
An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Run-Time Elimination of Dead-Rules in Forward-
Chaining Rule-Based Programs

eskAi 	 4•-: "1 ,S‘U ;LIU

Wael Mustafa
	 J-J

Computer Science Department, An-Najah N. Univ., Nablus, Palestine.

Received: (2918/1998). Accepted: (4/7/1999)1

Abstract

This paper presents an optimization method to improve execution time of forward-
chaining rule based programs. The improvement is achieved by deleting rules that finish
firing during run-time. The conditions of the deleted rules are not matched against working
memory in later execution cycles and hence. the execution time is reduced. Information
obtained from control and data-flow analyses is utilized to determine when rules finish
firing during nm-time. Since rules are deleted during run-time only after they finish firing.
the optimization does not change the semantics of the source program. The optimization
Ticihod can be n final step to other optimization methods. The results of applying the
optimi/.ation to three CLIPS rule-based programs are presented. These results show
-;i'gralicant improvement when the source program contains rules that require significant
"witching time tind finish -cm:anion early during run-time.

L,L1 	 .4L • 1.4 	 jin 4.9 	 Lt

j.::9,4

(-7 l■ DC:
• ,,Lla .)

4iLKi 	 4445 9 j9 .,1 .La

j41

Introduction

Human expertise in various domains has been successfully written in
'-based tan cages_ This is due to the similarity between the rule construct
the manner in which humans naturally express their expertise. However,

38 "Run-Time Elimination of Dead-Rules in

rule-based programs execution involves matching rules conditions
repeatedly against a dynamic set of facts that represent the state of the
problem being solved. This often results in excessive computational time.

Several works have been done to improve the execution time of
forward-chaining rule-based programs. The RETE algorithm (~orgy. 1982)
reduces the time needed to match rules conditions by utilizing previous
matching results and matching only the changed facts after each rule
execution. Other efficient matching algorithms have also been developed
(Miranker, 1987; Ishida, 1994; Kimura et al, 1995; Lee et al, 1997). The
work of (Lopez et al, 1998) includes techniques to improve performance by
restructuring program rules.

Existing methods for detection and deletion of dead, or nonreachable,
rules in rule-based programs handle only rules that do not fire at all or apply
only to monotonic backward-chaining languages (e.g., Prolog) (Stachow itz
et al, 1987; Bellman et al, 1988; Chander et al, 1997; Murrell et al, 1997;
Zlatareva, 1997; Levy et al, 1998). This paper presents an optimization to
dynamically remove rules that become dead during run-time in forward-
chaining rule-based programs. The source program is transformed into a
semantically equivalent program that contains code to delete rules during
run-time just after they finish firing. Conditions of deleted rules are not
matched during the rest of execution. This reduces the matching time for the
program. The optimization maintains the semantics of the original program
since only rules that finish firing are deleted during run-time.

The optimization process is illustrated in Figure 1. First, Control-Flow
Analysis (CFA) is applied to the source program. CFA produces a Control-
Flow Graph (CFG) that describes all possible execution paths between
program rules. Data-flow analysis is then applied to the CFG producing
live-rule information that is used to determine when rules finish firing
during run-time. The optimizer uses both the CFG and live-rule information
to produce an optimized program that contains code to remove rules after
they finish firing during run-time.

The rest of the paper is organized in the following manner. Section two
briefly reviews rule-based languages and data-flow analysis. Section three

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Wael Mustafa 	 39

Rule-Rased Program

Control-Flow Analysis

Control-Flow Graph

Data-Flow Analysis

Live-Rule Information

	0.1 Program Optimization

•
Optimized Program

Figure 1. Diagram of the optimization process

shows how to use data-flow analysis to determine when rules finish firing.
Section four presents the optimization algorithm. Section five presents the
results of optimizing three example programs. Section six presents the
conclusion.

