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Abstract: 

In many statistical data analyses, the problem of analyzing contingency tables that 
contain empty cells is commonly encountered in all fields of research. The odds ratio 
and risk ratio are not applicable in such a case because of an unidentifiablity problem. 
In the present paper the rate ratio between the second negative response given an initial 
negative response and the initial negative response in a two-way contingency table with 
a zero-count in one of the off-diagonal cells is utilized. Hypothesis testing and 
confidence interval construction for the rate ratio based on the Wald’s test statistic and 
its logarithmic transformation will be reviewed. Inference based on large sample theory 
and small-sample on the rate ratio of this case is discussed. The asymptotic performance 
of the Wald’s test statistic and its logarithmic transformation is examined. By adopting 
these statistics, full unconditional exact small-sample procedures that have been 
proposed by Tang and Tang (2002) are discussed. The procedures are modified by 
utilizing the maximum likelihood estimator of the rate ratio and the conditional 
likelihood functions. The accuracy of all the methods is empirically assessed. We show 
that our modified conditional procedures are more reliable than both exact and 
asymptotic procedures in terms of coverage probability and expected interval width. 
The methodology is applied to data on family planning in the Gaza Strip and other 
examples from the literature. 

Key Words: rate ratio, two-way contingency tables, empty cells, Wald's test, 
logarithmic transformation, coverage probability.   



  

 

  :المقدمة

في  ةات الوصفييواجه الكثير من الباحثين أثناء التحليل الإحصائي للبيان  

مجالات العلوم المختلفة حالات وجود خلايا ذات تكرارات صفرية حقيقية في جداول 

توافق ثنائية، في مثل ھذه الحالات لن يتمكن الباحث من حساب أي من النسب 

عدم "والمعدلات المعروفة مثل نسب الخلاف أو نسب المخاطرة بسبب ظھور مشكلة 

تكرارات بالصفر، ولعلاج ھذه المشكلة تقوم ھذه الدراسة نتيجة لتساوي أحد ال" التعريف

على توظيف المعدل النسبي بين الاستجابة السلبية للظاھرة الثانية بمعلومية وقوع 

استجابة سلبية للظاھرة الأولى مقارنة بالاستجابة السلبية للظاھرة الأولى وإجراء 

ائي يحتوي على خلية خالية في جدول توافق ثن استدلال إحصائي حول ھذا المعدل وذلك

في أحد خلايا قطره الثانوي، وقد تم تقدير المعدل النسبي وبناء فترة ثقة له واشتقاق 

اختبارات للفرضيات المتعلقة به مع توظيف كلاً من إحصاء والد المعروف والإحصاء 

ن المتعلق بتحويلته اللوغاريتمية، وقد تم مراجعة التوزيع التقاربي لھذين الإحصاءي

في حالة العينات الكبيرة، كذلك فقد تم دراسة واستخدام  اوكذلك نتائج استخداميھم

التوزيع الاحتمالي الدقيق لكل من ھذين الإحصاءين، وبناء عليه فقد تم دراسة الطرق 

لحالات العينات  Tang and Tang (2002)الدقيقة الغير مشروطة التي قام بتطويرھا 

حصاءين، ولقد تم تطوير ھذه الطرق في ھذه الدراسة الصغيرة باستخدام ھذين الإ

لحساب الاحتمالات ومستويات الثقة عن طريق استخدام مقدر الأرجحية العظمى للمعدل 

النسبي وتوظيف دوال الأرجحية العظمى الكاملة للمعدل النسبي غير المشروطة 

ً طرق والمشروطة وذلك لتطبيقھا في حالات العينات الصغيرة، وقد استخدمت أ يضا

المحاكاة للتحقق من دقة جميع الطرق التي تم التعرض لھا، وسوف يتبين من ذلك أن 



  

