An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Run-Time Elimination of Dead-Rules in Forward-
Chaining Rule-Based Programs

Aaiial) a0 g8l gal B LALAD £lesl) aay o) B A)

Wael Mustafa
‘:Un.n.aa d.‘ﬂ 9
Computer Science Department, An-Najah N. Univ., Nablus, Palestine.

Received: (29/8/1998). Accepted: (4/7/1999)/

Abstract

This paper presents an optimization method to improve exccution time of forward-
chaining rulc-bascd programs. The improvement is achieved by deleting rules that finish
firing during run-time. The conditions of the deleted rules are not matched against working
memory in later exccution cycles and hence. the execution time is reduced. Information
obtained from conirol and data-flow analyses is utilized to determinc when rules finish
firing during run-time. Since rules are deleted during run-time only after they finish firing.
the optinnzation docs not change the semantics of the source program. The optimization
wethed can be a final step 1o other optimization methods. The results of applving the
(‘“U"‘l”ubu o ibree LIPS rule-based programs are presented. These results show
: ficant improvement when the source program contains rules that require significant
maichwg dime and finish execation carly during run-time.

eea e el tey 2cd B LGaa dy s e Aaiall acl Gl el 85 e s L A9 jha 48 g% ks ang
. T e TN ET LN o L e . = N Lxas 3 N N oana, oo
e e S sl AR Adaiast 5 RN _nj}:_\a &= 435_‘..;4\4! ot 59)\ .L:j PR @JL&A all \;),\ S |99 V]
[PN Y ghaat Sper bt 3 N L GO ERLY I BT T I O 1 _..A a8, 4088 48 oN sda g LECEGLN
P ; : S S8 S P ool o e At A8 5 N

u- z.. BE T PRI UL PRI Js..l —sia 7_.u_y a8 sel ko Al . -’_au)u\ etgh

i. introduction

Human expertise in various domains has been successfully written in

ale-based lunguages. This is due to the similarity between the rule uonstmct
vl the manner in which humans naturally express their expertise. However

38 “Run-Time Elimination of Dead-Rules in

rule-based programs execution involves matching rules conditions
repeatedly against a dynamic set of facts that represent the state of the
problem being solved. This often results in excessive computational time.

Several works have been done to improve the execution time of
forward-chaining rule-based programs. The RETE algorithm (Forgy, 1982)
reduces the time needed to match rules conditions by utilizing previous
matching results and matching only the changed facts after each rule
execution. Other efficient matching algorithms have also been developed
(Miranker, 1987; Ishida, 1994; Kimura et al, 1995; Lee et al, 1997). The
work of (Lopez et al, 1998) includes techniques to improve performance by
restructuring program rules.

Existing methods for detection and deletion of dead, or nonreachable,
rules in rule-based programs handle only rules that do not fire at all or apply
only to monotonic backward-chaining languages (e.g., Prolog) (Stachowitz
et al, 1987; Bellman et al, 1988; Chander et al, 1997; Murrell et al, 1997,
Zlatareva, 1997; Levy et al, 1998). This paper presents an optimization to
dynamically remove rules that become dead during run-time in forward-
chaining rule-based programs. The source program is transformed into a
semantically equivalent program that contains code to delete rules during
run-time just after they finish firing. Conditions of deleted rules are not
matched during the rest of execution. This reduces the matching time for the
program. The optimization maintains the semantics of the original program
since only rules that finish firing are deleted during run-time.

The optimization process is illustrated in Figure 1. First, Control-Flow
Analysis (CFA) is applied to the source program. CFA produces a Control-
Flow Graph (CFG) that describes all possible execution paths between
program rules. Data-flow analysis is then applied to the CFG producing
live-rule information that is used to determine when rules finish tiring
during run-time. The optimizer uses both the CFG and live-rule information
to produce an optimized program that contains code to remove rules atter
they finish firing during run-time.