2. Background

Forward-chaining rule-based languages are a family of programming
languages that are mainly used for implementing expert systems. CLIPS
(COSMIC, 1989) is an example of such a language that has been used for
real-world projects in various areas ranging from government to business
and industry.

•

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56 	

40 "Run-Time Elimination of Dead-Rules in

A forward-chaining rule-based program consists of three components:
Working Memory (WM), a set of rules, and an interpreter. The WM
contains the dynamic knowledge state of the problem being solved. A rule is
a condition-action pair. A condition is a list of patterns that test the contents
of WM. An action is a list of operations that mainly modify the WM. The
interpreter executes rules whose conditions are satisfied by the current WM.
The operation of the interpreter is usually known as the recognize-act cycle,
which consists of three phases: Find all rules with satisfied conditions,
choose one of these rules, and then execute, or fire, the chosen rule.

Exchange loops on itself swapping any two
consecutive elements if they are not ordered.

(defrule exchange
11<-(element (val '?v1) (index ?il))
?f2<-(element (val ?v2) (index ?i2))
(test (— ?i2 (+ '?il 1)))
(test (> ?v1 ?v2))
=>
(modify ?fl (val ?v2))
(modify ?f2 (val ?v 1)))

Switch tires only once. It sets the array index to
ll and it adds a fact to enable vile print.

(defrule switch
(declare (salience -10))

(assert (i 0))
(assert (step print)))

exchange

Print loops over itself printing and
deleting the elements of the array.

(defrule print
(step print)
?fl<-(i '?i)
12<-(element (val ?v)

(index ?i))
=>
(printout t ?v crlf)
(retract 11)
(assert (i (+ ?i 1)))
(retract 12))

print

Figure 2. Code and control-flow graph for program to sort an array in
ascending order

An example of a forward-chaining rule-based program is shown in
Figure 2. This program sorts an array in an ascending order. The program
executes as follows. First, rule exchange loops over itself swapping

An-Najah Univ. J. Res , Vol 13 (1999) 37- 56

Wael Mustafa 41

unordered, adjacent elements until the array becomes sorted. When the array
becomes sorted ; rule switch fires setting the array index to 0 and adding a
fact to satisfy the condition of rule print. Print then loops over itself
printing and removing the elements of the array. The salience declaration in
rule switch specifies rule priority. The rule with the highest salience value is
always chosen for execution when there are multiple rules with satisfied
conditions. A rule that does not include a salience declaration is given the
default salience 0.

Control-Flow Analysis (CFA) of forward-chaining rule-based programs
is a process that extracts control-flow from a source program. CFA produces
a directed graph that describes the control-flow between program rules. This
directed graph is called a Control-Flow Graph (CFG) (Omer, 1993) or a
Restricted Flow Graph (O'neal, 1993). We use the former name in this
paper. A CFG consists of a set of nodes and a set of labeled edges. Nodes
represent abstracted WM states and labeled edges represent valid transitions
between abstracted WM states. An edge is a list of three things: an
originating state, a rule name, and a destination state.

As an example, Figure 2 shows a CFG for the program that sorts an
array. This CFG indicates that exchange fires zero or more times leaving
the current WM state so unchanged. Switch then fires exactly once changing
the current WM state to s 1 . At Si, rule print executes zero or more times.

Data-Flow Analysis (DFA) produces useful information about
procedural programs. DFA works by propagating information through a
control-flow graph of a procedural program. Such a graph consists of a set
of nodes that represent statements and a set of edges that describe control-
flow between statements. A data flow problem is to find information about
a certain program entity at each node in the control-flow graph. Virtually all
data-flow problems can be modeled and solved in a uniform way using the
concept of Monotone Data-flow System. A Monotone Data-flow System
(MDS) is a tuple D=(L,A,TRANS,G,F), where:

1. The pair (L, A) is a bounded semilattice with top and bottom elements.
L elements are sets of information items. The meet (A) is a binary

An-Najah Uty: J. Res., Vol. 13 (1999) 37-56

42 	 "Run-Time Elimination of Dead-Rules in 	

operation that describes how to combine information of two execution
paths in the control-flow graph.

