Palestinian Medical and Pharmaceutical Journal

Advancing Obesity Care: Innovations in Devices and Treatment Strategies

Nisrein Jaber^{1,*}, Mayyas Al-Remawi², Rami Abdel-Rahem³, Ahmad Jaber⁴ & Mohammad Albustanji⁵

(Type: Review Article). Received: 2nd Apr. 2025, Accepted: 11st Sep. 2025, Published: ××××, DOI: ××××

Accepted Manuscript, In Press

Abstract: The global obesity crisis demands innovative treatment approaches beyond conventional methods. This review examines recent technological advancements in obesity management, with a focus on novel therapeutic devices and treatment modalities. We conducted a comprehensive literature review using the PubMed, EMBASE, Cochrane Library, and Google Scholar databases (2015-2024), focusing on studies involving obese participants (BMI ≥ 30) and outcomes related to obesity. The evolving landscape of non-invasive fat-reduction technologies is analyzed, including selective radiofrequency (RF), cryolipolysis, and high-intensity focused ultrasound (HIFU) devices. The investigation is extended to emerging intragastric balloon systems, implantable neuromodulation devices, and digital health technologies, including wearable activity trackers and mobile health applications. A critical evaluation of each technology's efficacy, safety profile, patient selection criteria, and clinical outcomes is provided, based on recent literature, with systematic quality assessment and evidence grading. The evolution of minimally invasive bariatric techniques is also examined, highlighting their comparative advantages over traditional approaches. While these technologies show promise as adjunctive tools within comprehensive treatment programs, evidence quality varies significantly, long-term efficacy data remain limited, and most technologies require integration with traditional lifestyle interventions rather than serving as standalone solutions. However, standardized protocols, long-term efficacy data, and cost-effectiveness analyses remain crucial needs in the field. This review provides healthcare professionals with a framework for understanding and implementing these emerging technologies as part of patient-centered, multidisciplinary approaches to obesity management.

Keywords: Obesity management; body contouring; non-invasive fat reduction; intragastric balloons; neuromodulation; digital health technologies; bariatric innovations.

Introduction

Obesity is defined by the World Health Organization (WHO) as abnormal or excessive fat accumulation that presents a health risk, with a body mass index (BMI) of 30 kg/m² or higher indicating obesity. Currently, obesity affects over 650 million adults worldwide, with prevalence rates having nearly tripled since 1975 [1]. In Jordan specifically, obesity prevalence has reached alarming levels, affecting approximately 35.5% of adults, reflecting the global nature of this epidemic [2].

The health consequences of obesity are profound and multifaceted, significantly increasing the risk of cardiovascular disease, type 2 diabetes mellitus, stroke, certain cancers, sleep apnea, osteoarthritis, and numerous other chronic conditions [3]. Beyond individual health impacts, obesity imposes substantial economic burdens on healthcare systems, with direct medical costs attributed to obesity exceeding \$190 billion annually in the United States alone. Risk factors contributing to the development of obesity include genetic predisposition, environmental factors, sedentary lifestyle, poor dietary habits, socioeconomic determinants, and psychological factors, creating a complex, multifactorial condition that requires traditional comprehensive management approaches [4, 5].

Obesity has become a significant challenge in clinical practice worldwide. What was once considered a localized

problem has evolved into a global health crisis that is overwhelming healthcare systems. Traditional approaches to obesity management, including dietary plans, exercise regimens, behavioral therapy, and pharmacological interventions, remain fundamental and essential components of treatment; however, they have demonstrated limited long-term success as standalone interventions. A recurring pattern of initial improvement followed by weight regain has been observed, leading to increased interest in exploring innovative technologies that may provide more sustainable solutions when integrated with traditional approaches [6].

This review presents findings from several years of research and implementation of various technological advancements in the management of obesity. It is essential to note that these technologies represent innovative implementations and novel approaches that enhance, rather than replace, traditional methods. Technology serves as a supportive tool within comprehensive treatment programs, with lifestyle modifications remaining essential even with advanced interventions [6].

The diagnostic approach to obesity has undergone significant evolution over time. Initially, reliance was primarily placed on BMI calculations, which involve dividing the weight in kilograms by the height in meters squared. While BMI continues to be used as a starting point (≥30 kg/m² for obesity), its limitations have been increasingly recognized [7]. BMI fails to

1

¹ Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan

^{*} Corresponding author email: n.jaber@zuj.edu.jo

² Department of Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan. malremawi@uop.edu.jo

³ Department of Chemistry, Faculty of Art and Sciences, University of Petra, Amman, Jordan. r.abdelrahem@uop.edu.jo

⁴ Department of General Practice, Health Education England, Newcastle Upon Tyne, UK. ahmad.jaber@nhs.net

⁵ Radiology Department, Albasheer Hospital, Ministry of Health, Amman, Jordan. mobustanji95@gmail.com

account for variations in body composition, particularly in athletic patients with significant muscle mass or older patients with sarcopenia.

A significant challenge has been identified in diverse patient populations regarding BMI thresholds across different ethnicities. Modified BMI thresholds for Asian populations (Class I obesity starting at BMI 25.0 rather than 30.0) have been adopted by many practitioners, which has significantly altered categorization and treatment approaches for these populations [8]. Cases have been documented where patients with seemingly mild elevations in BMI (e.g., 27) have presented with alarming metabolic markers and significant visceral adiposity.

Anthropometric measurements have been recognized as valuable supplements to BMI assessment. Waist circumference, in particular, has been established as an essential measurement in clinical settings. Numerous patients with "normal" BMI but elevated waist circumference have been observed to exhibit significant cardiometabolic risks. Additional insights can be gained from waist-to-hip ratio measurements, and the A Body Shape Index (ABSI) has been increasingly utilized, as it appears to predict mortality risk more accurately than BMI alone. It is worth noting that consistent measurement techniques require extensive staff training to ensure reliability [9].

For complex presentations or when invasive treatment decisions are being considered, advanced body composition analysis is increasingly being employed. Bioelectrical impedance analysis (BIA) equipment has been incorporated into many clinical settings. At the same time, more detailed assessments, such as dual-energy X-ray absorptiometry (DEXA) or magnetic resonance imaging (MRI), are utilized when necessary, particularly for quantifying visceral adipose tissue [10]. The prohibitive cost of these advanced techniques for routine use has been noted.

Through clinical experience, it has been demonstrated that no single measurement provides a complete assessment. A combination of measurements is typically obtained, including BMI, waist circumference, and, when feasible, body composition analysis, which collectively provide a more comprehensive picture of each patient's unique risk profile and help guide treatment recommendations. While this multimodal approach requires additional time, it yields more personalized and effective interventions.