The rest of the paper is organized in the following manner. Section two
briefly reviews rule-based languages and data-flow analysis. Section three

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Wael Mustafa 39

Rule-Based Program

Control-Flow Analysis i

Control-Flow Graph

Data-Flow Analysis

Live-Rule Information

.

> Program Optimization <

Optimized Program

Figure 1. Diagram of the optimization process

shows how to use data-flow analysis to determine when rules finish firing.
Section four presents the optimization algorithm. Section five presents the
results of optimizing three example programs. Section six presents the
conclusion.

2. Background

Forward-chaining rule-based languages are a family of programming
languages that are mainly used for implementing expert systems. CLIPS
(COSMIC, 1989) is an example of such a language that has been used for
real-world projects in various areas ranging from government to business
and industry.

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56. —

40 “Run-Time Elimination of Dead-Rufes in ”

A forward-chaining rule-based program consists of three components:
Working Memory (WM), a set of rules, and an interpreter. The WM
contains the dynamic knowledge state of the problem being solved. A rule is
a condition-action pair. A condition is a list of patterns that test the contents
of WM. An action is a list of operations that mainly modify the WM. The
interpreter executes rules whose conditions are satisfied by the current WM.
The operation of the interpreter is usually known as the recognize-act cycle,
which consists of three phases: Find all rules with satisfied conditions,
choose one of these rules, and then execute, or fire, the chosen rule.

. Exchange loops on itself swapping any two . Print loops over itselt printing and
. consecutive elements if they are not ordered. ; deleting the elements of the array.
(defrule exchange (defrule primt

?t1<-(element (val ?v1) (index ?11)) (step print)

f2<-(element (val ?v2) (index 712)) H1<~(1 1)

(test (= 712 (+ 11 1)) f2<~(element (val ?v)

(test (> 2v1 7v2)) (index 1))

=> =>

(modify 21 (val 7v2)) (printout t ?v crlf)

(modify 72 (val 7v1))) (retract ?t1)

(assert (1 (+ 71 1))

. Switch fires only once. It sets the array index to (retract ?12))

.0 and it adds a fact to enable rule print.
{detrule swatch
(declare (salience -10))

(assert (1 0))
(assert (step print)))
exchange print

$ &

Figure 2. Code and control-flow graph for program to sort an array in
ascending order

An example of a forward-chaining rule-based program is shown in
Figure 2. This program sorts an array in an ascending order. The program
executes as follows. First, rule exchange loops over itself swapping

An-Najah Univ. J. Res.. Vol 13 (1999) 37-56

Wael Mustafa 41

unordered, adjacent elements until the array becomes sorted. When the array
becomes sorted, rule switch fires setting the array index to 0 and adding a
fact to satisty the condition of rule print. Print then lcops over itseif
printing and removing the elements of the array. The salience declaration in
rule switch specifies rule priority. The rule with the highest salience value is
always chosen for execution when there are multiple rules with satisfied
conditions. A rule that does not include a salience declaration is given the
default salience 0.

Control-Flow Analysis (CFA) of forward-chaining rule-based programs
is a process that extracts control-flow from a source program CFA preduces
a directed graph that describes the control-flow between program rules This
directed graph is called a Control-Flow Graph (CFG) (Omer, 1993)or a
Restricted Flow Graph (O'neal, 1993). We use the former name in this
paper. A CFG consists of a set of nodes and a set of labeled edges Nocdes
represent abstracted WM states and labeled edges represent valid transitions
between abstracted WM states. An edge is a list of three things: an
originating state, a rule name, and a destination state.

As an example, Figure 2 shows a CFG for the program that sorts an
array. This CFG indicates that exchange fires zero or more times leaving
the current WM state s, unchanged. Switch then fires exactly once changing
the current WM state to s;. At s,, rule print executes zero or more times.

