Effect of Scarification, Gibberellic acid and Stratification on Seed Germination of Three *Pistacia* Species

تأثير التخديش، حامض الجبريلك والتنضيد على إنبات بذور ثلاثة أنواع من الفستق

Hassan Abu-Qaoud

حسان أبو قاعود

Department of Plant Production & Protection, Faculty of Agriculture, An-Najah National University, Nablus, Palestine.

E-mail: hassan@najah.edu

Received: (11/9/2005), Accepted: (28/1/2007)

Abstract

Germinability of *P. atlantica* Desf., *P. palaestina* (Bioss) Post. and *P. lentiscus* L. seeds as influenced by various treatments was investigated. This included four treatments: Acid scarification for 15 minutes, soaking of acid scarified seeds in 1000 ppm GA₃ for 24 hours, stratification of seeds at 5°C for 30 days and control (untreated seeds). Significantly, the highest germination (60%) was obtained for *P. palaestina* acid scarified plus cold stratified seeds over the control of the three *Pistacia* species (15, 10, 0%), this percentage (60) was on the same level of significance with the other *Pistacia* species. Scarified *P. lentiscus* resulted in 13.3% germination, scarified plus GA₃ soak of *P. lentiscus* and *P. atlantica* Desf. (34, 39.9%), and scarified plus cold stratified *P. lentiscus* (32%) seeds. Early seed germination was obtained with seeds of *P. lentiscus* after one week of incubation with scarified plus GA₃ (6%) and scarified seeds of *P. palaestina* (5%), other treated seeds of the three species started germination after two weeks. *P. palaestina* seeds continued with the highest germination percentage thereafter. Significantly, the longest mean time to complete germination (MTG) was obtained from the control of the three *Pistacia* species (27.94, 24.50, 30.04), Scarified *P. atlantica* (25.84), and scarified plus GA₃ soak of *P. atlantica* (26.25) as compared with the other treatments for the three *Pistacia* species which were all in the same level of significance.

Key words: *Pistacia palaestina*, *Pistacia atlantica*, *Pistacia lentiscus* germination, seed dormancy.
تست دراسة تأثير معاملة بذور ثلاثة أنواع من الفستق جنس
Pistacia (P. atlantica Desf, P. palaestina (Bioss) Post., P. lentiscus L.)
 باستعمال تجربة كيميائي، حامض الجيرليك، والتنضيد البازيل على درجة حرارة 5 °C لمدة 30 يوما على إنباءها. تم عملية تخدين البذور بواسطة نقعها بحامض الجوبيريك المركز، ومن ثم معاملتها بحامض الجوبيريك 0.01 جزء بالمليون لمدة 32 ساعة أو التنضيد أو بدون معالمة (تخدين فقط). كما تركت مجموعة كساهده بدون تخدين أو معاملات أخرى. أدت المعالمة البازيل إلى تحسين نسبة إنباتها بدرجة معنوية إحصائيًا وظهرت فروق واضحة بنسبة الإنبات بين الأنواع الثلاثة، حصلت أعلى نسبة إنبات 60% بعد 30 يوم من التنضيد البازيل في بذور الفستق الفلسطيني (البذوم المشدعة على الشاه في الأصناف الأخرى (0,5%). على التوالي، حصلت معالمة التخدين للصنف السريس على (21, 31%) وتخدين مع حامض الجوبيريك للصنف السريس وبطم على (21, 32, 42%) على التوالي. كذلك معالمة التخدين والتنضيد البازيل لصنف السريس (22%) حصل سرعة إنبات بعد أسبوع في الصنف (سريس) للبذور المشدعة (21%) وبذور الفستق الفلسطيني خصوصاً بخصوص بذور الأصناف الأخرى فقد بدأ أنباتها بعد أسبوعين من الحصاد. من ناحية أخرى وبخصوص معدل الزمن لأكمال الإنبات والذي يعبر عن سرعة الإنبات، فقد كان أقل في البذور المعالمة على الشاه وحصل أقل رقم (19 يوما) في بذور الفستق الفلسطيني. يتضح من نتائج التجربة التأثير المعادي للتخدين الكيميائي على تحسين قدرة بذور البذوم على الإنبات.

الكلمات المفتاحية: البذوم فستق بري فلسطيني (ضرو فلسطيني). سريس.

