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Abstract  

Considering half-spin geometry of type D6,6(F), we investigate the 
size of substructures of the geometry called blocking sets. We give an 
upper bound on size of blocking sets. 

Keyword: half-spin geometry-blocking set-Covers-classical polar 
spaces. 

  
  ملخص

، سنتحقق من حجم ترآيبات موجودة D6,6(F)ليكن لدينا هندسة النصف مغزلية من نوع 
والتي تسمى بالمجموعات المغلقة، وآذلك سنقدم ) سنثبت وجودها ونعطي وصفها(داخل الهندسة 

  .حدا اقصى لحجم تلك المجموعة
 
Introduction 

In this paper, special objects inside the half-spin geometry of type 
D6,6(F) are described, such as blocking sets and covers.  We also obtain 
combinatorial information since the number of points, lines, etc. is finite.  
In (Blokhuis, & et.al. 1998), studied covers of the projective space of 
type PG(3,q) (and of finite generalized quadrangle) which is small. In 
essence, they gave a structure theorem for minimal covers S with q2 

+1<S < q2 + q + 1. In (Aiden, & Drudge, 1998), studied a large 
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minimal covers of PG (3,q).  In (De Beule, 2004), gave an interesting 
study of blocking sets for some finite classical polar spaces. In 
(Cimrakova, & Fack, 2005), presented results on smallest blocking sets 
in the generalized quadrangle Q(4, q) for q=5, 7, 9, 11 and they found 
minimal blocking sets of size q2 + q – 2. 
 
2. Basic Definitions and Notations 

Let V be a vector space over an arbitrary field F.  A bilinear form B 
on V is a mapping B:  V x V → F, such that for α, βF, x, y, z V we 
have: 

i. B (α x + β y, z) = α B(x, z) + β B(y, z). 

ii. B(z, α x + β y ) = α B(z, x) + β B(z, y). 

Thus a bilinear form is a linear functional in each of its coordinates. 

For (a subspace) WV, we set 

W
 L = {uV:  B(u, v)=0, for all vW}, 

W
 R = {uV:  B(v, u)=0, for all vW}. 

W
 L, W

 R are called the left and right radicals of W with respect to 
B. 

A bilinear form B is called symmetric if B(u, v)= B(v, u) for all 
vectors u, vV.  A bilinear form B is called alternate if B(u, u)= 0 for all 
vectors uV.  If B is a symmetric form, then V

 R= V
 L is called the 

radical of V with respect to B and is denoted by V.  A bilinear form B is 
called non-degenerate if V

 = {0}.  Otherwise B is called degenerate. 

A vector uV is called an isotropic vector if B(u, u)=0, and a 
subspace W of V is called totally isotropic (abbreviated TI) if B(u, v)=0 
for all u, v W.  A subspace W of V is called maximal totally isotropic if 
W is not contained properly in any TI subspace of V.  

Given a set I, a geometry  over I is an ordered triple =(X,, D), 
where X is a set, D is a partition {Xi} of X indexed by I, Xi are called 
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components, and  is a symmetric and reflexive relation on X called 
incidence relation such that: 

x  y implies that either x and y belong to distinct components of the 
partition of X or x = y.  Elements of X are called objects of the geometry, 
and the objects within one component Xi of the partition are called the 
objects of type i.  The subscripts that index the components are called 
types.  The obvious mapping: X I, which takes each object to the 
index of the component of the partition containing it is called the type 
map . 

A point-line geometry (P, L) is simply a geometry for which I =2, 
one of the two types is called points; in this notation the points are the 
members of P, and the other type is called lines.  Lines are the members 
of L.  If pP and lL, then p e stands for pl.  In point-line geometry 
(P, L), we say that two points of P are collinear if they are incident with a 
common line.  (We use the symbol ~ for collinear) 

x means the set of all points in P collinear with x, including x itself.  

A clique of P is a set of points in which every pair of points are 
collinear.   

A partial linear space is a point-line geometry, in which every pair 
of points are incident with at most one line, and all lines have cardinality 
at least 2.  

A point-line geometry is called singular or (linear) if every pair of 
points are incident with a unique line. 

 A subspace of a point-line geometry =(P, L) is a subset X  P 
such that any line which has at least two of its incident points in X has all 
of its incident points in X.   X   means the intersection of all subspaces 
containing X, where XP. 

Lines incident with more than two points are called thick lines, those 
incident with exactly two points are called thin lines. 
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The singular rank of a space  is the maximal number n (possibly 
) for which there exists a chain of distinct subspaces X0    X1  ... 
 Xn  such that Xi  is singular for each i, Xi  Xj  , i  j.  For example rank 
() = -1, rank({p}) = 0 where p is a point and rank(L) = 1 where L a line. 

In a point-line geometry =(P, L), a path of length n is a sequence 
of n+ 1 points (x0,x1,..,xn) where, (xi,xi+1) are collinear, x0  is called the 
initial point and xn is called the end point.   