Data-Flow Analysis (DFA) produces useful information about
procedural programs. DFA works by propagating information through a
control-flow graph of a procedural program. Such a graph consists of a st
of nodes that represent statements and a set of edges that describe control-
flow between statements. A data-flow problem is to find information about
a certain program entity at each node in the control-flow graph. Virtually all
data-flow problems can be modeled and solved in a uniform way using the
concept of Monotone Data-flow System. A Monortone Data-flow System
(MDS) is a tuple D=(L,A,TRANS.G,F), where:

1. The pair (L, A)isabounded semilattice with top and bottom elements.
L elements are sets of information items. The meer (A) is a binary

An-Najah Univ . Res., Vol. 13 (1999) 37-56

42 “Run-Time Elimination of Dead-Rules in !

operation that describes how to combine information of two execution
paths in the control-flow graph.

2. TRANS is a set of monotonic functions that describe the effect of nodes
in N on data-flow information.

3. G is a control-flow graph of a procedural program with a set of nodes N,
and a set of edges E.

4. F:N->TRANS is a total function.

An MDS can be solved using the General Iterative Algorithm (GIA)
(Kildall, 1973). The GIA is efficient in both time and space. It first
initializes data-flow information at each node to be the top element in the
lattice (L, A). Then, it iteratively propagates data-flow information through
the control-flow graph until the propagation yields no new information at
any node. The direction of information propagation can be bottom-up or
top-down. This depends on the problem being solved. The GIA for bottom-
up data-flow problems is as follows.

Algorithm: The General Iterative Algorithm (GIA) for bottom-up data-
flow problems

Input: An MDS D=(L,A, TRANS,G,F) with G=(N,E).
Output: INF: N=>L, atotal function.
Method: INF is computed for each node by successive approximations.
begin
for every node neN do INF(#n):= 1op;,
while changes to any INF(#2) occur do

for every neN do

INF(U):TRANSH(S is a successor of n INF(S))
end

The GIA always terminates and produces conservative information
(Kam et al, 1975). Conservative information takes into account all possible

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Wael Mustafa 43

execution paths, and can be safely used to perform optimizing
transformations on the source program. A more detailed discussion of data-
flow analysis of procedural programs can be found in (Aho et al, 1988;

3. Live-Rule Analysis

obtained by applying data-flow analysis to the CFG of the forward-chai
rule-based program. In this section, we first show how to define the - e
of obtaining such information as a bottom-up data-flow probiem, then we
apply the GIA to this problem.

Given a forward-chaining rule-based program CIFG, G, with a set o
states S and a set of edges E, we detine rule r as /ive at state s=S if there s
an edge ¢< E labeled r leaving state s or leaving any of s successors. We alsc
define rule r as dead at state s if 7 is not live at s. For example, n the Ci &
of Figure 2, rule exchange is live at state s; and dead at s;. The /ne-rule
problem 1s to find the set of live rules at each state s=S.

sl

The live-rule problem is a bottom-up data-flow problem that can be
modeled as an MDS. L is the set of all subsets of program rules. The meet
operation 1s union since a rule is live at a state ifitislive at any ofits
successors. The bottom element in the semilattice (L.} is the setthat
contains all program rules and the top element is the empty set. TRANS,
defines the set of live rules at state s as follows. Let X be the set of live rules
at all successors of s. TRANS,(X), the set of live rules at state s. is X union
the set of rules that can fire at states. Applying the GIA to the live-rule
problem results in the following algorithm.

Algorithm: The GIA Applied to the live-rule problem
Input: G=(S,E), a CFG of a forward-chaining rule-based program.
Output: live(s), for each state s S.
Method:
begin
for every state seS do INF(s):=®:;

An-Najah Univ. J. Res., Vol. 13 (1998) 37-56

44 ‘Run-Time Elimination of Dead-Rules in"

whiie changes to any INF(s) occur do
for every state s€§ do

INF(s) = [\ _JINF(7)] {r [can fire at s}:

£ a suceessor of's
for every state s S do live(s):=INF(s);
end

As an example, applying the algorithm above to the CFG in Figure 2
vields the following The set of live rules at 5,15 {exchange, print, switch}
and the set of live rules at s; 1s {print}.

