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Abstract 

The problem of a polaronic donor in a strictly two-dimensional quantum well is 
studied using the variational approach. The approach covers the overall range of the 
electron-phonon coupling and the Coulomb binding strengths. The energy, the number 
of phonons around the electron, and the size of the polaron are calculated for the 
ground, and for the first two excited states. It is observed that the polaronic effects 
become more pronounced for strong Coulomb fields. The size of the polaron is found 
to be mainly dependent on the polaronic field, as the Coulomb field becomes weak. 

 

  ملخص
وجد أن الطريقة صالحة لكـل قـيم   . تم دراسة المانح البولاروني ثنائي الأبعاد ،قة التغييريستخدام طراب
اقة وعدد الفونونات حول الإلكترون في هذا البحث تم حساب الط. رتباط البولاروني و شدة مجال كولوملاثابت ا

لقد لوحظ أن التأثير البولاروني يزداد . وحجم البولارون للمستوى الأرضي والمستويين المثاريين الأول والثاني
ما كان عتماد حجم البولارون على التأثير البولاروني يكون أكبر كلامع زيادة شدة مجال كولوم، كما لوحظ أن 

  .مجال كولوم أضعف
 
I. Introduction 

Due to the development of modern fabrication techniques, like 
molecular beam epitaxy and metal organic chemical-vapour deposition, 
it has become possible to grow low dimensional superstructures opening 
a large area of research on two-, one-, and even zero-dimensional 
polaron(1-4). Particular emphasis has been devoted to the understanding 
of centers consisting of an electron bound to a charged impurity or a  
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vacancy in a polar semiconductor or an ionic crystal. For example, the 
spectra of shallow impurities in polar semiconductors (III-V, II-VI 
compounds) are influenced by the polaronic effect. The bound polaron is 
also of some interest to the exciton problem as a limiting case where one 
of the masses tends to infinity. 

Bastard (5) was the first to study the problem for infinite potential 
barriers. Studies along the same line(6-13) revealed that the Coulomb 
interaction enhances the polaronic effects significantly. Furthermore, 
these effects grow at a much faster rate with reducing the dimensionality. 
The effect of the magnetic field on the ground state level has been 
investigated in a previous work (12). It was shown that the influence of 
the magnetic field on the polaronic effect becomes more pronounced for 
large phonon coupling and strong Coulomb potentials. 

In a recently published paper (14), we have studied the energy of the 
ground state, and the first two excited states, over the entire range of the 
coupling constant using a variational approach first used by Devreese et 
al (9). In this report our aim is to make the study more comprehensive by 
studying, in addition to the energy, the number of phonons around the 
electron, and the size of the polaron in the ground state and the first two 
excited states. 
 
II. Theory 

Scaling energy by LO  and length by LOm2 , the Hamiltonian 

describing a donor electron confined in a strictly two-dimensional plane 
and interacting with the bulk optical phonon via the Fröhlich 
Hamiltonian can be expressed as 

   

Q

i
QQ

Q
QQe hceaaaHH q†           (1) 




 22
yxe ppH                 (2) 
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where †
Qa  and Qa are, respectively,  the creation and annihilation 

operators of a phonon of wavevector  zqqQ ,  and frequency LO , 

and 14  QVQ   is the amplitude of the electron-phonon 

interaction, V is the volume and  is the coupling constant. The 

dimensionless parameter   LOo me  32 2   stands for the strength 

of the Coulomb potential. 

The variational theory we follow is based on utilizing a suitable 
modified adiabatic polaron state of the form (9) 

ph
S

e e                    (3) 

where 

  
Q

QQQQ aaSS †                 (4) 

is a unitary displacement operator to set up the optimal lattice 
deformation around the mean charge density of the electron, and  

e
i

eQ eS   q                 (5) 

In the above, e  is the electronic part of the wavefunction, and 

 0








  

Q
qQQQph agn                      (6) 

is the phonon part, Qg  is a variational parameter to interrelate the weak 

and the strong coupling counterparts of the problem, n is for 
normalization, and 

 Q
i

Q Se  q                  (7) 

The ket 0  in Eq. (6) denotes the vacuum of the phonon. 

Optimizing  H  with respect to Qg  subject to the constraint 

that  is normalized, we obtain for the energy 
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 po eeE                   (8) 

Here  is a Lagrange multiplier, which implicitly depends on  and 
 through the transcendental equation 

  ngS QQ
Q

Q
22 1            (9) 

where  

   QqQpo

QQ

hfSee

S

n

g






2

2

112

1


          (10) 

in which 

eeeo He                 (11) 


Q

QQp Se 22                 (12) 

eQeQeQ Hf                 (13) 

  eQ
qiqi

QeQ
Q

QQ eeSh  



  2          (14) 

The average number of phonons around the electron is calculated by 
finding the expectation value of the phonon part of the Hamiltonian (the 
second term of Eq. 1), that is, 

  

Q
QQaaN               (15) 

The size of the polaron is the expectation value of the operator , in 
other words 

 R                 (16) 

For the electronic part of the wavefunction we choose the 
hydrogenic approximation and thus use for the ground state and the first 
two excited states the hydrogenic 1s, 2s, and 2p wavefunctions: 

 2
1 8  es                (17) 
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32
2

2 3

4
278  









 es            (18) 

322
2 8116   eei

p             (19) 

with  is another variational parameter. Performing the required 
analytical calculations, Eq. (5), and Eqs. (11-14) become, for the ground 
state (1s), 

 44 2 oe             (20.a) 

 43pe             (21.a) 

3
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2

1
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QoQ

Sq
Seqf          (23.a) 

    qdmE
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SSeh Q
QQpQ  
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
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
      (24.a) 

where  222

16
1

21 qq  
 , and E(m) is the complete elliptic 

integral of the second kind with parameter    2qqm . 