2. TRANS is a set of monotonic functions that describe the effect of nodes
in N on data-flow information.

3. G is a control-flow graph of a procedural program with a set of nodes N,
and a set of edges E.

4. F: N4TRANS is a total function.

An MDS can be solved using the General Iterative Algorithm (GIA)
(Kildall, 1973). The GIA is efficient in both time and space. It first
initializes data-flow information at each node to be the top element in the
lattice (L, A). Then, it iteratively propagates data-flow information through
the control-flow graph until the propagation yields no new information at
any node. The direction of information propagation can be bottom-up or
top-down. This depends on the problem being solved. The GIA for bottom-
up data-flow problems is as follows.

Algorithm: The General Iterative Algorithm (GIA) for bottom-up data-
flow problems

Input: An MDS D=(L,A,TRANS,G,F) with G----- (N,E).

Output: INF: N4L, a total function.

Method: INF is computed for each node by successive approximations.

begin

for every node nEN do INF(n):= top:

while changes to any INF(n) occur do

for every nEN do

INF(n)=TRANSn(s is a successor of n INF(s))
end

The GIA always terminates and produces conservative information
(Kam et al, 1975). Conservative information takes into account all possible

An-Najah Univ. J. Res., Vol. 13 (1999) 37 56

Wael Mustafa 	 43

execution paths, and can be safely used to perform optimizing
transformations on the source program. A more detailed discussion of data-
flow analysis of procedural programs can be found in (Aho et al, 1988 .).

3. Live-Rule Analysis

The information to determine when rules finish firing during run-,
obtained by applying data-flow analysis to the CFG of the forward-chaff
rule-based program. In this section, we first show how to define the
of obtaining such information as a bottom-up data-flow problem, !tell ,,ye
apply the GIA to this problem.

Given a forward-chaining rule-based program CFG, G, v. - ith a se
states S and a set of edges E, we define rule r as live at state s a S if there s
an edge ec E labeled r leaving state s or leaving any of s successors. We also
define rule r as dead at state s if r is not live at For example, in the Ci'G
of Figure 2, rule exchange is live at state so and dead at 	 The live-Hde
problem is to find the set of live rules at each state s= S.

The live-rule problem is a bottom-up data-flow problem that can be
modeled as an MDS. L is the set of all subsets of program rules. The meet
operation is union since a rule is live at a state if it is live at any of its
successors. The bottom element in the semilattice is the set that
contains all program rules and the top element is the empty set. TRANS,.
defines the set of live rules at state s as follows. Let X be the set of live rules
at all successors of s. TRANS,(X), the set of live rules at state s. is X union
the set of rules that can fire at state s. Applying the GIA to the live-rule
problem results in the following algorithm.

Algorithm: The GIA Applied to the live-rule problem

Input: G=(S,E), a CFG of a forward-chaining rule-based program.

Output: live(s), for each state se S.

Method:

begin

for every state sE S do INF(s .)

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56 	

44 	 'Run-Time Elimination of Dead-Rules in 	

while changes to any INF(s) occur do

for every state sc=S do

INF(s)' = [UfNT(i)	 it jr can fire at sj:
IS a SUf:es SO'. OI S

for every state soS do live(s):=1NI:(9,

end

As an example, applying the algorithm above to the CFG in Figure 2
yields the following. The set of live rules at so is {, exchange, print, switch}
and the set of live rules at se is {print },

4. Run-time Deletion of Dead Rules

This section presents an algorithm to obtain a forward-chaining rule-
based program in which rules are removed when they finish firing during
run-time. The algorithm utilizes both CFG of the program and live-rule
information to determine \,,,hen rules finish firing during run-time.