4. Run-time Deletion of Dead Rules

This section presents an algorithm to obtain a forward-chaining rule-
based program in which rules are removed when they finish firing during
run-time. The algorithm utilizes both CFG of the progiam and live-rule
information to determine when rules finish firing during run-time.

A CFG contains all possible WM states that can be reached during run-
time. At any particular time during execution the program is at onc of the
CFG states. A rule firing might or mught not change the CFG state In the
optimized pregram, cach txmu a rule firme changes the current CFG state
the rules that become dead at the new state are removed This 18
accomplished by adding operations to ¢very rule that changes the current
state 1n the CFG to remove the rules that b%cc\-me dead at the new state. For
example, the rule switch in the CFG of Figure 2 changes the current state
from s, to s;. Switch is modified in the optimized program to remove the
rules that become dead at s; which are exchange and switch.

Only rules that change the current state in the CFG are modified in the
optimized program. The rest of rules stay the same. Rules that change more
than one state in the CFG cannot be moditied directly to delete ditferent
dead rules in different firings. However, Based on the author's personal
study to a large number of CFGs, rules that change the current state in the

)
-

CFG are often control rules whose purpose 18 to furce execution 1o proceed

An-Najah Univ. J. Res., Vol 13 (1985, 37-5C

Wael Mustafa _ 45

in stages. At each stage only rules related to that stage are able to fire.
Stages correspond to CFG states. In the WM, the current stage is
represented by a certain fact. A control rule that changes the current state
from s; to s, modifies the WM to contain a fact representing the new stage s,
instead of the fact representing s, A separate control rule is needed to
change the current stage from s, to s; since this rule needs to test for the fact
representing state s; and to replace it with the fact representing state s;,. This
rule will fire only when execution moves from s, tos; and will not occur
elsewhere in the CFG.

The optimizing algorithm presented beiow does not handic rules that
change more than one CFG state. The algorithm consists of two steps. First,
the set of rules that become dead at each state in the CFG 1s found using
live-rule information. Then, rules that change the current state in the CFG
are transtormed to remove rules that become dead at the new state The
transformation maintains the semantics of the source program since rules
are deleted only after they finish firimg.

Algorithm: Program Transformation to Delete Dead-Rules During
Run-Time

Input: A forward-chaming rule-based program P, control-tlow graph,
G=(S.E), of P. and for ecach state s=S the set of rules live at state s.
five(s) There s no rule in P that changes more than one state in S

Outpui: A rule-based program in which the rules that become dead at a state
seS are removed during run-time when execution reaches s.

Method:

begin

for each state #<S, find

>

D(u). = wlive (r) |-live(u):

i 1s a predecessor of i

for each rule P that changes a state /< S to another state 1< S do
for each rule geD[u]do
Add an operation to rule 7 that deletes ¢.
end

An-Najah Univ. J. Res.. Vol 13 (1998) 37-56

46 "Run-Time Elimination of Dead-Rules in ...~

5. Examples

The execution time improvement obtained from the optimization
depends mainly on the matching time of the deleted rules. Significant
timesaving results from deleting rules with conditions that require excessive
matching time. In addition, deleting a rule early during execution is more
timesaving since the condition of the deleted rule will not be matched
against WM in more execution cycles,

The results of applying the optimization to three example CLIPS
programs are presented below. The running times were obtained using the
CLIPS command (waich statisiics) on a 486 PC. Similar trend in exccution
fime improvement was obtained on other machines The deletion of rules
during run-time was implemented in CLIPS using the undefiule action. This
action deletes the specified rule and also removes related conditions from
the RETE matching network.

Array Sorting

This program and its CFG were introduced above. The CLIPS code and
the CFG are shown in Figure 2. The optimization does not reduce the time
needed to sort the array because all rules are still live while the rule
exchange fires (see Figure 2j. However, the rules exchange and switch
become dead at state s5;. The two rules are removed by the action of
exchange in the optimized program, which is shown in Figure 3. This
reduces the time needed to print the sorted array. The timesaving for this
program depends on the number of firings of print, which is equal to the

number of elements in the array.