ھذه الطرق سواء كانت الغير مشروطة أو المشروطة التي قمنا بتطويرھا تعطي نتائج 

أدق ويمكن الاعتماد عليھا بشكل أفضل من الطرق السابقة في تقدير فترات الثقة 

ل النسبي في جداول التوافق الثنائية المحتوية على تكرار واختبارات الفرضيات للمعد

صفري حقيقي في أحد خلاياھا وذلك باستخدام معياري احتمال التغطية لفترات الثقة 

وطول الفترة، وفي النھاية تم تطبيق جميع الطرق التي تم التعرض إليھا في ھذه الدراسة 

مية ومنھا الميدانية عن بحث يتعلق على بيانات حقيقية منھا المنشور في المجلات العل

 .بتنظيم الأسرة في قطاع غزة

1. Introduction : 

The subject of this paper has been stimulated from the analysis of a 

family planning survey where we met many sparse two-way 

contingency tables that contain empty cells. In family planning 

surveys we have samples of men and women classified by their 

knowledge and attitudes towards family planning and their 

practicing status of family planning. We expect that all persons who 

do not know about or have negative attitudes towards family 

planning do not practice it. The problem of interest in this paper is 

to make inference on the rate of applying family planning methods 

among those who know and have positive attitudes towards family 

planning compared to those who know about family planning 

methods. 



  

In many cases of 2x2 contingency tables it is expected that one cell 

in the table could contain a zero-count. For such an empty cell even 

though the cell has a zero-count, its true probability may be greater 

than zero. This means that, in such a case, it could be theoretically 

possible to have observations in the cell if the sample size was 

sufficiently large. However, we are interested in contingency tables 

which have empty cells for which observations are theoretically 

impossible. Such a cell has a true probability equals to zero and the 

cell count is zero regardless of the sample size. Contingency tables 

containing empty cells are often called incomplete tables and the 

empty cell is called a structural zero if its true probability equals to 

zero (Agresti, 1996). In such a case, the zero-count is not an 

observation and is not part of the data. On the other hand, empty 

cells with true probability greater than zero are common and 

intensively discussed in many articles in the literature including 

Agresti (1990 and 1996) and Bishop et. al. (1975). However, little 

discussion was found in the literature on contingency tables that 

contain empty cells with true zero probability (Tang and Tang, 

2002). In this paper, we discuss in detail the problems of 

estimation, hypotheses testing and confidence interval construction 

for the rate ratio between the second negative response given an 

initial negative response and the initial negative response in two-



  

way contingency tables that contain empty cells with true zero 

probability. 

2. Rate Ratios for 2x2 Contingency Tables with Empty 

Cells: 

We assume that X and Y are two binary response variables each 

having – the generic terms - negative and positive responses and 

were cross-classified into a 2x2 contingency table. We introduce an 

empty cell in the off-diagonal cell that corresponds with a positive 

response to the initial variable X and a negative response to the 

second variable Y in the following summary table. 

Initial Response 
(X) 

Second Response (Y) 

Total Negative 
(Y=0) 

Positive 
 (Y=1) 

Negative (X=0) a(11) b (12) a+ b (1+) 
Positive  (X=1) 0 c (22) c (22) 
Total a(11) b+c (+2) n (1) 

Suppose that we have a sample of n randomly selected observations 

from a population of interest, classified on the two response 

variables, X and Y. Let )jY,iX(Pij   denote the probability 

that (X,Y) falls in the cell in row i and column j. The probabilities 

 ij  then form the joint distribution of X and Y. They satisfy the 

conditions (2,2) (1,2), (1,1),j)i,   ; 10 ij  ( , 012   and 



  

1 j,i ij . The marginal distributions are the row and column 

totals of the joint probabilities. These are denoted by  i for the 

row variable and  j  for the column variable. The cell counts are 

denoted by  c,b,a  with ncba   denoting the total sample size. 

Broadly speaking, in a 2x2 contingency table, the odds ratio is 

defined using the joint probabilities as: 

2112

2211

2221

1211









/

/
       

   (1) 

The risk ratio is however, defined as the ratio of “risks” for the two 

groups. In the case of a 2x2 contingency table with an empty cell 

where 021  , the odds ratio and the risk ratio are unidentifiable. 

The rate ratio however, is defined as the ratio of the “negative” 

responses for the two groups. Let 11   denote the probability of the 

negative initial negative second response, 12   denote the 

probability of the negative initial positive second response and 1  

denote the probability of negative initial response. The rate ratio 

between the initial negative response and the second negative 

response is defined as 111/   . For intensive discussion and use of 

the rate ratio, odds ratio and risk ratio see Chan et. al. (2003). 