A CFG contains all possible W\l states that can be reached during run-
time. At any particular time during execution the program is at one of the
CFG states. A rule firing might or might not change the CFG state. in the
optimized program, each time a rule firing changes the current CFG state,
the rules that become dead at the new state are removed. This is
accomplished by adding operations to every rule that changes the current
state in the CFG to remove the rules that become dead at the new state. For
example, the rule switch in the CFG of Figure 2 changes the current state
from s 9 to sl. Switch is modified in the optimized program to remove the
rules that become dead at s l which are exchange and switch.

Only rules that change the current state in the CFG are modified in the
optimized program. The rest of rules stay the same. Rules that change more
than one state in the CFG cannot be modified directly to delete different
dead rules in different firings. However, Based on the author's personal
study to a large number of CFGs, mules that change the current state in the
CFG are often control rules whose purpose is to force execution to proceed

An-Najah Univ. J. Res., Vol. 13 (1999) J7-56

Wael Mustafa _ 	 45

in stages. At each stage only rules related to that stage are able to fire.
Stages correspond to CFG states. In the WM, the current stage is
represented by a certain fact. A control rule that changes the current state

from si to s; modifies the WM to contain a fact representing the new stage s,
instead of the fact representing se A separate control rule is needed to
change the current stage from s) to si since this rule needs to test for the fact
representing state s i and to replace it with the fact representing state This
rule will fire only when execution moves from s, to .sj and will not occur
elsewhere in the CFG.

The optimizing algorithm presented below does not handle rules that
change more than one CFG state. The algorithm consists of two steps. First,
the set of rules that become dead at each state in the CFG is found using

infortnation. Then, rules that change the current state in the CFG
are transformed to remove rules that become dead at the new state. the
transformation maintains the semantics of the source program since rules
are deleted only after they finish firing.

Algorithm: Program Transformation to Delete Dead-Rules During
Run-Time

Input: A forward-chaining rule-based program P, control-flow graph
G=(S,E), of P, and for each state .s . E S the set of rules live at state s,
live(.). There is no rule in P that changes more than one state in S.

Output: A rule-based program in which the rules that become dead at a state
sg, S are removed during run-time when execution reaches .s.

Method:

begin

for each state /ES, find

D(u): = [live (I)]-live(ry) :
r is ;t predecessor of

for each rule rEP that changes a state ic S to another state tr y S do

for each rule qcD[u]do

Add an operation to rule r that deletes q.

An-Najah Univ. J. Res.. Vol 13 (1999) 37-56 	

end

46 	 "Run-Time Elimination of Dead-Rules in 	

5. Examples

The execution time improvement obtained from the optimization
depends mainly on the matching time of the deleted rules. Significant
timesaving results from deleting rules with conditions that require excessive
matching time. In addition, deleting a rule early during execution is more
timesaving since the condition of the deleted rule will not be matched
against WTI in more execution cycles.

The results of applying the optimization to three example CLIPS
programs are presented below. The running times were obtained using the
CLIPS command (watch statistics) on a 486 PC. Similar trend in execution
time improvement was obtained on other machines. The deletion ofrules
during run-time was implemented in CLIPS using the undeliwle action. This
action deletes the specified rule and also removes related conditions from
the RETE matching network.

Array Sorting
This program and its CFG were introduced above. The CLIPS code and

the CFG are shown in Figure 2. The optimization does not reduce the time
needed to sort the array because all rules are still live while the rule
exchange fires (see Figure 2). However, the rules exchange and switch
become dead at state sl. The two rules are removed by the action of
exchange in the optimized program, which is shown in Figure 3. This
reduces the time needed to print the sorted array. The timesaving for this
program depends on the number of firings of print, which is equal to the
number of elements in the array.

Exchange loops on itself swapping any two 	 ; Print loops over itself printing and
consecutive elements if they are not ordered.	 ; deleting the elements of the array.