: Exchange loops on itself swapping any two : Print loops over itself printing and
. consceutive elements if they are not ordered. . deleting the elements of the array.
(defrule exchange (defrule print

Ul<-(element (val ?v1) (index ?i1)) (step print)

M2<-(element (val 7v2) (index ?i2)) H1<-(11)

(test (= 712 (+ 711 D)) ‘H2<-(element (val ?v)

(test (> 7v1 7v2)) (index 1)}

=> =>

Figure 3. Optimized sort program

An-Najeh Univ. J. Res., Vol. 13 (1999) 37-56

Wael Mustafa

47

(modifv ?f1 (val 7v2))
(modify 72 (val 7v1)))

- Switch fires only once. It sets the array index to
0 and it adds a fact to enable rule print.
(defrule switch

(declare (salience -10))

=>

(assert (dead-rule exchange))

(assert (dead-rule switch))

(assert (i 0))

(assert (step print)))

Figure 3. Contd.

(printout 1 ?v crlf)
(retract ?1)
(assert (i (+ 71 1))
(retract ?2))

; Remove rules that become dead during
; execution.

(defrule remove-dead-rules

(declare (salience 10))

7f<-(dead-rule ?rule-name)

=>

(undefrule ?rule-name)

(retract 71))

Since the improvement in execution time results only from faster
execution of print, it is sufficient to consider already sorted arrays. The
results of executing the source and optimized programs on already sorted lists
are shown in Figure 4. On the average the execution time is reduced by 6%.

—O— Before optimization —O— After optimization}

250 —
200 —
150 +

100 ~

Execution time (s)

w
o
t

0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Array size

Figure 4. Execution time in seconds for the program of Fig. 2 before
and after optimization

An-Najah Univ. J. Res.. Vol 13 (1999 37-56_ e

48 “Run-Time Elimination of Dead-Rules in "

Set Operation

This program and its CFG are shown in Figure 5. The program
computes the set operation a=anb~c. The program executes as follows.
First, rule find loops over itself finding the elements of the three sets
intersection. When all intersection elements are found, switchl fires adding
the fact (step delete). This fact makes the condition of rule remove satisficd
Remove then loops over itself deleting elements of set ¢ When all «
elements are deleted, switch2 fires adding the fact (step put) to WM. This
fact makes the condition of rule put satisfied. Put then loops over itself
copying all intersection elements to set «.

. Find determines all elements i the intersection. - Swith?2 fires only when all of set ¢
(detrule find . clements are removed It adds a Lact to
(a?x) ; enable rule put.
(b 7x) (detrule switch2
(¢ 7x) (declare (salience -10))
=> f<(step delete)
(assert (abe 7X))) =>
(retract ?t)
. Switchl fires onlv when all elements in the (assert (step add)))
. tersection are found. It adds & fact 1o enable
. rule remove, . Put adds all mtersection elements to sct ¢
(defrule put
{defrule switchl (step add)
(declare (salience -10)) (abe 7x)
=> =>
(assert (step delete))) {assert (a X))

- Remove deletes all elements irom set a.
(defrule remove
(step delete)
1<-(a 7X)
=>
{retract 1))
Find TENOVe put

~

@ swich1 @ swich2

Figure 5. Code and control-flow graph for program to compute the set
operation a=ambc.

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Waef Mustafa 49

In this program the rules find and switchl become dead at s; (see CFG
in Figure 5). The rules remove and switch2 become dead at s:. Deleting the
dead rules at s; and s> in the optimized program (Figure 6) reduces the time
needed to execute the rules remove and put. The total timesaving depends
on the number of firings of these two rules, which depends on the sizes of
the three sets and the size of their intersection. More timesaving are
obtained for larger sets and larger intersection size. Figure 7 shows the
execution time for cases in which the three sets have the same size and their
intersection size is half of the sets size. On the average the execution time
was reduced by about 86%. This significant improvement is due to the fact
that rule find which requires significant matching time i1s deleted early
during execution of the optimized program.