Introduction

Pistachio is an economically important crop in the central and west Asia and north Africa (Kaska, 2001). Approximately 66 million wild Pistachio trees are existed in Turkey, belonging mainly to P. terebinthus, P. klinjuk and P. atlantica. (Kafkas, & et.al. 2001). Fifty five million Pistachio trees are also distributed as wild forests in Iran. (Behboodi, 2002). Several species of Pistacia have been identified in Palestine (Ali-Shtayeh, & et.al. 2006), (Ellis, & et.al. 1985), (Post, 1932), (Zohary, 1966, among them are P. atlantica, P. palaestina (Bioss) Post. and P. lentiscus L. P. atlantica trees are mainly growing in the southern area of Palestine, mainly Jerusalem and Hebron (Post, 1932). Another species has been recorded in the 1930's as a hybrid between P. palaestina and P. lentiscus. (MOA, 2002). These species have shown a great adaptation to the harsh environmental conditions and therefore, could be used as good
genetic resources (Chaabouni, Gouta, 2002). However, these resources have been under threat by both genetic erosion and human activities. No trials have been conducted to conserve these resources. Propagation of these plants are difficult. Seeds of these species are surrounded by a hard sclerotic endocarp, which make the germination of these seeds difficult and with low percentage (Isfendiyaroglu, & Özeker, 2002). Different seed pretreatments were used to enhance *Pistacia* seed germination. Scarification and cold stratification were found to improve the seed germination. (Ayfer, Serr, 1961), (Crane, & Forde, 1974). It was found that the mean time to complete germination of *P. atlantica, P. terebinthus* and a hybrid was higher with seeds treated with 1000 ppm GA₃ and stratified at 4 C° for 15-45 days. (Isfendiyaroglu, & Özeker, 2002). On the other hand, there was no significant effect of GA₃ treatments on the germination of *P. atlantica* seeds, however, acid scarification of the seeds for two hours enhances germination rate and percentage (Chaabouni, Gouta, 2002).

The germination rate of seven types of *P.khinjuk* seeds ranged from 40% to 96% after the seeds were exposed to different treatments, the highest germination rates were obtained with stratified seeds (Kafkas, 1998). In another study, it was found that the highest germination percentage (73.3%) was obtained when the seeds were soaked for 48 hours in 125 ppm GA₃ solution (Ak, & et.al. 1995). More than 95% seed germination was obtained in three *Pistacia* species (*P. vera, P. khinjuk* and *P. atlantica*) after the seeds were soaked for 7 days in 100 ppm GA₃ solution (Kuru, Aksu, 1995). According to the above discussed literature no work was done regarding the germination of the local *Pistacia* species except for *P. atlantica*, therefore the aim of this work was to investigate the effect of different seed treatments on the seed germination of three *Pistacia* species.

Materials and Methods

Seeds of three *Pistacia* species (*P. atlantica Desf., P. palaestina (Bioss) Post.* and *P. lentiscus L.*) were collected from naturally growing trees from Hebron and Jenin areas. The fruits containing seeds were...
soaked for 24 hours in water to remove the pulp. They were then rubbed in a screen to separate the pulp from the seeds and then washed. Shell containing seeds were floated in water to separate viable seeds from those floating ones. Viable seeds were then used in the germination experiment. Seeds from the three species were scarified with concentrated sulfuric acid (H₂SO₄) for 15 minutes, and were immediately put under running tap water for 24 hours to remove acid residue. A group of seeds was kept without scarification as a control treatment. Four treatments were compared for each species in a factorial treatment design. The treatments were; control (unscarified and unstratified), acid scarification, soaking of scarified seeds in 1000 GA₃ for 24 hours and cold stratification of the scarified seeds. The seeds were stratified at 5± 2°C for 30 days in moist vermiculite. The treatments were arranged in a completely randomized design with 5 replicates with 20 seeds used in each replicate. Therefore, a total of 100 seeds were used for each treatment and 400 seeds for each species.

The seeds were sown in sterile Petri dishes on double layer filter paper, the dishes were incubated at 22°C under dark condition in an incubator (Sanyo MLR-350), and they were watered with sterile water according to need. Germinated seeds were counted daily, seeds with protruding radicle and plumules were scored as germinated. The germination percentage and the mean time to complete germination (MTG) was calculated for each species. MTG was calculated according to the formula described by (Isfendiyaroglu, & Özeker, 2002) as follows:

$$\text{MTG} = \frac{(t \times n)}{n};$$

where t is the time in days starting from day zero, and n is the number of seeds completing germination on day (t). Two way analysis of variance was conducted followed by mean separation using the Least Significant Difference Test (LSD) at 5% probability level. The data were analyzed using the SAS software package (SAS Institute, 1990).

Results

The statistical analysis indicated a significant interaction between the seed treatments and the Pistacia species at all reading periods. The
treated seeds exhibited higher germination percentages than the control in all species (Table 1). Seed germination started after one week of planting with the exception of scarified *P. lentiscus* seeds. Scarified plus GA₃ treated seeds of *P. lentiscus* resulted in 6% seed germination and scarified seeds of *P. palaestina* in 5%. (Fig. 1a). After two weeks of planting germination was obtained from all treated seeds except the control and the higher germination percentage was obtained with *P. palaestina* treated seeds (Fig. 1b). A similar trend of seed germination was observed at week 3 and week 4 with the higher germination percentage observed with *P. palaestina*. (Fig. 1c, 1d). At the last reading period (week 5), the highest germination percentage was obtained with *P. palaestina* (60%) after cold stratification, however, this percentage was at the same significant level of that obtained from scarified seeds treated with GA₃ or acid scarification of the same species (56 and 57.5%), respectively (Table 1). No germination was obtained with the control treatment of *P. atlantica* species, however 15% and 10% germination percentages were obtained in the control treatment of both *P. palaestina* and *P. lentiscus*, respectively. For *P. lentiscus*, the highest germination was obtained from seeds treated with GA₃ and cold scarification (34 and 32%), respectively. On the other hand, scarified and stratified *P. atlantica* seeds exhibited the highest germination percentages (47.5 and 50%) respectively (Table 1). However, these percentages were not significantly different from those obtained with seeds treated with GA₃ of the same species (39.9%).