A geodesic from a point x to a point y is a path of minimal possible 
length with initial point x and end point y.  We denote this length by d 

(x, y). 

A geometry  is called connected if for any two of its points there is 
a path connecting them.   

A subset X of P is said to be convex if X contains all points of all 
geodesics connecting two points of X.    

A gamma space is a point-line geometry such that for every point-
line pair (p, l), p is collinear with either no point, exactly one point, or all 
points of l, i.e., pl is empty, consists of a single point, or equal l. 

A polar space is a point-line geometry = (P, L) satisfying the 
Buekenhout-Shult axiom: 

For each point-line pair (p, l) with p not incident with l, p is collinear 
with one or all points of l, that is pl= 1 or else pl.  Clearly this 
axiom is equivalent to saying that p is a geometric hyperplane of  for 
every point p  P. 

We write Rad () for the set {p: p=P}, and we called it the radical 
of .  

A polar space =(P, L) is said to be non-degenerate if  Rad =. 

A projective plane is a point-line geometry = (P, L) which satisfies 
the following conditions:  
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(i)  is a linear space i.e, every two distinct points x, y in P lie exactly on 
one line, 

(ii) every two lines intersect in one point,  

(iii) there are four points no three of which lie on a line. 

A projective space is a point-line geometry in which the following 
conditions are satisfied:  

(i) every two distinct points lie exactly on one line , 

(ii) if l1, l2  are two lines with l1l2  , then <l1, l2> is a projective 
plane.  (<l1, l2> means the smallest subspace of  containing l1 and l2.) 

A parapolar space is a point-line geometry =(P, L) of rank r + 1, r 
 2; and satisfies the following conditions: 

(pp1)  is a connected gamma space. 

(pp2)  for every line l;  l is not a singular space. 

(pp3) for every pair of distinct points x, y; xy is either empty, a 
point, or a nondegenerate polar space of rank r. 

A strong parapolar space is a parapolar space in which xy is a 
polar space for every pair of distinct points x, y of distance 2 apart.  
 
3. Definition of the half-spin geometry Dn,n(F)   

  

 

 

 

 

Now we give a construction of D6,6(q).  Let B be a symmetric 
bilinear form on a vector space of dimension 12 over a finite field 
F=GF(q). Define the polar space +(12,q).  Let Si be the of all TI i-
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dimensional subspaces of V, 1≤i≤4. Let S6 be the class that consists of all 
maximal TI subspaces of dimension 6.  S6 is partitioned into two classes 
denoted by M1, M2 subjected to the following rule: 

Two TI 6-subspaces m1 and m2 fall in the same class if their 
intersection is of even dimension.  So the dimension of the intersection 
m1m2 is 0, 2, or 4 for distinct m1, m2.  Thus the points of D6,6(q) consist 
of one class (M1, say) of the two classes of MTI 6-spaces, and whose set 
of lines corresponds to the set of all TI 4-spaces, where a line l that 
corresponds to a 4-subspace X is incident with the set of all points that 
corresponds to all TI 6-spaces that contains X.   

Symplecta (that are convex non-degenerate polar spaces of rank at 
least 2) correspond to the set of all TI 2-subspaces, where a symplecton S 
that corresponds to a TI 2-subspace Y is the set of all TI 6-subspaces that 
contains Y.  The half-spin geometries D5,5(q) correspond to TI 1-
subspaces.  TI 3-subspaces correspond to projective subspaces of 
singular rank 3; A3

,s.  TI 6-subspaces of the second class M2 corresponds 
to projective subspaces of singular rank 5; A5

,s. 

Let the map : P→V that forms a correspondence between the half–
spin geometry D6,6(q) and the classical polar space of type +(12,q) 
which is defined above, i.e., (p) is the TI 6-space corresponding to the 
point p.  We will use  for the rest of the varieties of the geometry; for 
example (l) is the TI 4-space corresponding to the line l, and (S) is 
the TI 2-space corresponding to the symplecton S.  The inverse map -1 
will be used for the inverse; for example -1() is the symplecton 
corresponding to the TI 2-space. 

We summarize the most important properties of the half-spin 
geometry D6,6(q) in the following theorems 
1. D6,6(q) is a strong parapolar space of Diameter 3. 
2. If S1 and S2 are two distinct symplecta, then either S1S2 is empty, a 

line or a maximal singular subspace of both (a member of A3). 
3. If (p, S) is a non-incident pair of point and symplecton S, then pS 

is either a single point or a maximal singular subspace of S. 



Abdelsalam Abou Zayda ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  19 

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  An - Najah Univ.  J.  Res. (N. Sc.) Vol. 21, 2007 

4. The main result 

Most papers are interested in the cardinality of blocking sets but in 
projective spaces, and in this paper we present a general definition of the 
blocking sets.  To apply this idea on some kinds of finite geometries such 
as half-spin geometry D6,6(q), description of blocking sets and upper 
bound of its cardinality will be investigated.  