  

However, inference will be made here on the rate ratio between the 

second negative response given an initial negative response and the 

initial negative response.  

Using the above terms, the probability of the second negative 

response given an initial negative response is 

 0)X  0(Y P 0)P(X / 0)X0,(Y  P   111/  , and the 

probability of the initial negative response is  1    0)(XP  . 

Therefore the rate ratio δ can be expressed as the proportion of the 

two probabilities as follows: 

2
1

11    
0

00
  










)X(P

)X|Y(P
     

   (2) 

In this paper, our discussion will be limited to the rate ratio δ given 

in (2). The issues of estimating the rate ratio δ, using the observed 

cell counts, hypothesis testing and confidence interval construction 

procedures will be discussed. Accuracy of the test statistics and the 

confidence intervals will be assessed using simulation methods; and 

the results will be illustrated using real data sets. 



  

3. Estimation of the Rate Ratio: 

In the underlying case and using the notations of the above 

summary table, the likelihood function of the numbers of 

occurrences a and b among n cases can be written as: 

ban)(),|b,a(f  1211
b
12

a
111211 1   

b)!-a-(nb!a!

n!
   

   (3) 

Now, from equation (2) we can easily see the equalities 

11
11

12 



  and 



 11
22 1  hence we observe that 

)/,min(  10 11 . Consequently, the likelihood function of the 

numbers of occurrences a and b among n cases can be written as: 

ban

),(L


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


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



















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b

11
11a

1111 1   
b)!-a-(nb!a!

n!
 

    (4) 

The first issue in this paper is the estimation of the rate ratio . 

Using the maximum likelihood principles we could estimate both 

parameters,  and 11, over the entire parameter space, by 

maximizing the log likelihood function as follows:  
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   (7) 

Assuming that 11  and 111  /  the equations yield: 

 211

11
2

      
bˆ)ban(

ˆ)an(ˆ



                    and    

   (8) 

0      b)(2a    2(2a - 1111  ˆˆ)naˆbˆˆˆ)ban(  

   (9) 



  

Formula (9) can be rewritten as: 

b)-a-2ab(n    C

;    b)-a-a)(n2b(n-    B

;   b)-a-2bn(n   A

where          0             B  11
2
11





 CˆˆA

    

           (10) 

The solution of the above quadratic equation yields the following 

MLE estimator for the probability 11 and the rate ratio : 

n

a
ˆ       11         and    

2
      

)ba(

anˆ


     

           (11) 

The above estimators of 11 and  can also be obtained through 

estimating 11 and 12 using equation (2) and the likelihood 

function in (3) (Okasha & Al-Krunz , 2000).    

4. Testing of Hypothesis Concerning the Rate Ratio : 

For testing the null hypothesis 00    :H  versus different 

alternatives, where δ is the rate ratio that takes the form defined in 

(2) above, relevant tests which had been intensively studied by 

many authors including Lui (1998) are the Wald’s test which takes 

the form:  



  

)an(na

)ba(na
),b,a(TT





2

0
011     

           (12) 

and the logarithmic transformation test which takes the form : 

 
a/)an(

)log()balog()nalog(n
),b,a(TT




 0

022
2

     

           (13) 

The above test statistics are the core of the present paper and will 

be used in making inference on the rate ratio. For the purpose of 

testing the null hypothesis 00     :H , we will define 

21  ,   0 ,j),b,a(t~t~ jj    as the observed values of each of the 

above test statistics 21   and  TT  computed using the observations 

),( ba . In the subsequent sections, different possible procedures for 

estimating the p-value for testing the null hypothesis 0H  versus 

different possible alternatives and confidence interval estimation 

based also on the same test statistics 21   and  TT  will be discussed 

and modifications will be proposed. 