- Find determines all elements in the intersection - Swiath2 fires only when all of set a
(defrule find . elements are removed. It adds a fact to
(a?x) , enable rule put.
(b %) (defrule switch2
(c 7x) (declare (salience -10))
=> 2{<-(step delete)
(assert (abc 7x))) =>
(assert (dead-rule remove))
. Switcht fires only when all elements i the (assert (dead-rule switch2))
s mtersection are tound. Tt adds 4 fact to enable (retract 1)
. rule remove. {assert (step add)))
(defrule switchl . Put adds all mtersection elaments 10 set a
{declare (salience -10})) (defrule put
> {step add)
(assert (dead-rule tind)) (abe %)
{ussert (dead-rule switch1)) =>
(assert (step delete))) (assert {a X))
. Remove deletes all clements [rom set a. - Remove rules that become Jdead dunne
(defrule remove - execution.)
(step delete) (detrule remove-dead-rules
<-(a ™) (declare (salience 10))
=> *1<-(dead-rule ?rule-name)
(retract 1)) =>

(undefrule rule-name)
(retract 21))

Figure 6. Optimized program to compute the set operation a=amb~¢.

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56 -

50 “Run-Time Elimination of Dead-Rulesin "

l—BfBar: opgmié;tiorwi —O0— After optimization

700 l

Execution time

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sets size

Figure 7. Execution time in seconds or the program of Fig. 5 before
and after optimization. The sizes of the sets a, b, and c are equal to sets
size. The size o the three sets intersection is half of sets size

Linked List Processing

This program and its CFG are shown in Figure 8. The program counts
the number of elements in a linked list that are less than the average of all
elements in the list.

. Initialize sum and count to 0 and set the current node . Increase fires when the value in the current
. Lo the first node. .node is below average. It adds 1 to below-count
(defrule initialize . and advances: the currem node 1o the next node.
(first-node ™) (defrule increase
(1ot (current-node 7)) 21 <= (current-node "n& -mlly
= (node (num “n) (val 2v) (next "x)i
{assert (count 0)) (avg Tavgl
{assert (sum 0)) {test (= v 7avg))
(assert (current-node ?n))) 22<-(below-count 7¢)

Figure 8. Code and control-flow graph for program to count the number of
values less than the average of all values in a linked list

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

Wae! Mustafa 51

. Sum-and-count loops ever itselt counting and .
summing all node vaiues (retract 11

¢defrule sum-and-count (assart (euren-noda 7x))

O -fsum s (rewract V2

N2 fenunt <) {aszert (below-count (- ¢ 1))

w3 current-node Mn& -l

cnade (num 2n) (val Ty inest i) sdust-advance tires when the vidae m the current
(ot fave T cnode is not below average. [is tiring changes the
) ceurrent: node e the next nade.

iretract Tih) {defrule jus vance

Cssert n{ s g Ui -fewrent-node Tn& -mih

(1 12y (node (nunn M Oval 23 (nest NG

feount (- Ve D fave %

) 113 Telave

(testd
assert {ewrrent-node X)), =
{retract 2N

CComputs fires when the end of the fistis reached It (aseert {current-node 78)))
Caaleuiutes il
Cfirst nede and Cintializes below-count 1o 0.

he average, resets the current node o the

(detrule compute

L sy

oot ey Increasse
Ofg t-nede milh sumpammuni Jl.ﬂstnﬂ ntoa
‘rst-tode g '~ dvay

ot iave 7Y *(\ +‘/\\l

- Vf“ /’

current-node n}) \

elow-count 43 @ iﬁﬁahze 81 : computc 81 \
_r/’

cAsELTL

st avg (¢ ?s 7O / > |

Figure 8 Contd.

The program executes as follows. First, rule initialize fires setting the
current-node to the first node in the linked list and initializing connt and
sum to zero. Rule sum-and-count then loops over itself counting and
summing all the values in the list. When the end of the list is reached, rule
compute fires calculating the average, resetting current-node to the first
node, and setting the below average count, below-count, to 0. The program
then passes through the list again firing either increase or just-advance at
cach node. Rule increase fires when the value of current-node is below
average. Its tiring increases below-count value by | and changes the current
node to the next node. Rule just-advance fires when current-node value is
greater than or equal to the average. Its firing changes current-node to the
next node.