Methodology

A comprehensive literature search was conducted using PubMed, EMBASE, Cochrane Library, and Google Scholar databases covering the period from 2015 to 2024. The search strategy employed keywords including "obesity management," "body contouring," "non-invasive fat reduction," "intragastric balloon," "neuromodulation," "digital health," "bariatric surgery," "weight loss technology," and "obesity devices" in various combinations using Boolean operators.

Inclusion criteria comprised: (1) studies focusing on participants with obesity (BMI ≥30 kg/m²), (2) interventions targeting obesity-related outcomes (weight loss, BMI reduction, metabolic improvements), (3) peer-reviewed articles published in English, (4) original research studies, systematic reviews, and meta-analyses, and (5) studies with clearly defined methodology and outcome measures. Exclusion criteria included: (1) studies focusing solely on cosmetic outcomes without obesity-related endpoints, (2) case reports with fewer than 10 participants, (3) studies with participants having BMI <30 kg/m² when making obesity management claims, (4) publications from predatory journals, and (5) studies lacking clear methodology or outcome measures.

Evidence quality was assessed using a standardized grading system: Level A (systematic reviews and meta-analyses), Level B (randomized controlled trials (RCTs)), Level C (cohort studies and case-control studies), and Level D (case series and expert opinion). Although this is not a systematic review, transparency in the literature selection and quality assessment process was maintained throughout the evaluation.

Technology Classification Framework

The technologies discussed in this review are categorized into two distinct approaches: (1) Novel therapeutic innovations that employ new mechanisms of action to target obesity through previously unexplored pathways, and (2) Implementation innovations that utilize technology to enhance the effectiveness, adherence, or delivery of traditional obesity management approaches. This distinction is crucial for understanding the role and appropriate application of each technology category.

Novel therapeutic innovations include non-invasive body contouring technologies, intragastric balloon systems, and implantable neuromodulation devices that target obesity through mechanisms distinct from traditional dietary and exercise interventions. Implementation innovations encompass digital health technologies, wearable devices, and telemedicine platforms that enhance traditional lifestyle modification approaches through improved monitoring, motivation, and adherence support.

Non-Invasive Body Contouring and Fat Reduction Technologies

Non-invasive body contouring technologies have been extensively investigated over recent years. These devices have generated significant interest among patients, particularly those who are not candidates for surgical intervention but desire visible results. It is crucial to understand that these technologies are body contouring tools rather than obesity treatments per se, best suited for patients at or near target weight with localized fat deposits rather than comprehensive weight loss interventions. Three main categories of these technologies have been identified based on their mechanism of action: heating, cooling, or mechanically disrupting fat cells (Table 1) [11].

Radiofrequency-Based Systems

Radiofrequency (RF) devices have been implemented in numerous clinical settings. The Vanquish system, a contactless technology that selectively targets fat through an electromagnetic field, has been studied in limited clinical trials [12]. The mechanism involves resonance creation, which heats fat cells more intensely than surrounding tissue. Fat's higher impedance causes it to absorb more energy than waterrich tissues.

Patients generally report that Vanquish treatments are comfortable, typically experiencing a warm sensation without pain. Modest circumferential reductions, averaging approximately 4.5 cm in the abdominal region, have been documented after a series of 4-6 weekly treatments (Evidence Level: C - limited cohort data). An advantage of this system is the ability to treat larger areas in a single session compared to alternative technologies. Side effects have been primarily limited to temporary erythema that resolves within a few hours [13]. However, long-term durability data beyond 12 months are lacking, and results appear highly operator-dependent.

The BodyFX platform, which combines RF with vacuum pressure and high-voltage pulses, has also been studied in small case series. The technology creates controlled thermal injury to fat cells while simultaneously improving circulation and stimulating collagen remodeling [14]. Clinical cases have been documented where a reduction of 2.5 cm in waist circumference

was achieved after six treatments. The treatment is reported to be somewhat uncomfortable, with patients describing it as feeling like a hot deep-tissue massage with occasional zapping sensations [15]. Limitations include variable patient response, discomfort during treatment, and limited evidence base with small sample sizes.

The Accent Prime system has been more recently introduced to clinical practice. This system was developed to combine RF with ultrasound technology, providing both fat reduction and skin tightening effects [16]. This combination has been particularly beneficial for post-pregnancy patients concerned with both excess adiposity and skin laxity. However, results have been observed to be highly operator-dependent, necessitating significant staff training to achieve consistent outcomes. Current evidence is limited to case series and manufacturer studies, underscoring the need for additional independent validation.

Cryolipolysis Systems

CoolSculpting, one of the first non-invasive body contouring technologies to gain widespread adoption, remains a popular option. The technology employs a simple concept - cooling fat cells to temperatures that trigger crystallization and apoptosis without damaging surrounding tissues [17]. The selective nature of cryolipolysis has been well-documented - adipocytes are observed to be more vulnerable to cold injury than other cell types (Evidence Level: B - supported by randomized controlled trials (RCTs)).

The procedure involves application of an applicator to the treatment area for approximately 35-45 minutes. Post-treatment massage is typically performed to disrupt the crystallized fat, which has been associated with improved results based on clinical observations [18].

Fat layer reductions of approximately 20-25% have been documented in responsive patients. Results are not immediately apparent; changes are typically first noticed at approximately 3 weeks, with maximum results becoming visible around 2-3 months post-treatment [19]. This gradual development of results presents both advantages and disadvantages. The natural-looking changes without the abruptness of surgical results are appreciated, while the extended waiting period for visible outcomes can be discouraging for some patients. Long-term follow-up studies indicate that results may persist for 2-4 years, though weight gain can compromise outcomes.

Few significant adverse effects have been reported with cryolipolysis, although cases of paradoxical adipose hyperplasia (PAH) have been documented. This rare but concerning complication results in growth rather than reduction of the fat layer, with a very low incidence rate. Manufacturer assistance in addressing such complications has been noted [20]. Other

limitations include treatment discomfort, prolonged treatment time, and variable patient response rates.

High-Intensity Focused Ultrasound Systems (HIFU)

Ultra Shape represents another category of non-invasive technology that has been incorporated into treatment protocols. Unlike thermal-based systems, UltraShape utilizes pulsed ultrasound energy to create mechanical disruption of adipocytes without thermal effects [21]. This distinct mechanism has been particularly valuable for patients with concerns about heat or cold sensitivity (Evidence Level: C - limited controlled studies).

A typical treatment protocol involves a series of three treatments spaced two weeks apart. The procedure is reported to be virtually painless, with patients experiencing a light tapping sensation, which has been particularly well-received by those with sensitivity concerns. Varied results have been observed between patients, with waist circumference reductions averaging 2.5-3 cm, but with significant individual variation [22]. However, systematic reviews indicate high variability in outcomes, with some patients showing minimal response.