In the hypothesis testing problem, assuming that the sample size (n) 

is sufficiently large, it is well known that under the null hypothesis 

0H  both Wald’s test statistic  1T and the logarithmic transformation 



  

test statistic 2T  asymptotically follow the standard normal 

distribution. The asymptotic p-values which will be referred as 

)b,a(p As
j  can then be given as follows: 










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j

j

jj
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             (14) 

for  21,j  . The term  (.)  refers to the standard normal 

distribution function and ),b,a(t~t~ jj 0  are the estimated test 

statistics using the observed frequencies ),( ba  and the null value of 

the rate ratio 0  . 

The asymptotic method is computationally simple and performs 

well for large sample size (n) as the distributions of  21   and  tt  are 

close to the standard normal for 50n . An empirical study showed 

that the asymptotic p-values are very often close to the simulated p-

values given 11 and 0 and the normal probability plots of the 

simulated cases showed that there is no evidence against the 

normality of the above tests. If however, the sample size is too 

small or the data have a sparse structure, the asymptotic tests will 

not be suitable and the true p-value will always be greater than the 



  

pre-specified nominal level. In the case of too small sample size 

and under the null hypothesis 00 :H , following Suissa and 

Shuster (1985) Tang and Tang (2002) proposed exact methods 

where the nuisance parameter 11  could be eliminated by 

maximizing the null likelihood over the complete domain of 11. It 

should be noted here that the monotonicity property of the 

convexity assumption described in Hsueh et. al. (2001), Okasha & 

Al-Krunz ((2000) and Bindslev (1997); is not preserved by either 

1T  or 2T . This could be demonstrated through examples by trying 

different values for n, a, b and 0 . For the two one-sided alternative 

hypotheses, the maximization is conducted on the entire nuisance 

parameter space under the null hypothesis 0H . Detailed discussion 

on the maximum likelihood estimators for inverse problems with 

nuisance parameters can be found in Bindslev (1997). 

Thus, Tang and Tang (2002) defined the exact  p-value )b,a(P Ex
j  

as follows: 
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where: 
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 and   1,2jfor       nba0   and   0   ;  nb,a)b,a( . 

The term exact here refers to the utilization of an exact distribution 

in calculating the p-value of an observation. Tang and Tang (2002) 

suggested an approximate method to eliminate the nuisance 

parameter 11  through estimating its value at its corresponding 

maximum likelihood estimate under the null hypothesis 

 : 00  H . Assuming that 11
~   is the value that maximizes the 



  

log null likelihood function in (5), they concluded that, if 

042  ACB , then 11~  is the smaller root of 02  CBxAx  

and if 042  ACB , then the log likelihood is an increasing 

function of 11  and hence )/,( min~
0011 1  . The 

approximate p-value )b
~

,a~(P Ap
j is then defined as: 
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            (17) 

It should be observed here that, while type I error rates of the 

asymptotic and exact tests are always less than or equal to the pre-

specified nominal level, approximate methods may sometimes have 

error rates greater than the pre-specified nominal level. It is known 

that, for any given test statistic, particularly the two test statistics 

given in (12) and (13) denoted by ),j(T j 21  and for any method 

of estimating the p-value, we reject 0H  at nominal level  if  

)b,a(Pi
j  with i = As, Ex, Ap; where As, Ex and Ap refer to the 

above asymptotic, exact and approximate tests respectively. 



  

Now, for the above hypothesis testing problem, we propose using 

the same method of Tang and Tang (2002) with the utilization of 

the maximum likelihood estimators 11   and ̂ , that we derived and 

in result (11) above, in computing the p-values for the Wald’s test 

1T  and its logarithmic transformation 2T . Let 

21 ; 0 ,j),b,a(t~t~ jj   be the observed values of the test statistics 

1T  and 2T  estimated using the cell frequencies a and b as well as 

the null rate ratio δ0. The modified p-values )b,a(P M
j  for the two 

tests can then be computed as: 
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            (18) 

where the above probabilities can be computed using the exact 

distribution of the cell frequencies a and b, given the estimated 

probability of the first cell 11   and the estimated rate ratio ̂ , 

using the form below: 
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   n0   &   0        where; 1,2jfor  lknl,k);l,k( . 

Empirical results showed that the proposed method works well for 

small sample size and produces roughly similar results as well as 

being computationally easier than Tang’s exact methods which 

require very heavy and sophisticated computing. Moreover, for 

large sample size with n>50 the asymptotic method may be applied 

using formula (14) instead of formulae (18) and (19) for estimating 

the p-values where 11 and δ are estimated using the maximum 

likelihood principles that as in (11). 