An-Najah Univ. J. Res., Vol. 13 (1899) 37-56

52 “Run-Time Elimination of Dead-Rules in !

Rule initialize in this program becomes dead at state s; (see CFG in
Figure 8). The rules compute and sum-and-count become dead at state s-.
Hence, the execution of sum-and-count, increase, and just-advance takes
less time in the optimized program, which is shown in Figure 9. The total
timesaving depends on the total number of firings of sum-and-count,
increase and just-advance which depends on the size of the linked list.
Figure 10 shows the execution time of original and optimized programs as
linked list size increases. On the average, the execution time was reduced by

about 16%.

. Initialize sum and count to C and set the current node

. to the first node.

{defrule initialize
(first-node 7n)
(not (current-node 7))
(assert (dead-rule nitialize))
{assert (count 0)}
(assert (sum 0))
(assert (current-node "n)))

: Sum-and-count loops over itself counting and
. summing all node values
(defrule sum-and-count

2{1<-(sum 7s)

2f2<-(count ?¢)

{3« -(current-node ?n&~nill)

(node (num ?n) (val 7v) (next x)

(not {avg M)

(retract (1)

{assert (sum (+ 75 7v)))

{retract 712)

{assert (count (+ 7¢ 1))

{retract ?f 3)

(assert (current-node 7x)))
. Compute fires when the end of the list is reached. It
: caleulates the average. resets the current node to the
first pode and initializes below-count to 0.
(defrule compute
(sum 7s)
{count 7¢)
21 ~(current-node nill)

Figure 9. Optimized program to
average of all values in a linked list.

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56

, Increase fires when the value in the current
. node is below average. It adds 1 to below-count
. and advances ; the current node to the next node.
(defrule increase
?f1 < (current-node ?n&--nill)
(node (num “n) (val ?v) (next ?x))
(avg Tavg)
(test (< v Tavg))
f2<-(helow-count ¥¢)
(retract 741)
(assert (current-node 751
(retract 212)
(assert (helow-count (-

e 1)

Chust-advance fires when the value in the o

1node 1s not below average. 1ts firing ¢
L eurrent nede 1o the next node.
(defrule just-advance

-

(node (o) (val V)

{avg Tavg)

(test {om Py Tavp

(retract M)

(assert
. Remove tui
L execution.
(defrule remove-dead-rules
(declare (sal

M<(dead-rule 7

=

(andetruie Uroleqnere

¥
i

count the number of values less than the

hn
[+

Wael Mustafa

(first-node n) (retract ?t))

(not (avyg 7)}

{assert (dead-rule swm-and-count))
{assert {dead-rule compute))
{retract f)

{assert (current-node)
(below-count 6))

{assert(avg { s 7o)

Figure 9. contd.

—0— Biefiébrréioptimizatio}; —— After optimization

1500 +

Execution time

1000 +
|

500 +

!

a T - : +—- i
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Linked list size

Figure 10. Execution time in seconds for the program of Figure 8
before and after optimization.

6. Conclusion

We have presented a program optimization for forward-chaining rule-
based programs. This optimization results in programs in which rules are
dynamically removed when they finish firing. The conditions of the deleted
rules are not matched against WM in later execution cycles. This reduces

An-Najah Univ. J. Res., Vol. 13 (1999) 37-56

54 “Rup-Time Elimination of Dead-Rulesin~

the total executicn time of the program. The optimization is safe since rules
are deleted only when they finish firing,

Control-flow analysis of forward-chaining rule-based programs and
data-flow analysis is used to determine when rules finish firing during-run
time. First, control-flow analysis is applied to the source program producing
a control-flow graph. This graph describes all possible sequences in which
the rules may fire. The nodes of the graph represent working memory states.
The program is always at one of these states during run-time. Data-flow
analysis is used to determine the set of rules that finish firing at each state in
the control-flow graph.