The efficacy of UltraShape is highly dependent on proper technique. Improved results have been documented following refinement of the methodology for marking treatment areas and ensuring complete coverage with the transducer [23]. Patient selection has been identified as a crucial factor; minimal effectiveness has been observed in patients with a BMI over 30 or in those with significant skin laxity. The cost-effectiveness remains questionable, given the modest results and high treatment costs.

Critical Analysis and Limitations

Across all non-invasive technologies, several important limitations must be acknowledged. Patient selection and expectation management are crucial, as these procedures are body contouring tools rather than weight loss treatments. Most technologies demonstrate minimal effectiveness in patients with a BMI greater than 30 and require realistic expectations to be set. Patients seeking dramatic transformations typically require referral to more appropriate interventions. Long-term durability studies are limited, with most follow-up data extending only 6 to 12 months. Cost-effectiveness remains unestablished for most technologies. Additionally, results are highly operator-dependent, requiring significant training and standardization to ensure consistency.

Combination approaches utilizing different technologies sequentially have demonstrated enhanced patient satisfaction. For example, initiating treatment with CoolSculpting for fat reduction followed by RF for skin tightening has produced favorable outcomes. The non-invasive nature of these technologies allows such combination approaches without significant additional risk [24].

Table (1): Evidence-Based Comparison of Non-Invasive Body Contouring Technologies.

Technology	Study Design (Evidence Level)	Sample Size/BMI Range	Average Reduction (Circumference)	Treatment Protocol	Reference
Radiofrequency (Vanquish METM)	RCTs (Level B	n=36, BMI 25-30	4.17 cm circumference	4 weekly 45-minute treatments	[25]
Cryolipolysis)	RCTs (Level B)	n=15, BMI 22.91-34.58	p=0.32	3 cryolipolysis treatments- 45- minute treatments, at 6-week intervals.	[26]
HIFU	RCTs (Level B)	n=20, BMI 27.34	3.43 cm circumference	2 treatment sessions, 4 weeks apart	[27]

Endoluminal Techniques: Intragastric Balloon Systems

Intragastric balloons have significantly altered the approach to patients with moderate obesity who are not candidates for surgery but require more intensive intervention than lifestyle modification alone. These devices occupy gastric volume to induce early satiety and restrict food intake, essentially creating

a mechanical barrier to overeating. They have been particularly valuable as "bridge" therapy to help patients establish new eating patterns before transitioning to long-term lifestyle management (Table 2) [28]. However, these devices require concurrent intensive behavioral modification programs to achieve sustainable long-term outcomes.

Current Generation Balloon Systems

The Orbera system has been extensively studied and implemented in clinical practice (Evidence Level: B - multiple RCTs available). This system consists of a silicone balloon that is placed endoscopically and filled with saline (typically 400-700ml, adjusted based on patient tolerance). In a multicenter study of 125 patients, a weight loss of approximately 10.2 kg was documented after 6 months, representing an excess weight loss of about 32.1%; however, considerable variation was observed across individual patients [29]. However, long-term follow-up studies indicate that patients maintain only 30-40% of their initial weight loss at 12 months post-extraction, highlighting the critical importance of concurrent behavioral interventions.

The system's simplicity is advantageous, although the requirement for endoscopic placement and removal necessitates careful patient selection to ensure procedure tolerability. Early removal has been necessary in approximately 8% of patients due to intolerance, manifesting as persistent nausea, vomiting, or abdominal pain unresponsive to medication adjustments [30]. This early removal rate is consistent with published data, although prophylactic antiemetics and proton pump inhibitors have been found to reduce these complications. Additional complications include balloon deflation, gastric obstruction, and rare cases of gastric perforation.

The ReShape Dual Balloon system has demonstrated different characteristics in clinical applications. Its two interconnected balloons were designed to better conform to the gastric anatomy and reduce the risk of migration. Slightly improved tolerability compared to single balloon systems has been reported, although the placement procedure is somewhat more complex [31]. Weight loss results have been observed to

Table (2): Evidence-Based Comparison of Intragastric Balloon Systems.

be comparable to the Orbera system. A notable advantage is the reduced likelihood of rotation within the stomach, which may potentially decrease symptoms such as nausea. However, the system was discontinued by the manufacturer in 2020 due to insufficient demand and reimbursement challenges.

The Obalon system represents a distinctly different approach that has generated significant interest. Rather than endoscopic placement, patients swallow a capsule containing the balloon, which is subsequently inflated with nitrogen gas under fluoroscopic guidance [32]. A typical protocol involves placement of three balloons over 12 weeks, allowing gradual accommodation to the occupied space. Fewer immediate postplacement symptoms have been reported with this progressive approach. However, overall weight loss appears to be slightly less than with fluid-filled balloons, based on limited clinical observations [33]. Clinical trials have shown an average excess weight loss of approximately 26%.

More recently, the Spatz3 Adjustable Balloon has been introduced into clinical practice. Its unique adjustability feature allows for volume modification during the treatment period—a capability that has proven valuable in clinical applications [34]. For patients experiencing significant intolerance, volume can be temporarily reduced and subsequently increased as tolerance improves. Conversely, for patients who appear to be accommodating to the balloon (as evidenced by slowing weight loss), volume can be increased to re-establish the satiety effect. This flexibility has permitted extended placement up to 12 months in selected patients, although long-term outcome data continue to be collected. However, the adjustability feature requires additional endoscopic procedures, increasing overall costs and procedural risks.

Balloon System	Evidence Level	Study Population	Average excess Weight Loss (EWL)	Duration	Major Complications	Reference
Orbera	Level B (RCTs)	n=255, BMI 30-40	20.7	6 months	Nausea, vomiting, abdominal pain	[35]
ReShape Dual	Level B (RCTs)	n=187, BMI 30-40	25.1%	24 months	Balloon deflation	[36]
Obalon	Level B (RCTs)	n=387, BMI 30-40	26%	6 months	Lower complication rate	[37]
Spatz3	Level B (RCTs)	n=180, BMI 30-40	18.56%	6 months	spontaneous deflation and early retrieval	[38]

Clinical Efficacy and Limitations

Results with intragastric balloons have been mixed but generally positive. A meta-analysis has demonstrated a weighted mean excess weight loss of approximately 25.44% with these devices [29], which is consistent with observed clinical experience (Evidence Level: A - meta-analysis). While the weight loss is not as substantial as that achieved with bariatric surgery, it is significantly greater than what is typically accomplished with lifestyle modification alone.

A critical limitation is the high rate of weight regain following balloon removal. Research indicates that most patients regain approximately 58% of their original weight after balance removal. This pattern has necessitated a fundamental reconsideration of balloon therapy implementation, emphasizing the need for intensive behavioral support programs that extend well beyond balloon removal [39].

