oscillator is excited once in the Z
direction. The conditions above yield the result

1 	K2
c n = -2- —

3
e cos n AFC-

3 L	 INFM K 2 — kln

cp =
L k eK

(9)

In eq. (9), the coefficient c o is the one that goes with the primed
oscillator of eq. (1)

Defining A <z2> ‹-z2>._.(z2>a, one finds

rr



A < Z2 > (t) = Ne

ri

K- 2/kt

MK
(15)
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x) 3 Sini m sin i n CmCn A < Zz > (t) = E
m=1 n=1 1- e2 kmkn Vkmkn

COS(km — k n )t

(10)
In the limit L-40o, eq. (10) becomes

A< 	 = 	
WOLC

(11)
The decay of the Nth excited state may be treated in a

similar way. Let an , and a n, be creation and destruction
operators corresponding to the nkth oscillator . An-N-quantum
eigenstate of the Hamiltonian of eq. (1) is then I N, n 1 , 	 >

Then , as usual , we have

ce„,,1N,u, 	 , 	 NIN+ \IN+ 	 >

-1%11 11 1 , ••• :C1 1.1''' = „r2./ (5.11t1 1 1%.1-1 : 11-1, ••` 11 1-15 11 -1 , ••• 	 >IN  

(12)
The superposition

(I) >=
nt nN

>,

with
nN

c 	 cnk--nN 	 Ilk
nk =ni

(13)

(14)
where the care given by eq (9), then yields

an
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This result illustrates that the oscillator is strictly linear,
with the lifetime independent of the level of excitation.

The result given thus far those of ref. 3. The point of this
paper is that , since the intial state of the decaying system is
specified, one should be able to construct the probability
distribution for the electron at arbitrary times , and in this way
create computer simulations of decaying states of the oscillator.

Because of eq. 7, we shall henceforth define the

coordinate Z in units of 
inc
—'2K n 1(1n - . The so-defined

coordinate is just the usual dimensionless coordinate for one
dimensional oscillator augmented by a term due to vacuum
fluctuations. Thus we define

/s-■„/K 
=  i + 2K on lc 1 )

K 2
(16)

III. Decay of the Nth excited state of the oscillator
Our task consists of establishing a correspondence

between the modes of the distribution implied by equations 9,13
and 14. The fact that the coefficients are expressed as a product
(eq. 14), indicates that we can form modes of the distributions of
n quantum states for which the field energy is minimum The
modes of these distributions may be written

< tilrlu>= Km,n) < 0100 >=

(17)

ro
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where B(m,n) is to be specified.
Eq. 7 for ex Imple , gives <00 >= Eq. 11 yields (at

Because of the product structure of the coefficients in the
superposition, we compute modes of the ditribution by simply
counting graphs which are constructed as follows : From a
horizontal base line show n incoming lines (quanta of intial state)
and n outgoing limes (quanta of final state), as in fig. 1 . In order
to form <ni one needs graphs having m vertices, with the
number of free lines (necessarily even!) between 0 and 2n> The

— graph has m vertices, so that for q lines 
m2
 q i, s the number of

bubbles. The bubbles represent emission and subsequent
absorption of agiven quantum. Eq. 7 is the result of graph
consisiting of a single bubble. Fig. 1 illustrates a typical graph,
for which m=8 and q=2, which has three bubbles.

Let us count graphs with m vertices and
m — q 	 m!

m-q 
	  bubbles. Then 	  is the number of ways of

2 	
M 	 q Y1

m -q

distributing the bubbles among the m vertics. The factor 2 2

occurs because intexhanging the ends of each bubble leads to the
same diagram.

The diagram involved in <nj 	 have q free lines ,
where q(even)varies from 0 to 2n . These "scattering state
photons" are associated with different frequencies. We have q/2
incoming lines (absorbed photons) and q/2 exit lines (emitted
photons). The number of ways of picking q photons from the n
original ones is

n(n-1)...(n—a+1)=
n 	 (n—q12)!

n!
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We must have the same incoming frequencies as out going

(ones. Morover, there are 3-- 1. permutation of the incoming
2

photons and (a) 1. permutations of the outgoing ones.
2

This yields 

vain m.