The optimization was applied to three CLIPS programs and the results
were presented. These results show that there is a significant improvement
in execution time for programs that contain rules that require extensive
matching time and finish firing early during execution. Further work is
needed to test the optimization on larger, more complex rule-based
programs. Work 1is also needed to explore the results of applying the
optimization to programs written in rule-based languages that do not usc the
RETE algorithm.

References

1. Aho, Sethi, and Ullman “Compilers: Principles, Techuiques, and
Tools”, Addison-Wesley, Reading, MA, 1988,

2. Bellman, and Walter. Analyzing and correcting knowledge-based
systems requires explicit models. Proceedings of AAAI-88 Workshop on
Validation and — Testing of Knowledge-based Systems, Minneapolis,
Minn., (1988).

[P¥]

Chander, Shinghal, and Radhakrishnan. Using Goals to Design and
Verify Rule-Bases. Decision Support Systems, 21, (1988), 281-305.

4. COSMIC. CLIPS Reference Manual, Version 4.3, Artificial Intelligence
Section. Lyndon B. Johnson Space Center, COSMIC, 382 E. Broad St ,
Athens, GA, 30602, (1989).

An-Ngjah Univ. J. Res., Voi. 13 (1999) 37-56

wael Mustafa 55

10.

11.

13.

14.

15.

Forgy. Rete: A Fast Algorithm For The Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19, (1982), 17-37.

Ishida An Optimization Algorithm for Production Systems. //.E1.
Transactions On Knowledge And Data Engineering, 6, (1982), 549-558.

Kam, and Ullman. Monotone Data-Flow Analysis Frameworks.
Technical Report, No. 169, Dept. of Electrical Engineering, Princeton
University, New Jersy, USA, (1975).

Kildall. A Unified Approach to Global Program Optimization. / st
POPL, Boston, MA, (1973), 194-206.

Kimura, Kobayashi, Sumiyoshi, and Takebe. A Condition Matching
Algorithm for High-Cost Rules in Production Systems: Effectiveness
Measurements. Sysfems and Computers in Japan, 26, (1995), 52-63.

Lee, and Kimcheng. Reducing Match Time Variance in Production
Systems with HAL. Proceedings of the Sixth International Conference
on Information and Knowledge Management, (1997), 309-316.

Levy, and Rousset. Verification of Knowledge Bases Based on
Containment Checking. Artificial Intelligence, 101, No. 2, (1998), 227-
250.

Lopez, and Kamel Reorganizing Knowledge to Improve Performance.
IEEL Trans. Knowl. Data Eng., 10, No. 1, (1998), 190-201.

Miranker. TREAT: A Better Match Algorithm for Al Production
Systems. Proc. Sixth National Conference on Artificial Intelligence
(AAAD), (1987), 42-47.

Murrell, and Plant. A Survey of tools for the Validation and Verification
of Knowledge-Based Systems: 1985-1995. Decision Support Systems,
21, (1997), 307-323.

Omer. Control Flow Analysis of Rule-Based Programs. Ph.D. Thesis,
University of Houston, Houston, Texas, USA, (1993).

An-Najah Univ. J. Res.. Vol. 13 (1999) 37-56 _—

56

“Run-Time Elimination of Dead-Rules in

16. O'neal. Comprehending Rule-based Programs: A Graphical Oriented

Approach. International Journal of Man-Machine Studies, 39, (1993),
147-175.

17. Stachowitz, Combs, and Chang. Validation of knowledge-based
systems. Proceedings of Second AIAA'NASA'USAF Symposium on

Automation, Robotics and Advanced Computing for the National Space
Program, Arlington, Va, (1987).

18. Zlatareva. Verification of Non-Monotonic Knowledge Bases. Decision
Support Systems, 21, (1997), 253-261.

An-Najah Univ. J. Res., Vol. 13 (1989) 37-56

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