A (t, s)-blocking set of PG (n, q), where n2 , ns 1 and n-1 t 0, 
is a set B of points of PG(n, q) satisfying the following properties : 

i. any subspace of dimension n-t of PG(n, q) intersects B in at least one 
point; 

ii. any s-dimensional subspace of PG(n, q) contains at least one point 
not in B 

A blocking set of PG (n, q), n2, is a set B of points of PG(n, q) 
satisfying: 

i. any hyperplane (a subspace of dimension n-1) of PG(n, q) intersects 
B in at least one point; 

ii. any line of PG(n, q) contains at least one point not in B. 

So a blocking set is the same as a (1, 1)-blocking set. 

Now we generalize the definition of the blocking set by applying it at 
half-spin geometry D6,6(q). 

Firstly, we give a first part of the result by describing a blocking set 
of D6,6(q): 

4.1 Theorem A blocking set of D6,6(q) is the set of all points that are of 
distance at most 2 from a fixed point; namely 


2(p) = {xP: d(x, p)≤ 2}. 

Proof.  Let l be a line in D6,6(q). Let U be the correspondent TI 4-
space, i.e., U = (l). We take a fixed point of D6,6(q), say p, then (p) is 
a MTI 6-space.  Now there are 2 cases for the intersection (l) (p): 
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1. (l) (p) = 2-space , say W; In this case the 2-space (l)\W has 
the property that ((l)\W) (p) = 4 –space which is equal exactly 
to WD, where D is a TI 2-space contained in (p)\W.  Then we 
have a point s = -1 < (l) D > such that -1 < (l) D>(p) = 
<W  D>= 4-space and (l)  (s), i.,e., the point s lies on the line 
l and s

2(p). 

2. (l) (p) = 0-space , then  (l) (p) is at most a TI 2-space, 
then we get the TI 6- space <(l), (l) (p)> which is a point, 
say r, where r lies on the line l and of a distance at most 2 of the 
point p.), i.,e., the point r lies on the line l and r

2(p). 

The remaining part is to prove that the line l has at least a point not in 


2(p).  Let (l) = <x1, x2, x3, x4>, let p be a point such that (p)= <y1, y2, 
y3, y4, y5, y6> and take the case at which K=(l)(p) = 2-space. Since 
the TI 4-space (l) contained in maximal TI 6-spaces, say, (s)=< x1, x2, 
x3, x4, u1, u2 > and (r)=< x1, x2, x3, x4, w1, w2 >, then they are considered 
to be the corresponding two points r and s that are incident to the line l 
and at the same time r is collinear to s. Now we find out another point q 
that is collinear to the points r and p, since < w1, w2 >┴(p)= TI 4-
space that is: < K <y3, y4> >, then we get a TI 6-space (q) = < K 
<y3, y4>  < w1, w2 > > that corresponds to the point q.  Thus we found 
out a point s incident to the line l such that d(s, p)=3  So, the point does 
not belong to 

2(p). 

Then 
2(p) is a blocking set of D6,6(q).                 ■ 

Propositions 4.2 and 4.3 will be used to prove the second part of the 
main results.  The propositions and their proofs can be found in 
(Cameron, 1992) and (Cimrakova, & Fack, 2005).  

4.2 Proposition (Cameron, 1992). The number of subspaces of 
dimension k in a vector space of dimension n over GF(q) is 

(qn-1)(qn-q) … (qn-qk-1) 

(qk-1)(qk-q) … (qk-qk-1) 
q

k

n








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Proof. This is Proposition 1.4.1 in (Cameron, 1992). 

Remark.  This number in Proposition 4.2 is called a Gaussian 
coefficient, and is denoted by   

4.3 proposition (Cimrakova, & Fack, 2005). Let V be equipped with a 
bilinear form.  Then the number of totally isotropic k-subspaces is the 
following: 

 

                                         in the symplectic case W(2n,q). 

 

                                           in the orthogonal case (2n+1,q). 

                                           in the hyperbolic case +(2n,q). 

 

                                           in the elliptic case -(2n+2,q). 

 

Proof. See (Cimrakova, & Fack, 2005). 

Now we present an upper bound of a blocking set in D6,6(q). 

Theorem 4.4 Let B be a blocking set in D6,6(q). Then  
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Proof.  In blocking set 
2(p), we showed that any TI 4-space which 

intersects (p) in a TI 2-space, is contained in a maximal TI 6-space.  
Then by the correspondence between the half-spin geometry D6,6(q) and 
the hyperbolic case +(12,q), any line has a point in 

2(p).  Then any 2-
space that can be found in (p) gives a TI 6-space which intersects (p) 
in a 4-space.  So the maximal number of 2-spaces in (p) determines the 
maximal number of point in 

2(p).  Using Propositions 4.2 and 4.3, the 
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number of 2-spaces that are contained in a 6-space can be determined by 
the formula    

Then the upper bound of the size of B is given by:  
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it follows that              B≤ 
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