(defrule exchange	 (defrule print
?fl <-(element (val ?v1) (index ?il))	 (step print)
?f2<-(element (val ?v2) (index ?i2))	 ?fl <-(i ?i)
(test (= ?i2 (+ ?il 1)))	 ?f2<-(element (vat ?v)
(test (> ?vl ?v2))	 (index ?i))

Figure 3. Optimized sort program

An-Najah Univ. J. Res , Vol. 13 (1999) 37 56

250 —

200 7

71-

cig 150 7

0
100 -

v
u,

50

Wee! Mustafa 	 47

(modify ?fl (val ?v2))
(modify ?t2 (val ?vl)))

Switch fires only once. It sets the array index to
0 and it adds a fact to enable rule print.

(defrule switch
(declare (salience -10))

(assert (dead-rule exchange))
(assert (dead-rule switch))
(assert (i 0))
(assert (step print)))

(printout t ?v ult.)
(retract ?fl
(assert (i (+ ?i 1)))
(retract ?12))

Remove rules that become dead during
execution.

(defrule remove-dead-rules
(declare (salience 10))
?f<-(dead-rule ?rule-name)
=>
(undefrule ?rule-name)
(retract ?t))

Figure 3. Contd.

Since the improvement in execution time results only from faster
execution of print, it is sufficient to consider already sorted arrays. The
results of executing the source and optimized programs on already sorted lists
are shown in Figure 4. On the average the execution time is reduced by 6%.

—0—Before optimization —CI— After optimization

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Array size

Figure 4. Execution time in seconds for the program of Fig 2 before
and after optimization

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56 	

48 	 "Run-Time Elimination of Dead-Rules in 	

Set Operation
This program and its CFG are shown in Figure 5. The program

computes the set operation a=anbnc. The program executes as follows.
First, rule find loops over itself finding the elements of the three sets
intersection. When all intersection elements are found, switchl fires adding
the fact (step delete). This fact makes the condition of rule remove satisfied.
Remove then loops over itself deleting elements of set a. When all a
elements are deleted, switch2 fires adding the fact (step put) to WM. This
fact makes the condition of rule put satisfied. Put then loops over itself
copying all intersection elements to set a.

Find determines all elements in the intersection. 	 ; Swith2 tires only when all of set a
(defnile find	 ; elements are removed It adds a fact to

(a ?x)	 ; enable rule put.
(h ?x)	 (defrule switch2
(c ?x)	 (declare (salience -10))
->	 ?f<-(step delete)
(assert (abc ?x))) 	 =>

(retract ?f)
S %Nitchl tires only when all elements in the 	 (assert (step add)))
intersection are found. It adds a fact to enable
rule remove.	 Put adds all intersection elements to set (/

(defrule put
(defrule switchl	 (step add)

(declare (salience -10)) 	 (abc ?x.)
=>

(assert (step delete))) 	 (assert (a ?\)))

Remove deletes all elements boil set a
remove

(step delete)
?x)

=>
(retract 00)

Find rentoI c put

Figure 5. Code and control-flow graph for program to compute the set
operation a=anbnc.

An-Najah Univ J. Res , Vol. 13 (1999) 37-56

Wae1 Mustafa 	 49

In this program the rules find and switchl become dead at s1 (see CFG
in Figure 5). The rules remove and switch2 become dead at .52 . Deleting the
dead rules at .51 and s2 in the optimized program (Figure 6) reduces the time
needed to execute the rules remove and put. The total timesaving depends
on the number of firings of these two rules, which depends on the sizes of
the three sets and the size of their intersection. More timesaving are
obtained for larger sets and larger intersection size. Figure 7 shows the
execution time for cases in which the three sets have the same size and their
intersection size is half of the sets size. On the average the execution time
was reduced by about 86%. This significant improvement is due to the fact
that rule find which requires significant matching time is deleted early
during execution of the optimized program.