)1(	 =
ck—(

ml.

(m.2,- )V1111—‘01 - 1)kk(Z)!12

(18)
Since q cannot exceed m, the upper limit on the sum must be the
minimum of m and 2n. It must now be show that the modes of the
distribution correspond (after taking of avery small broading due
to vacuum fluctuations) to the modes of harmonic oscillator wave
functions. We must evaluate

j rkR,,,CnAl e-41 (14

We began with the identity' .

mem

new
-e 	 Firel +1..vm.+As+A.)

mti Ink -co

(19)
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(e Da
We operate on both sides with —) and then put X = 0 , and obtain

OA

sait'2.-
	 rl‘ A -)IkyAne-e-g.4-■ 	 io

1irt-1 -=- 031  5 Aurtem. o,t1+c2,.+2.,,i. As
2-0 ey,r

=limArTre 	

=__17Tywcit-c,,t+o-)	 .1-7-r-c.,+t,) 	 e(s+t)1
2-0 	 air

Am =	 2iste-(a+t)1 	 = Nr-lilaynee

At°	 dim

(2.0)

with = i(s+t).

The last term o 'eq. (20) is jte ut (-O m Hm (0. We must have

Smtk 	 2' jr"O_A;') -11,Ane.-eg=1/7/e2'	 -aC-1)- „v‘ks+ty\
'11%n IL 	 •

(21)
We are interested in the case n----1( and m even. We note that (-i)mHm() for
pure imaginary gives just Hm(1m4) with the modification that all terms have a
positive sign . Therefore, (-i)m Hm (ix) is a positive definite polynomial of

degree m for m even and x real. This polynomial is 8) E a q (m)xci , with
q=-0

fling

ge
l

 q 

(22)

a q (m) =

r A
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Taking the n= k tc.ms of eq. (21) for m even , we have
CskY 

j 	 a'A°"s)ql.	 -‘1 4c.7̀
C 1c0•)2 	,	 s-,c3VCcli2)\-\2

=
1 \ 	 fok	 Okr 	 rci)

cLs ° VC — ) 1:\

(23)

	Sinceq! = q/2 
() 1

(C, — 1)! !, we have 
q! 	

= 2q (q —1)!!.
/ 2)!

q
2

Equating powers of st eq. (23) yield 	
2

+ — = n , so that i = n - — , with

the restriction that i is ri3n-negative . We now have

2m 
m	 minou:2.)	 2u-0202

13,\) 2jeor \ un-\ '4=jr 	01-412V-4.12V-	
—1)\.\.a.%(,ra")

geven

We finally obtain

f r1:11,AnA 2
2 C% — ‘)\va,Ou)

Mut C ma a ) 	
IA.00)\ 	t= firr- mnA	 n.\ r

=°coven

lAlaktalu

,l7r2-- ( ,a‘) 2

geven

ra\l`.'

01 - a 12)\ 111,2.7 % )\\1%1 2 )\1 1

(24)

(.25)

Normalization of states yields
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on

< t,_111 >= 	

so that our final result 
(26)

Min(m,'In)

< r4m n >= 2lln!
qeven

nv 2c112 

(n – q 11)!( 111 2 	 q )![(q/2)!] 2 

(27)
The upper limit of the sum in eqs. 24-27 is the smaller of m and 2n,

since the arguments of the denominator must be non-negative. Equation (27) is
exactly the result of cgs. (17) and (18). This proves that, indeed, our initial
conditions of eqns. (9), (13) and (14) yield probability distribution at t=0 that
are harmonic oscillator state wave functions that have been modified to
account for vacuum fluctuations.