Revised protocols have been developed to include comprehensive lifestyle modification before, during, and after balloon placement. Patients are typically required to work with nutritional and behavioral therapists, beginning at least one month before placement and continuing for at least six months after removal. This integrated approach has been associated with improved long-term outcomes, although formal data collection is ongoing.

Patient selection has been identified as critical to success. Optimal results have been observed in patients with a BMI of 30-40 kg/m² who have demonstrated commitment to lifestyle changes but struggled to maintain them [40]. The balloon appears to provide sufficient assistance to overcome plateaus and establish sustainable habits. Conversely, patients seeking a "magic bullet" without behavioral change have been observed to regain weight rapidly after removal.

Cost-effectiveness analysis reveals significant challenges. These devices are typically expensive and have limited insurance coverage. When factoring in the high weight regain rates and need for intensive behavioral support, the cost per kilogram of sustained weight loss at 2-5 is high, raising questions about resource allocation compared to alternative interventions.

Implantable Neuromodulation Devices

The concept of modulating neural pathways involved in appetite regulation presents fascinating potential. These technologies aim to influence the gut-brain axis through electrical stimulation, potentially addressing complex neurohormonal aspects of obesity that many other treatments fail to target. However, clinical experience with these devices has been more complicated than initially anticipated, with several promising technologies ultimately failing to demonstrate sufficient efficacy for widespread clinical adoption.

Vagal Nerve Stimulation/Blocking Systems

Clinical trials of the Maestro Rechargeable System (vBloc therapy) have been conducted with mixed results (Evidence Level: B - randomized controlled trials (RCTs) available). The device delivers electrical pulses to block vagal nerve signaling between the stomach and brain [41]. The theoretical foundation is sound - by interrupting hunger signals and delaying gastric emptying, food intake can be reduced without anatomical alterations

The ReCharge pivotal trial demonstrated 24.4% greater weight loss in the active therapy group compared to 15.9% in the sham group at 12 months [42]. While statistically significant, this difference was less substantial than anticipated for such an invasive intervention. Patient experiences have been similarly modest - noticeable but not as dramatic as might be expected given the surgical implantation requirement. The absolute weight loss difference was only 8.5% versus 4.9%, which many experts considered insufficient to justify the invasive nature and costs of the procedure.

Long-term follow-up has demonstrated sustained weight loss at 18 months, accompanied by meaningful improvements in cardiometabolic parameters [43]. Adverse events have been generally manageable - primarily pain at the neuroregulator site, heartburn, and occasional dyspepsia. The reversibility of the approach is advantageous, particularly for younger patients concerned about permanent anatomical changes. However, device-related complications include lead displacement, infection rates, and the need for battery replacement every 3-5 years.

The cost-effectiveness of this approach remains questionable based on current data. Given the expense of the device and implantation procedure, the modest weight loss differential compared to lifestyle intervention alone has limited widespread recommendation. This option is typically reserved for patients with specific contraindications to other approaches who are fully informed about the limited efficacy expectations. The manufacturer discontinued the device in 2020 due to insufficient market adoption and reimbursement challenges.

Gastric Electrical Stimulation

Clinical experience with gastric electrical stimulation systems has been less encouraging (Evidence Level: C-D - limited and conflicting data). These devices deliver electrical pulses directly to the stomach wall, aiming to influence motility, hormone secretion, and neural signals [44]. Despite compelling mechanistic rationale, real-world results have been inconsistent.

The Transcend implantable gastric stimulation system was discontinued after a multicenter randomized controlled trial failed to demonstrate significant weight loss differences between active and control groups. The study, which included 190 patients followed for 12 months, showed only a 0.1 % excess weight loss difference compared to sham stimulation, well below the predetermined efficacy threshold. Similar disappointing results were observed with other gastric electrical stimulation devices, leading to widespread abandonment of this approach [45].

The discrepancy between theoretical promise and clinical outcomes underscores the complexity of appetite regulation and the challenges of targeting a single pathway in a multifaceted system [46].

Currently, gastric electrical stimulation is considered a failed approach in obesity management. The lack of efficacy, combined with surgical risks and high costs, has led to the discontinuation of research and clinical programs. Patients

interested in neuromodulation approaches are occasionally referred to ongoing clinical trials investigating newer technologies, but gastric electrical stimulation is no longer recommended as part of standard treatment protocols.

Digital Health Technologies

The proliferation of digital health tools has fundamentally transformed the approach to managing obesity. These technologies have democratized access to monitoring and support systems previously available only through intensive inperson programs. However, the vast number of available options has created challenges in identifying those tools that produce meaningful outcomes. Additionally, significant disparities exist in access to technology and digital literacy, which can potentially exacerbate health inequalities if not properly addressed.

Wearable Activity Trackers

Wearable activity monitors have evolved substantially from simple pedometers. Contemporary devices track multiple parameters, including steps, heart rate, sleep patterns, and stress levels, providing unprecedented insights into patients' daily habits. A meta-analysis of 14 randomized controlled trials (RCTs) found that intervention groups using wearable activity monitors achieved significantly greater weight loss (mean difference, -1.27 kg) and increased physical activity compared to control groups [47] (Evidence Level: A - systematic review and meta-analysis).

These devices serve multiple functions in clinical practice. They provide objective data that often reveals discrepancies between perceived and actual activity levels; many patients express surprise at their sedentary patterns when confronted with the objective data. Continuous feedback helps maintain motivation by visualizing goals and recognizing achievements. Connectivity features allow data sharing with healthcare teams and supportive peers [48].

However, significant limitations have been identified. Engagement consistently wanes over time, with most studies showing that users discontinue regular use within 6 months. Accuracy limitations exist, particularly for heart rate monitoring during high-intensity activities and calorie expenditure calculations: device costs and the need for regular charging/maintenance present barriers for some patients. Additionally, the data generated can become overwhelming rather than motivating for certain personality types [49]. To address this issue, "refresher" sessions have been implemented where patients bring devices to appointments for data review and new goal setting. Periodic challenges, such as step competitions, have been found to re-engage patients who have become complacent.

The technology itself appears less important than its implementation. Device complexity should be matched to the patient's technological comfort level and specific monitoring needs. For some patients, a simple step counter provides sufficient feedback, while others benefit from more sophisticated metrics and analyses. Ensuring data remains actionable rather than overwhelming has been identified as a key factor in successful implementation.

Mobile Health Applications

The proliferation of weight management apps has presented both opportunities and challenges. These applications offer combinations of dietary tracking, educational content, behavioral coaching, and community support at a fraction of the cost of traditional programs. However, quality varies dramatically, and many patients struggle to identify evidence-based options among the thousands available [50]. Research on weight management apps found that the potential of mobile health apps

in facilitating weight loss lies in their ability to increase treatment adherence through strategies such as self-monitoring.