Find determines all elements in the intersection.	 Swith2 fires only when all of set a
(defrule find
	

elements are removed. It adds a fact to
(a ?x)
	

enable rule put.
(b ?x)
	

(defrule switch2
(c ?x)
	

(declare (salience -10))
?f<-(step delete)

(assert (abc ?x)))
(assert (dead-rule remove))

Switch I fires only when all elements in the
	

(assert (dead-rule switch2))
intersection are found. It adds a tact to enable 	 (retract ?t)
rule remove.	 (assert (step add)))

(defrule switch I
(declare (salience -10))
=>.
(assert (dead-rule find))
(assert (dead-rule switch 1)}
(assert (step delete)))

t Remove deletes all elements from set a.
(defrule remove

(step delete)
?f<-(a ?x)

(retract ?t))

Pin adds all intersection elements to set a.
(defrule put

(step add)
(abc 'x)
=>
(assert (a ?x)))

Remove rules that become dead during
execution.

(deli-tile remove-dead-rules
(declare (salience 1(l))
?f<-(dead-pule ?rule-name)
=>
(undefrule ?rule-name)
(retract ?f))

Figure 6. Optimized program to compute the set operation asarmb,mc.

An-W.0h Univ. J. Res., Vol. 13 (1999) 37 - 56

50 	 "Run-Time Elimination of Dead-Rules in 	

1 -0-- Before optimization --,0--After optimization]

700

600

5°°
c 400
0

300

w 200

100

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sets size

Figure 7. Execution time in seconds or the program of Fig. 5 before
and after optimization. The sizes of the sets a, b, and c are equal to sets
size. The size o the three sets intersection is half of sets size

Linked List Processing

This program and its CFG are shown in Figure 8. The program counts
the number of elements in a linked list that are less than the average of all
elements in the list.

; Initialize sum and count to 0 and set the current node 	 Increase fires when the value in the current
: to the first node. 	 node is below average. It adds I to helovi-count
(defrule initialize	 and advances: the current node to the next node.

(first-node ?n)	 (defrule increase
(not (current-node ?))	 (current-node ?n& -M11)

(node (num ?n) (cal 'iv) (next ?x))
(assert (count 0))	 (avg ?avg)
(assert (sum 0))	 (test (< ?v ?avg))
(assert (current-node ?n)))	 7t2,-(h010w-count 'c)

Figure 8. Code and control-flow graph for program to count the number of
values less than the average of all values in a linked list

An-Najah Univ. J. Res., Vol_ 13 (1999) 37-56

Wae! Mustafa 51

Sum-and-count loops over itself commis° an

suriann ,, all node values

(derrule sum-and-count
sum .'s)

-(count ?c)

''1.3---(ctuTent-node	 sni!i)
'node (nuns ?n) (val ?v) (next ?ssy;

(not (avg. '7)

etra et ?Si)
rasse(' (suns	 ?v)))

(r etra)
(asset ., (count	 1)))

0 - etra	 :'f _3
sassert (current-node ?x)))

. Compsde lines \Own the end of the list is reached. It
..ailculatcs the averarse. resets the cuircnt node to the
lust node and : initializes helosv-suet to O.

coinpute
',sum 's)
(count As)
Pf:-f.current-node 11111)
first-node ?n)
not	 vg '.'))

(retracs
.-iss,ert (current-node '?II))
assert si - :los\ -count 0))

(a ,.sert (avg (: ?s Pa))))

Figure 8. Contd.

(retract)
(assert (current-node -fx))
(retract '12)
(assert (below-count (- 'c I))))

-lust-advance tires when the value in the LUITI1I

node is not belos,\ averap,e_ Its tirinc; changes the
current: node to the next node.

(detrale just.advance
'f • -(current-node
(node (nuns Pp.) (sal -?%) (next ?x))
(avg ?avg)
(test	 ?avg.))

(retract
(aE“sert (current-node ?x)1)

Sri) intializo co

sum-arid-count

The program executes as follows. First, rule initialize fires setting the
current-node to the first node in the linked list and initializing coin/ and
sum to zero. Rule sum-and-count then loops over itself counting and
summing all the values in the list. When the end of the list is reached, rule
compute fires calculating the average, resetting current-node to the first
node, and setting the below average count, below-count, to 0. The program
then passes through the list again firing either increase or just-advance at
each node. Rule increase fires when the value of current-node is below
average. Its firing increases below-count value by 1 and changes the current
node to the next node. Rule just-advance fires when current-node value is
greater than or equal to the average. Its firing changes current-node to the
next node.