For the first excited state (2s), we obtain for the above equations 


9
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9

4 2 oe            (20.b) 
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where  24
31  q ,   22

16
9

21 qqa 


, qqb  28
9


and K(r) is the 

complete elliptic integral of the first kind with parameter 

)(2sin 2 babr  . 

For the second excited state (2p), the corresponding equations are 
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III. Results and Discussion 

First, let us test the validity of our formulation by considering some 
special limiting cases. For the weak-coupling limit ( 1,  ) 0QS , 

and this leads to 2qef oQ  , and pQ eh 2 . To first order in , 

energies are approximated as 

 2
1

8
32

1 sE               (25) 
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 2
12

9
1

2 052.0 sE             (26) 

 2
12

9
1

2 060.0 pE             (27) 

Comparing these results with those obtained in reference (13) (using 
the LLP-H method) we see that the present formalism yields lower 
energies for the values of , and  under consideration.. For the average 
number of phonons and the size of the polaron, we obtain 

 4
1

1 375.0 sN                (28) 

 4
1

2 052.0 sN               (29) 

 4
1

2 060.0 pN               (30) 




1875.0
1

1 sR                (31) 




630.1
7

2 sR                (32) 




615.1
6

2 pR                (33) 

As is obvious from these equations, in the limit (  0,    0), the 
average number of phonons mainly depends on , while the polaron size 
is governed mainly by  and that agrees with what is found by (13).   

In the strong coupling limit ( 1 ), 1QS , and 0 , we get 
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





   116.0

2
104.02sN             (38) 







   135.0

2
120.02 pN             (39) 

  1

16
3

1
 sR                 (40) 

  1
2 058.07  sR               (41) 

  1
2 269.06  pR               (42) 

These results are identical to those obtained by (13) as they should be. 

For all values of the coupling parameters the calculation has to be 
performed numerically. In Figure 1. we display the ground state energy 
as a function of  for =1 and =10.  It is clearly evident that the effect 
of the polaronic interaction on the binding energy becomes more 
pronounced as  is increased. To show this feature in more details, we 
plot, in Figure 2., the average number of phonons around the electron in 
the ground state as a function of  for the same values of . Here, again, 
we conclude that the polaronic effects are greatly enhanced in the strong 
coupling fields. The reason for this lies in that with increasing  the 
binding energy becomes larger making the localization of the electron 
more pronounced and this, in turn, increases the importance of the 
polaronic correction.  

Figure 3. gives a description of the polaron size in the ground state 
as a function of again, for =1 and =10. We note that the -
dependence on the size becomes more prominent as  gets smaller. This 
result shows that, what is claimed by (13) that in the extended-state limit 
( and  is very small) the size is governed by  only, is only valid for 
very small values of the coupling constants. 

In figure 4. We plot the energies of the two excited states as a 
function of  for , and . From the graph we conclude that the 
polaronic coupling lifts the degeneracy of the two states and once again 
the Coulomb strength plays the role of enhancing the polaronic effect. 
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Taking , we see that the degeneracy is lifted at  1.5, while it is 
lifted at 0.5 when . The small difference between the solid and 
the dashed curves in the figure is a measure of the induced Lamb shift. In 
Figures 5 and 6. We display, respectively, the -dependence of the 
average number of phonons and the size of the polaron for the excited 
states. For a given value of , the bound polaron cloud appears to 
contain a smaller number of phonons when =1 than when =10. For 
the excited states, the polaron size exhibits qualitatively the same 
behavior as the ground state. For =10, we again note that the size does 
not change appreciably over a wide range of .   
 
IV. Conclusion 

In this paper we have reformulated the problem of the 2D bound 
polaron using the variational approach of Devreese et al (9).  We have 
calculated the energy of the first 3-levels for a large range of the 
coupling constant. Lower values for the energies are obtained compared 
with that obtained in (13) using the LLP-H approximation. The 
degeneracy of the two excited states is found to be lifted at lower values 
of  as  decreases. 

The number of phonons around the electron and the size of the 
polaron in the three states are also calculated. It is observed that the 
polaronic effect becomes more important as the Coulomb field increases. 
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Figure (1): The ground state energy (in ħLO) as a function of . for =1 and 
=10. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (2): The average number of phonons around the electron in the ground 
state as a function of  for =1 and =10. 
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Figure (3): The size of the polaron in the ground state as a function of  
for =1 and =10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (4): The excited energies (in ħLO) as a function of  for =1 
and =10. The dashed and the solid curves correspond to the 2s and 2p 
states, respectively.  
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