We are now in a position to discuss the decay of the distribution. We
see from the discussion in ref. 3 that every pair of incoming and outgoing

photon lines gives rise to a factor 	 in the distribution , where y = —K2

Consider an arbitrary mode for n=1:
(m+1)!!< 0 t2 0>m12 at t=0

Then

<1101. > (t) = {[B(m,1)–B(m,0)]e -7` + B(m,0)} <400 >mil

(28)
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P(,t) = [1 1Vi( )1 2 - kio(t)1 2 CIL 	1W0()1 2

(29)

Here we uselig i (t)I
2 1- .) denote the probability distribution for the first excited

state of the oscillator. For our system, the function Ni(t, t) does not exist, but

the notation is useful in describing the distribution. We note that

P(	 = 1 for all times, and that the distribution given in eq. 28 gives

the proper values at r = 0 and t =06. We may now generalize to our ultimate

result, which is that the nth excited state decays as

PAM	 [P,,(01 2 	lyn_1( )1 2 ]en" 	 tlyn_1(0 2 - wn_2(01 2 ]en -1)"

	  [IWI ()1 2 - 	 ()21 e-" 	IV0()1 2 .

(30)
IV. Results and discussion 

Eq. (30) enables one to easily produce a computer simulation of the

decay of oscillator states. Figures 2, 3 and 4 gives some typical results. Fig. 2

shows the first excited state of the oscillator at time yt=0,0.3,1,and 20. Fig. 3

discribes the decay of the second excited state at time yt= 0, 0.3, 0.6, 20. The

value yt = 20 was cliosen to illustrate that, after times much longer than t =

1/2, the oscillator is in its ground state.

£ I
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Fig. 4, which illustrates the decay of a more highly excited state,

shows the decay of the n = 15 level at times yt 0, 0.1, 0.5, 1.0. It is

interesting to note that the initial ripples in the distribution have almost

vanished after 0.1 lifetimes. By half the lifetime, the distribution already

appears to be Gussian. Ai one lifetime, the Gussian has narrowed.

Finally, we note that one can obtain the result given here using the

Heisenberg-Langevin Approach9) . However, the present method must be

regarded as more rigorous, since it does not make use of the Wigner-

Weisskopf approximation.

The reader cautioned that equation (30) applies only to the

harmonic oscillator, which is a strictly linear system. Multiphoton transitions

do not occur in the ca. ,-;e of the oscillator. Eq. (30) shows that the decay of the

higher state evolves in a series of steps in which the excitation level drops by

one unit of hk.



An- Najah J. Res. Vol.III, No.9 (1995)	 S. Al-jaber & W. Henneberger

References 

1. N. G. Van Kampen, Contribution to the Quantum Theory of Light

Scattering, Dui. Mat. - Fys. Medd. 26 Nr. 15 (1951).

2. H. Steinwedel, Zur Hauptachsentransformation der Dipol-

Hamiltonfunktion des Freien and Gebundenen im

Elektomagnetischen, Strahlungsfeld, Ann. Physik 15 207- 223

(1955).

3. W. C. Hennebh-ger, &cake L sungcn far die Dipolstrahlung des

Harmonischen Oszillators, Z. Physik 155 , 296-312 (1959).

4. L. Van Hove, I.es Difficults de Divergences pour un Modele

Particulier de Champ Quatifie, Physica 18, 145-159 (1952).

5. K. 0. Friedrish3, Mathematical Aspects of Quantum Field Theory

(New York: Interscience) (1953).

6. R. Hagg, Canonical Commutation Relations in field Theory and

Functional Integration, Lectures in Theoretical Physics, Vol. 111,

Boulder, Colorado (New York: Interscience) pp. 353-381 (1961).

7. E. Merzbacher. Quantum Mechanics, 2nd ed., John Wiely and

Sons, New York, p. 60 (1970).

8. H. Cohen, Mathematics for Science and Engineers, Prentice Hall,

Englewood Cliffs, N. J, p. 331 (1992).

9. 	 J. Perina, Quantum Statistics of Linear and Nonlinear Optical

Phenomena, 2nd Ed. Kluwer Academic Publisher,

Dordrecht/Boston/London p. 185 (1991).
tr



An- Najah J. Res. Vol.I :I, M. 9 (1995) 	 S. Al-jaber & W. Henneberger

Figure Captions 

Fig. 1: Graph for m = q = 2.

Fig. 2: Decay of 1st e..sited state; y t = 0, 0.3, 1, 20.

Fig. 3: Decay of second excited state; y t 0, 0.3, 0.6, 20.

Fig. 4: Deacy of 15th Lxcited state; y t = 0, 0.1, 0.5, 1.0.
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