The most effective applications have been observed to combine several key features: comprehensive food databases with barcode scanning capabilities, personalized feedback on nutritional patterns, structured goal-setting frameworks, social support mechanisms, and meaningful integration with wearable devices [51, 52]. The behavioral change techniques embedded in these apps appear to be the critical factor determining their effectiveness rather than superficial design elements (Evidence Level: B - multiple randomized controlled trials(RCTs) available for select apps).

Different demographic groups engage with distinctly different app styles. Younger patients typically prefer gamified interfaces with social competition elements, while older adults often engage more effectively with simpler, education-focused tools. Cultural considerations significantly impact engagement - apps offering culturally relevant food databases and meal suggestions have been associated with substantially better engagement among diverse patient populations [53]. However, significant barriers include declining engagement rates that typically discontinue within 3 months, privacy concerns regarding the sharing of health data, and the lack of integration with healthcare providers for most consumer apps.

Telemedicine and Remote Monitoring Systems

The integration of telemedicine into obesity management programs has accelerated, particularly during the COVID-19 pandemic. What began as a convenience option for select patients has evolved into a core component of clinical practice. Virtual consultations now comprise a substantial portion of follow-up visits, with high satisfaction ratings reported by both patients and providers [54] (Evidence Level: B - multiple controlled studies available).

Beyond simple video visits, comprehensive remote monitoring systems have been implemented that integrate weight data, activity levels, and basic biometrics. These connected health platforms enable more frequent, yet less intensive, touchpoints between formal visits. Weekly data dashboards can be reviewed, allowing brief, personalized messages to be sent to patients that highlight concerning patterns, while automated systems deliver positive reinforcement for progress.

A randomized controlled trial evaluating a remote monitoring approach demonstrated significantly greater weight loss in the intervention group (-4.4 kg) compared to standard care (-0.2 kg) over 12 months [55]. Equally important, the remote monitoring group showed higher retention rates and satisfaction scores, suggesting enhanced engagement with treatment.

Limitations of telemedicine approaches include technology access disparities, with rural and lower-income populations facing limitations in broadband and device access. Digital literacy requirements may exclude older adults or those with limited technology experience. Privacy and security concerns exist regarding the transmission of health data. Additionally, the lack of physical examination capabilities may limit comprehensive assessment and intervention options.

The future of digital health in obesity management may be found in increasingly sophisticated Al-driven personalization. Early-stage systems can already identify individual response patterns and adapt recommendations accordingly. While cautious skepticism about technological promises is warranted, the trend toward precision digital health appears promising based on initial implementations.

Advancements in Minimally Invasive Bariatric Surgery

For patients with severe obesity or significant comorbidities, bariatric surgery remains the most effective intervention available. However, the field has evolved substantially from open procedures to extended hospitalizations. Today's minimally invasive approaches have transformed the risk-benefit calculus, making surgical intervention a viable option for a broader patient population. Current evidence demonstrates that bariatric surgery yields superior long-term weight loss and resolution of comorbidities compared to all non-surgical approaches, with modern techniques achieving low mortality rates [56].

Single-Incision Laparoscopic Surgery (SILS)

Single-incision laparoscopic approaches to sleeve gastrectomy and gastric bypass have received significant attention in the surgical community. These techniques reduce the number of abdominal access points from the traditional 5-6 ports to a single multi-channel port, typically placed through the umbilicus. The cosmetic advantage is substantial - a nearly invisible scar hidden within the umbilicus rather than multiple visible incisions (Evidence Level: B - multiple comparative studies available).

A meta-analysis comparing SILS versus conventional multiport laparoscopy for sleeve gastrectomy demonstrated comparable safety profiles and weight loss outcomes [57]. Patients typically report somewhat less post-operative pain and greater cosmetic satisfaction. However, the technical challenges are considerable; instrument triangulation becomes significantly more difficult, and the learning curve is steep, even for experienced laparoscopic surgeons. Also, operative times are typically longer.

While SILS represents an incremental improvement in minimally invasive bariatric surgery, its adoption is likely to remain limited to high-volume centers with surgeons who are specifically trained in these techniques. The modest benefits may not justify the technical complexity and extended operative times for most practices. A cost-effectiveness analysis suggests a minimal advantage, given the similar outcomes and increased operative complexity.

Robotic Bariatric Surgery

Robotic assistance represents another evolutionary advancement in bariatric surgery. These platforms provide enhanced visualization, improved dexterity, and surgeon ergonomics compared to conventional laparoscopy. These advantages are particularly valuable in complex revisional procedures or patients with unusual anatomy (Evidence Level: B - comparative studies available).

A systematic review comparing robotic-assisted versus laparoscopic Roux-en-Y gastric bypass found comparable safety profiles and weight loss outcomes, with a potential reduction in anastomotic leak rates in the robotic group (0.6% versus 1.1%) [58]. However, the increased costs and operative times associated with robotic approaches have limited widespread adoption—the additional cost per case is primarily due to disposable instrument costs and longer operative times.

Robotic assistance is currently viewed as a valuable tool for specific complex cases rather than a standard approach for all bariatric procedures. As technology continues to advance and more surgeons acquire robotic credentials, the cost-benefit analysis may shift toward broader implementation, particularly if consistently reduced complication rates can be demonstrated. However, current evidence does not support routine use of robotics for primary bariatric procedures, given the increased costs without proven superior outcomes.

Primary Endoscopic Procedures

Perhaps the most transformative recent development has been the emergence of purely endoscopic bariatric procedures. These approaches offer substantially reduced invasiveness compared to traditional surgery while providing greater efficacy than non-surgical alternatives. Endoscopic sleeve gastroplasty (ESG) has been a primary focus of investigation in this category (Evidence Level: C - case series and cohort studies).

ESG creates a restrictive sleeve using endoscopically placed full-thickness sutures along the greater curvature of the stomach. A multicenter study demonstrated mean total body weight loss of 15.2% at 18 months with a favorable safety profile (1.2% serious adverse event rate) [59]. While less effective than surgical sleeve gastrectomy, this outpatient procedure fills an important gap for patients with moderate obesity (BMI 30-35) who previously had few effective options. However, long-term durability remains questionable, with some studies showing significant weight regain after 2 years. Additionally, the procedure requires specialized training and equipment, limiting widespread availability.

Transoral outlet reduction (TORe) has proven valuable for addressing weight regain after Roux-en-Y gastric bypass. Rather than performing complex surgical revisions, the gastrojejunal anastomosis can be endoscopically revised when dilation occurs over time [60]. Results have been consistent with published data, showing an average weight loss of 8.4 kg at 12 months following this relatively simple intervention. However, repeat procedures are often necessary, and patient selection criteria remain poorly defined.