Regarding the germination rate, the MTG of all treatments was less than the control treatment of all species (Table 1). Stratified seeds of the three species and scarified seeds of both *P. palaestina* and *P. lentiscus* exhibited significantly a low MTG which ranged from 19.43 to 23.92 days with the lowest obtained in *P. palaestina* scarified seeds (19.43).
Table (1): Effect of seed treatments on the germination percent and rate of three pistachio species after 5 weeks of incubation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Species</th>
<th>Germination %</th>
<th>MTG* (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>P. palaestina</td>
<td>15.0 d</td>
<td>27.94 cd</td>
</tr>
<tr>
<td></td>
<td>P. lentiscus</td>
<td>10.0 d</td>
<td>24.50 bc</td>
</tr>
<tr>
<td></td>
<td>P. atlantica</td>
<td>0.0 d</td>
<td>30.64 d</td>
</tr>
<tr>
<td>Acid scarification</td>
<td>P. palaestina</td>
<td>57.5 a</td>
<td>19.43 a</td>
</tr>
<tr>
<td></td>
<td>P. lentiscus</td>
<td>13.3 d</td>
<td>19.83 a</td>
</tr>
<tr>
<td></td>
<td>P. atlantica</td>
<td>47.5 abc</td>
<td>25.84 bc</td>
</tr>
<tr>
<td>Scarification + 1000 ppm GA₃</td>
<td>P. palaestina</td>
<td>56.0 ab</td>
<td>23.02 abc</td>
</tr>
<tr>
<td></td>
<td>P. lentiscus</td>
<td>34.0 c</td>
<td>20.42 a</td>
</tr>
<tr>
<td></td>
<td>P. atlantica</td>
<td>39.9 bc</td>
<td>26.25 bcd</td>
</tr>
<tr>
<td>Scarification + Cold stratification</td>
<td>P. palaestina</td>
<td>60.0 a</td>
<td>21.60 ab</td>
</tr>
<tr>
<td></td>
<td>P. lentiscus</td>
<td>32.0 c</td>
<td>21.14 ab</td>
</tr>
<tr>
<td></td>
<td>P. atlantica</td>
<td>50.0 ab</td>
<td>23.92 abc</td>
</tr>
</tbody>
</table>

MTG: Mean time to complete germination.

Fig (1 a): Effect of different treatments on the seed germination of three *Pistacia* species (Week 1).

An - Najah Univ. J. Res. (N. Sc.) Vol. 21, 2007
Fig (1b): Effect of different treatments on the seed germination of three *Pistacia* species (week 2).

Fig (1c): Effect of different treatments on the seed germination of three *Pistacia* species (week 3).
Fig (1d.): Effect of different treatments on the seed germination of three *Pistacia* species (week 4).

Discussion

Seed dormancy could be derived from either tissues enclosing the embryo or from the embryo itself, (Bewley, Black, 1994). Therefore, the germination barrier in *Pistacia* species could be due to the seed covering. The result also indicated the variation in seed germination ability among the three species. These findings are in agreement with (Ayfer, Serr, 1961), (Chaabouni, Gouta, 2002), (Isfendiyaroglu, & Özeker, 2002). However, the results are in contrast with the finding of (Ak, & et.al. 1995), (Kafkas, 1998), (Kuru, Aksu, 1995). Similar result was reported by (Pitto, 1995) who found no significant difference in the seed germination of scarified and (scarified and stratified) seeds of *P. lentiscus*. The result of the current study indicated that scarification was the primary factor enhanced the seed germination. However, the germination percent obtained after scarification was relatively low, this indicated that other factors contributed to the low germination percent.
Polyphenols and flavonoids produced in the fruit or seed could inhibit germination. (Baskin, C.C. & Baskin, J. M. 1998). The inhibitory effect of phenolic compound on seed germination is closely related to the regulation of the endogenous auxin, oxygen supply and seed coat permeability (Bewley, Black, 1994). However, it was found that the concentration of phenolic compounds varied with GA3 and scarification seed treatments of the three Pistacia species (Isfendiyaroglu, & Özeker, 2002). The highest phenolic compounds were found in P. atlantica. This finding could be a possible cause of the lowest seed germination obtained in our experiment.

Regarding the germination rate, the MTG of all treatments was less than the control treatment of all species. The three species exhibited different MTG, this is in agreement with the results of (Isfendiyaroglu, & Özeker, 2002) with three Pistacia species, and the seeds of P. chinensis were more rapid and completed germination in 15 days after they were exposed to cold stratification for 45 days.

Our results indicated the significant effect of acid scarification and the improvement effect of other treatments (GA3 and stratification of the scarified seeds). The physical effect seems to be more efficient in inducing seed dormancy. However, further investigation is necessary to support this finding and more are needed to improve Pistacia seed germination, studies could handle the issue of phenol compound, stratification period and other chemical enhancing agents.

References