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56 	

52 	 "Run-Time Elimination of Dead-Rules in 	

Rule initialize in this program becomes dead at state s i (see CFG in
Figure 8). The rules compute and sum -and-count become dead at state s2.
Hence, the execution of sum -and -count, increase, and just-advance takes
less time in the optimized program, which is shown in Figure 9. The total
timesaving depends on the total number of firings of sum-and -count,
increase and just-advance which depends on the size of the linked list.
Figure 10 shows the execution time of original and optimized programs as
linked list size increases. On the average, the execution time was reduced by
about 16%.
Initialize suns and count to 0 and set the current node

; to the first node.
(defrule initialize

(first-node ?n)
(not (current-node 1))

(assert (dead-rule initialize))
(assert (count 0))
(assert (sum 0))
(assert (current-node 'in)))

Sum-and-count loops over itself counting and
sunnning all node values

(detrule sum-and-count
?fl <-(sum 'is)
?f2' -(count ?c)

((-(current-node ?n&-nill)
(node (num ?n) (val ?v) (next ?x))
(not (avg ?))

(retract ?fl)
(assert (sum (+ ?s '?v)))
(retract 112)
(assert (count (-- ?c I)))
(retract ?f 3)
(assert (current-node ?x)))
Compute fires when the end of the list is reached. It
calculates the average. resets the current node to the
first node and initializes below-count to 0.

(defrule compute
(sum 'is)
(count ?e)

.-(current-node

; Increase fires when the value in the current
; node is below average. It adds Ito below-count
and advances ; the current node to the next node.

(defrule increase
?ft (current-node ?n&-nill)
(node (nuns ?n) (val 'Iv) (next lx))
(avg ?avg)
(test (o ?v ?avg))
?f2<;-(below-count ?c)

(retract ?fl)
(assert (current-nod lx
(retract 1t2)
(assert (below-count ('e 1))))

Just-advance fircs \\tier the value in the trrem
node is not belay, avera'ae Its tirm 	 s the
current node to the neat node.

(defrulesmt-advance
°.I'- -node
(node (num ?n) iv al 	 (m.xt Ixs)
(as g •?.:1\
(test (

(rein; et
(assert (corrent-nr■de
Remove 1.1L:i i1	 crcm eA

: execution..
(defrule remove-clead-rale.i
(declare (II)))
?k-(dead-rule '?ialle-narne)

(undefrdic

Figure 9. Optimized program to count the number of values less than tile
average of all values in a linked list.

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56

25C0

200C

1500 -L

xo 1000

500 -

0

Wael Mustata -

(first-node ?n)
(not (a).i; ?);

Sj

(retract ?t))

(assert (dead-mile stun-and-count))
(assert (dead-rule compute))
(retract ?f)
(assert (current-node ?n))
(assert (below-count 0))
(assert (avg 	 'c))))

Figure 9. contd.

--O—Before optimization —0—After optimization

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Linked list size

Figure 10. Execution time in seconds for the program of Figure 8
before and after optimization.

6. Conclusion

We have presented a program optimization for forward-chaining rule-
based programs. This optimization results in programs in which rules are
dynamically removed when they finish firing. The conditions of the deleted
rules are not matched against WM in later execution cycles. This reduces

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56 	

54 	 "Run-Time Elimination of Dead-Rules in .

the total execution time of the program. The optimization is safe since rules
are deleted only when they finish firing.

Control-flow analysis of forward-chaining rule-based programs and
data-flow analysis is used to determine when rules finish firing during-run
time. First, control-flow analysis is applied to the source program producing
a control-flow graph. This graph describes all possible sequences in which
the rules may fire. The nodes of the graph represent working memory states.
The program is always at one of these states during run-time. Data-flow
analysis is used to determine the set of rules that finish firing at each state in
the control-flow graph.