These endoscopic approaches have significantly expanded treatment options, particularly for patients who fall into the traditional "treatment gap" between lifestyle/pharmacotherapy and conventional bariatric surgery. However, insurance coverage remains inconsistent, limiting access for many appropriate candidates. Cost-effectiveness data are limited, and long-term outcomes beyond 2-3 years are lacking for most endoscopic procedures.

Future Research Directions

Several critical research needs have been identified across all technology categories. Randomized controlled trials (RCTs) evaluating combination therapies are urgently needed, as most patients benefit from multimodal approaches rather than single interventions. Comprehensive cost-effectiveness analyses comparing technologies across the obesity treatment spectrum are essential for healthcare policy development and resource allocation decisions.

Long-term follow-up protocols extending 5-10 years are crucial for understanding the true durability and cost-effectiveness of interventions. Standardized outcome measures and assessment tools need development to enable meaningful comparison across studies and technologies. Personalized medicine approaches utilizing genetic, metabolic, and behavioral profiling to match specific interventions to individual patients represent a promising future direction.

Additional research priorities include investigating technology-enhanced behavioral interventions, developing Aldriven personalization algorithms, establishing training and certification standards for emerging technologies, and evaluating the health equity impacts to ensure that technologies don't exacerbate existing disparities.

Conclusion

Following the extensive implementation of these technologies in clinical practice over the past decade, several

observations can be made regarding their role in comprehensive obesity management. The evidence demonstrates that while technological innovations offer valuable adjunctive tools, no single approach represents a comprehensive solution for obesity treatment. Most importantly, these technologies enhance rather than replace traditional lifestyle modification approaches, which remain fundamental to successful long-term obesity management.

Initial expectations for many of these innovations were perhaps unrealistic. It has become evident that while technology offers valuable tools, no single approach represents a comprehensive solution for obesity treatment.

Non-invasive body contouring technologies have demonstrated mixed results in clinical applications. They have proven effective for addressing localized fat deposits in motivated patients who have reached plateaus with lifestyle changes. However, patient expectations must be carefully managed, as dramatic transformations are rarely achieved. These technologies are best positioned as complementary approaches for patients with a BMI under 30 who understand their limitations. The evidence base remains limited, with most studies showing modest and variable results that may not justify the high costs for most patients.

Intragastric balloons have demonstrated unexpected effectiveness as transitional tools. When combined with intensive behavioral support, they create a valuable window for habit formation. The 6-month placement period appears to provide sufficient time for the establishment of new eating patterns that may persist after removal. However, limited insurance coverage remains a significant barrier to access. The high rate of weight regain (60-70% within 2-5 years) emphasizes that balloons must be viewed as facilitators of behavioral change rather than standalone treatments.

Implantable neuromodulation devices have been less successful than initially anticipated. Despite promising early data, clinical experience with vagal nerve stimulation and gastric electrical stimulation has demonstrated modest results that rarely justify the invasiveness and associated costs. Significant technological improvements will be required before these approaches can be widely recommended. Several devices have been discontinued due to insufficient efficacy, highlighting the challenges of targeting complex neurohormonal pathways in obesity.

Digital health tools have become integral to modern obesity management, although not always in anticipated ways. Different patient populations respond to distinctly different technologies. Younger patients typically engage well with gamified apps and social competition features, while older patients often prefer simplified tracking tools with practitioner oversight. Personalization of technology to individual preferences and needs has been identified as a key factor in achieving success. However, high discontinuation rates and technology access disparities remain significant challenges requiring attention to ensure equitable implementation.

Bariatric surgery techniques have undergone substantial evolution, with a trend toward increasingly less invasive approaches. The introduction of endoscopic procedures has addressed an important gap for patients with moderate obesity who previously had limited effective options. Traditional bariatric surgery remains the most effective intervention for severe obesity. Current evidence strongly supports bariatric surgery as the gold standard for patients with a BMI ≥40 or ≥35 with comorbidities, with modern techniques achieving excellent safety profiles and durable outcomes.

Three major challenges persist in the field: First, standardized protocols for patient selection across these technologies are lacking, with heavy reliance on clinical judgment and empirical methods requiring the development of evidence-based selection criteria. Second, long-term outcomes data beyond 2-3 years are limited for many innovations, creating uncertainty about the durability of results and true cost-effectiveness. Third, comprehensive cost-effectiveness analyses are lacking for most technologies, limiting evidence-based resource allocation and policy decisions.

Despite these challenges, cautious optimism is warranted regarding the evolving technological landscape for obesity management. The future likely lies not in discovering a single perfect technology but in developing increasingly sophisticated methods for matching specific intervention combinations to individual patient characteristics. A precision medicine approach involving personalized technology-enhanced treatment plans rather than standardized protocols may better serve the complex needs of patients with obesity. However, this will require substantial investment in research infrastructure, development of predictive algorithms, and healthcare system adaptations to support individualized care delivery.

Disclosure Statements

- Ethics approval and consent to participate: This article does not contain any studies involving human participants or animals performed by any of the authors.
- Consent for publication: All authors have reviewed and approved the final manuscript and consented to its submission to the Palestinian Medical and Pharmaceutical Journal.
- Availability of data and materials: This article is based on previously published data and literature available in the public domain. No new datasets were generated or analyzed during the current study.
- Author's contribution: Nisrein Jaber conceived the idea, designed the manuscript structure, and supervised the overall work. Mayyas Al-Remawi, Rami Abdel-Rahem, Ahmad Jaber, and Mohammad Albustanji contributed equally to the literature review, data analysis, manuscript writing, and revisions. All authors read and approved the final version of the manuscript.
- Competing interest: The authors declare no conflicts of interest related to this research.
- Funding: ...This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.
- Acknowledgments: The authors would like to acknowledge the Deanship of Scientific Research at Al-Zaytoonah University of Jordan for its support and encouragement throughout this work.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/