The optimization was applied to three CLIPS programs and the results
were presented. These results show that there is a significant improvement
in execution time for programs that contain rules that require extensive
matching time and finish firing early during execution. Further work is
needed to test the optimization on larger, more complex rule-based
programs. Work is also needed to explore the results of applying the
optimization to programs written in rule-based languages that do not use the
RETE algorithm.

References

1. Aho, Sethi, and Ullman. "Compilers: Principles, Techniques, and
Tools", Addison-Wesley, Reading, MA, 1988.

2. Bellman, and Walter. Analyzing and correcting knowledge-based
systems requires explicit models. Proceedings of AAAI-88 Workshop on
Validation and Testing of Knowledge-based Systems, Minneapolis,
Minn., (1988).

3. Chander, Shinghal, and Radhakrishnan. Using Goals to Design and
Verify Rule-Bases. Decision Support Systenis, 21, (1988), 281-305.

4. COSMIC. CLIPS Reference Manual, Version 4.3, Artificial Intelligence
Section. Lyndon B. Johnson Space Center, COSMIC, 382 E. Broad St.,
Athens, GA, 30602, (1989).

An-Najah Univ. J. Res., Vol, 13 (1999) 37-56

Waal Mustafa 	 55

5. Forgy. Rete: A Fast Algorithm For The Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19, (1982), 17 -37.

6. Ishida An Optimization Algorithm for Production Systems. IEEE
Transactions On Knowledge And Data Engineering, 6, (1982), 549 - 558.

7. Kam, and Ullman. Monotone Data-Flow Analysis Frameworks.
Technical Report, No. 169, Dept. of Electrical Engineering, Princeton
University, New Jersy, USA, (1975).

Kildall. A Unified Approach to Global Program Optimization. I st
POPL, Boston, MA, (1973), 194-206.

Kimura, Kobayashi, Sumiyoshi, and Takebe. A Condition Matching
Algorithm for High-Cost Rules in Production Systems: Effectiveness
Measurements. Systems and Computers in Japan, 26, (1995), 52 -63.

10. Lee, and Kimcheng. Reducing Match Time Variance in Production
Systems with HAL. Proceedings of the Sixth International Conference
on Information and Knowledge Management, (1997), 309 -316.

11. Levy, and Rousset. Verification of Knowledge Bases Based on
Containment Checking. Artificia/Intelligence, 101, No. 2, (1998), 227-
250.

12. Lopez, and Kamel. Reorganizing Knowledge to Improve Performance.
IEEE Trans. Knowl. Data Eng., 10, No. 1, (1998), 190-201.

13, Miranker. TREAT: A Better Match Algorithm for AI Production
Systems. Proc. Sixth National Conference on Artificial Intelligence
(AAAI), (1987), 42-47.

14. Murrell, and Plant. A Survey of tools for the Validation and Verification
of Knowledge-Based Systems: 1985-1995. Decision Support Systems,
21, (1997), 307-323.

15. Omer. Control Flow Analysis of Rule-Based Programs. Ph.D. Thesis,
University of Houston, Houston, Texas, USA, (1993).

An-Najah Univ. J. Res„ Vol. 13 (1999) 37-56 	

56 "Run-Time Elimination of Dead-Rules in

16. O'neal. Comprehending Rule-based Programs: A Graphical Oriented
Approach. International Journal of Man-Machine Studies, 39, (1993),
147-175.

17. Stachowitz, Combs, and Chang. Validation of knowledge-based
systems. Proceedings of Second AIAANASA:USAF Symposium on
Automation, Robotics and Advanced Computing for the National Space
Program, Arlington, Va, (1987).

18. Zlatareva. Verification of Non-Monotonic Knowledge Bases. Decision
Support Systems, 21, (1997), 253-261.

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