References

- Abbitt, D., Choy, K., Kovar, A., Jones, T. S., Wikiel, K. J., & Jones, E. L. (2024). Weight regain after the intragastric balloon for pre-surgical weight loss. World Journal of Gastrointestinal Surgery, 16(7), 2040.
- 2] Salameh, A. K. B., El-Hneiti, M., Al Omari, O. S., AlBashtawy, M., Karavasileiadou, S., Alabbasi, Y., ... & Malak, M. Z. (2024). Effect of a family-based lifestyle intervention on weight reduction among Jordanian children with obesity aged 6-9 years. Food & Nutrition Research, 68.
- 3] Lin, X., & Li, H. (2021). Obesity: Epidemiology, Pathophysiology, and Therapeutics. Frontiers in Endocrinology, 12, 706978. https://doi.org/10.3389/fendo.2021.706978
- 4] Cawley, J., Biener, A., Meyerhoefer, C., Ding, Y., Zvenyach, T., Smolarz, B. G., & Ramasamy, A. (2021). Direct medical costs of obesity in the United States and the most populous states. Journal of Managed Care & Specialty Pharmacy, 27(3), 354-366. https://doi.org/10.18553/jmcp.2021.20410
- 5] Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: a big picture. Pharmacoeconomics, 33(7), 673-689. https://doi.org/10.1007/s40273-014-0243-x
- 6] MacLellan, J., Lordly, D., & Gingras, J. (2016). Maintenance of lost weight and long-term management of obesity. Medical Clinics of North America, 102(1), 183-197. https://doi.org/10.1016/j.mcna.2017.08.012
- 7] Rothman KJ. BMI-related errors in the measurement of obesity. International Journal of Obesity. 2008;32(3).
- 8] Al-Qerem, W., Gassar, E. S., Al-Qirim, R., & Mohamed, N. A. (2018). The effect of obesity on pulmonary function testing among the Jordanian population. Current Respiratory Medicine Reviews, 14(2), 89-94.
- 9] Gazarova M, Galsneiderova M, Meciarova L. Obesity diagnosis and mortality risk based on a body shape index (ABSI) and other indices and anthropometric parameters in university students. Roczniki Państwowego Zakładu Higieny. 2019;70(3).
- 10] Singh, S., Kuftinec, G., Sarkar, S., et al. (2023). Towards visceral fat estimation at population scale: correlation of visceral adipose tissue assessment using three-dimensional cross-sectional imaging with BIA, DXA, and single-slice CT. Frontiers in Endocrinology, 14, 1211696. https://doi.org/10.3389/fendo.2023.1211696
- 11] Ortiz, A. E., & Avram, M. M. (2015). Noninvasive body contouring: cryolipolysis and ultrasound. Seminars in Cutaneous Medicine and Surgery, 34(3), 129-133. https://doi.org/10.12788/j.sder.2015.0149
- 12] Rousseaux I, Robson S. Body contouring and skin tightening using a unique novel multisource radiofrequency energy delivery method. J Clin Aesthet Dermatol. 2017;10(4):24-29.
- 13] Santos F, Pinto P, Silva A, et al. Rotational radiofrequency-based technology leads to adipose tissue reduction and contouring effect in the thighs, abdomen, and flanks. J Cosmet Dermatol. 2024;23(4):1425-1432.
- 14] Fritz K, Bernardy J, Hartmann V, et al. A prospective study analyzing the application of radiofrequency energy and highvoltage, ultrashort pulse duration electrical fields on the quantitative reduction of adipose tissue. J Cosmet Laser Ther. 2016;18(2):81-87.

- 15] Manuskiatti W, Wachirakaphan C, Lektrakul N, Varothai S. Circumference reduction and cellulite treatment with a TriPollar radiofrequency device: a pilot study. J Eur Acad Dermatol Venereol. 2010;24(12):1459-1465.
- 16] Urdiales-Gálvez F, Martín-Sánchez S, Maíz-Jiménez M, Viruel-Ortega E. Body Contouring Using a Combination of Pulsed Ultrasound and Unipolar Radio Frequency: A Prospective Pilot Study. Aesthetic Plastic Surgery. 2022;46(5):2438-2449.
- 17] Krueger N, Mai SV, Luebberding S, Sadick NS. Cryolipolysis for noninvasive body contouring: clinical efficacy and patient satisfaction. Clinical, Cosmetic and Investigational Dermatology. 2014;7:201-205.
- 18] Hwang IC, Kim KK, Lee KR. Cryolipolysis-induced abdominal fat change: split-body trials. PLoS One. 2020;15(12):e0242782.
- 19] Ravindran A, Kumar S, Chen L, et al. Cryolipolysis and associated health outcomes, adverse events, and satisfaction: a systematic review and meta-analysis. Obes Rev. 2024;25(8):e13925.
- 20] Ingargiola MJ, Motakef S, Chung MT, Vasconez HC, Sasaki GH. Cryolipolysis for fat reduction and body contouring: safety and efficacy of current treatment paradigms. Plast Reconstr Surg. 2015;135(6):1581-1590.
- 21] Teitelbaum SA, Burns JL, Kubota J, et al. Noninvasive body contouring by focused ultrasound: safety and efficacy of the Contour I device in a multicenter, controlled, clinical study. Plast Reconstr Surg. 2007;120(3):779-789.
- 22] Gold MH, Coleman WP, Coleman W, Weiss R. A randomized, controlled multicenter study evaluating focused ultrasound treatment for fat reduction in the flanks. J Cosmet Laser Ther. 2019;21(1):44-48.
- 23] Moreno-Moraga J, Valero-Altés T, Riquelme AM, Isarria-Marcosy MI, de la Torre JR. Body contouring by non-invasive transdermal focused ultrasound. Lasers Surg Med. 2007;39(4):315-323.
- 24] Few J, Gold M, Sadick N. Prospective Internally Controlled Blind Reviewed Clinical Evaluation of Cryolipolysis Combined With Multipolar Radiofrequency and Varipulse Technology for Enhanced Subject Results in Circumferential Fat Reduction and Skin Laxity of the Flanks. Journal of Drugs in Dermatology. 2016;15(11):1354-1358
- 25] Hayre N, Jenkin P, Palm M. A Clinical Evaluation of a Next Generation, Non-Invasive, Selective Radiofrequency, Hands-Free, Body-Shaping Device. J Drugs Dermatol. 2016;15(11):1368-1372. PMID: 28095578
- 26] Faruga-Lewicka, W., Staśkiewicz-Bartecka, W., & Kardas, M. (2025). Evaluation of the Efficacy and Safety of Cryolipolysis in Reducing Local Adipose Tissue in Women—A Randomized Pilot Study. Journal of Cosmetic Dermatology, 24(4), e70149.
- 27] Hong, J. Y., Ko, E. J., Choi, S. Y., Kwon, T. R., Kim, J. H., Kim, S. Y., & Kim, B. J. (2020). Efficacy and safety of highintensity focused ultrasound for noninvasive abdominal subcutaneous fat reduction. Dermatologic surgery, 46(2), 213-219.
- 28] Klingler MJ, Kroh M. Endoscopic Balloon Therapy. Surgical Clinics of North America. 2021;101(2):355-371
- 29] Stavrou G, Shrewsbury A, Kotzampassi K. Six intragastric balloons: Which to choose? World Journal of Gastrointestinal Endoscopy. 2021;13(8):238.

- 30] Vinod VC, Younis MU, Mubarik H, Rivas H. A rare case of gastric perforation by a 5-year-old Intra-gastric Balloon in situ: Case report and review of literature. International Journal of Surgery Case Reports. 2020;76:480-483.
- 31] Neylan CJ, Dempsey DT, Tewksbury CM, Williams NN, Dumon KR. Endoscopic treatments of obesity: a comprehensive review. Surgery for Obesity and Related Diseases. 2016;12(5):1108-1115.
- 32] Bennett MC, Badillo R, Sullivan S. Endoscopic management. Gastroenterology Clinics. 2016;45(4):673-688.
- 33] Turkeltaub JA, Edmundowicz SA. Endoscopic bariatric therapies: Intragastric balloons, tissue apposition, and aspiration therapy. Current Treatment Options in Gastroenterology. 2019;17:187-201.
- 34] Hill C, Khashab MA, Kalloo AN, Kumbhari V. Endoluminal weight loss and metabolic therapies: current and future techniques. Annals of the New York Academy of Sciences. 2018;1411(1):36-52.
- 35] Courcoulas, A., Abu Dayyeh, B. K., Eaton, L., Robinson, J., Woodman, G., Fusco, M., ... & Gostout, C. (2017). Intragastric balloon as an adjunct to lifestyle intervention: a randomized controlled trial. International journal of obesity, 41(3), 427-433.
- 36] Ponce, J., Woodman, G., Swain, J., Wilson, E., English, W., Ikramuddin, S., ... & REDUCE Pivotal Trial Investigators. (2015). The REDUCE pivotal trial: a prospective, randomized controlled pivotal trial of a dual intragastric balloon for the treatment of obesity. Surgery for Obesity and Related Diseases, 11(4), 874-881.
- 37] Sullivan, S., Swain, J., Woodman, G., Edmundowicz, S., Hassanein, T., Shayani, V., ... & Pryor, A. (2018). Randomized sham-controlled trial of the 6-month swallowable gas-filled intragastric balloon system for weight loss. Surgery for Obesity and Related Diseases, 14(12), 1876-1889.
- 38] Fittipaldi-Fernandez, R. J., Zotarelli-Filho, I. J., Diestel, C. F., Klein, M. R. S. T., de Santana, M. F., de Lima, J. H. F., ... & Dos Santos, N. T. (2021). Randomized prospective clinical study of Spatz3® adjustable intragastric balloon treatment with a control group: a large-scale Brazilian experiment. Obesity Surgery, 31(2), 787-796.
- 39] Abbitt, D., Choy, K., Kovar, A., Jones, T. S., Wikiel, K. J., & Jones, E. L. (2024). Weight regain after the intragastric balloon for pre-surgical weight loss. World Journal of Gastrointestinal Surgery, 16(7), 2040.
- 40] Tate CM, Geliebter A. Intragastric balloon treatment for obesity: review of recent studies. Adv Ther. 2017;34(8):1859-1875.
- 41] Morton JM, Shah SN, Wolfe BM, et al. Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge study. Obes Surg. 2016;26(5):983-989.
- 42] Morton JM, Shah SN, Wolfe BM, et al. Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge study. Obes Surg. 2016;26(5):983-989.
- 43] Hwang SS, Takata MC, Fujioka K, Fuller W. Update on bariatric surgical procedures and an introduction to the implantable weight loss device: the Maestro Rechargeable System. Med Devices (Auckland). 2016;9:291-299.

- 44] Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun. 2018;9(1):5349.
- 45] Shikora SA, Bergenstal R, Bessler M, Brody F, Foster G, Gastric Electrical Stimulation for the Treatment of Obesity: From Entrainment to Bezoars—A Functional Review +2, Frank A, Gold M, Klein S, Kushner R, Sarwer DB. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5(1):31-37.
- 46] Miller K, Laparoscopic Gastric Pacing. In: Obesity, Bariatric and Metabolic Surgery: A Comprehensive Guide. Springer; 2022:1-8.
- 47] Brickwood KJ, Watson G, O'Brien J, Williams AD. Consumer-based wearable activity trackers increase physical activity participation: systematic review and metaanalysis. JMIR Mhealth Uhealth. 2019;7(4):e11819.
- 48] Ridgers ND, McNarry MA, Mackintosh KA. Feasibility and effectiveness of using wearable activity trackers in youth: a systematic review. JMIR mHealth and uHealth. 2016;4(4).
- 49] Jo A, Coronel BD, Coakes CE, Mainous III AG. Is there a benefit to patients using wearable devices such as Fitbit or health apps on mobiles? A systematic review. The American Journal of Medicine. 2019;132(12):1394-1400.
- 50] Dounavi, K., & Tsoumani, O. (2019). Mobile health applications in weight management: a systematic literature review. American journal of preventive medicine, 56(6), 894-903
- 51]Radcliffe E, Lippincott B, Anderson R, Jones M. A pilot evaluation of mHealth app accessibility for three top-rated weight management apps by people with disabilities. International Journal of Environmental Research and Public Health. 2021;18(7):3669.
- 52] Wharton CM, Johnston CS, Cunningham BK, Sterner D. Dietary self-monitoring, but not dietary quality, improves with use of smartphone app technology in an 8-week weight loss trial. Journal of Nutrition Education and Behavior. 2014;46(5):440-444.
- 53] Design Guidelines of Mobile Apps for Older Adults: Systematic Review and Thematic Analysis. JMIR Mhealth Uhealth. 2023;11:e43154
- 54] Kaufman-Shriqui V, Sherf-Dagan S, Boaz M, Birk R. Virtual nutrition consultation: what can we learn from the COVID-19 pandemic? Public Health Nutrition. 2021;24(5):1166-1173.
- 55] Kahan S, Look M, Fitch A. The benefit of telemedicine in obesity care. Obesity. 2022;30(3):577-586.
- 56] Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 2014;149(3):275-287.
- 57] Han Y, Jia Y, Wang H, Cao L, Zhao Y. Comparative analysis of weight loss and resolution of comorbidities between laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass: a systematic review and meta-analysis based on 18 studies. International Journal of Surgery. 2020;76:101-110.
- 58] O'Brien PE, Hindle A, Brennan L, Skinner S, Burton P, Smith A, et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures. Obes Surg. 2019;29(1):3-14.
- 59] Abu Dayyeh BK, Acosta A, Camilleri M, et al. Endoscopic sleeve gastroplasty alters gastric physiology and induces

- loss of body weight in obese individuals. Clin Gastroenterol Hepatol. 2017;15(1):37-43.
- 60] Thompson CC, Chand B, Chen YK, et al. Endoscopic suturing for transoral outlet reduction increases weight loss after Roux-en-Y gastric bypass surgery. Gastroenterology. 2013;145(1):129-137.