The test procedures described above can be modified further by 

utilizing the conditional distribution of the observations a and b 

given the marginal probability at   11 ̂ . In practice this 

probability is very often known since we usually know the marginal 

totals and percentages. Mehta & Patel (1997) followed a similar 

approach in computing exact p-values for some nonparametric tests 



  

in contingency tables. The result of this produces the conditional p-

value ),( baPC
j  which can then be defined as: 
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where the maximum likelihood principles are used for estimating 

1  and   as n/)ba(ˆ  1  and 2)ba/(naˆ  . Hence it can 

be easily observed that 
ba

a
ˆˆˆ / 

 111 . Thus the p-values may 

be computed using the following cumulative conditional 

distribution: 
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 .n0   &   0        where; 1,2jfor  lknl,k);l,k(  

Here 11 /̂  refers to the maximum likelihood estimator of the 

conditional probability of the second negative response given the 

initial negative response where )(ˆ 1/1 baa   as above. 

From the above discussion we may conclude that the conditional p-

value ),( baPC
j  can be estimated using the conditional probability 

of the initial negative response given the second negative response, 

through the cumulative binomial distribution with the parameters 

),m( / 11  where m is the first marginal total and the maximum 

likelihood principles were used to estimate 1/1 .  

5. Confidence Intervals Estimation of the Rate Ratio: 

For the problem of confidence intervals estimation, Lui (1998) 

proposed several test-based confidence intervals for the rate ratio  

. The most important of them are the Wald’s test based confidence 



  

interval using 1T  in formula (12) and on its logarithmic 

transformation test using 2T  in formula (13). However, all of the 

test-based confidence intervals, discussed in Lui (1998), had been 

established using the large sample theory. Furthermore, Tang and 

Tang (2002) proposed several other test-based confidence intervals 

for the rate ratio . Agresti (2001) discussed the appropriateness of 

some exact methods, primarily relating to their conservative nature 

because of discreteness. In the present section more reliable 

procedures for constructing test-based confidence intervals for  

based on the estimated probability of the first cell 11   and the 

estimated rate ratio ̂  that we derived in (11) are proposed. 

To discuss the large-sample asymptotic method, let  11 n/aˆ   and 

,b)/n (a 1  ˆ  then 22
111 )ba/(naˆ/ˆˆ   , 

 1 4
11111

2
1  ˆ/)ˆ(ˆˆ  and 1111

2
2 1  ˆ/)ˆ(ˆ  where 1̂  and 2̂  

are the standard errors of ̂  and )ˆlog(   respectively. Lui (1998) 

proposed the following two 100(1-)% test based confidence 

intervals for   : 

The Wald’s test based confidence interval (based on 1T ) : 



  

  n/ˆzˆn/ˆzˆmax // 1212   ,  0  ,         and : 

the logarithmic transformation based confidence interval (based on 

2T ) : 

    n/ˆz)ˆlog(expn/ˆz)ˆlog(exp // 2222   ,     
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where 2z  is the upper (100*/2)th percentile of the standard 

normal distribution. For the small-sample case, test-based exact 

confidence intervals for the rate ratio  has been established by 

Tang and Tang (2002) following a method proposed by Chan and 

Zhang (1999). Following this method, the 100(1-)% exact 

confidence intervals, based on the statistics ),j(T j 21   for the rate 

ratio  , are given by   ),j(;l,l j,Exuj,Exl 21    , where : 
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A slight modification to the above method has been proposed by 

Chen (2002) and Agresti and Min (2001) to be used for setting 



  

exact confidence intervals for the difference of two independent 

binomial proportions. Tang and Tang (2002) suggested that 100(1-

)% confidence intervals based on the tests )2,1(  jT j  for   may 

be constructed as  jEuujEul ll ,, , , where : 
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According to Agresti and Min (2001), Chen (2002), and Tang and 

Tang (2002) the nuisance parameter 11  could be again eliminated 

by evaluating its value at its corresponding maximum likelihood 

estimate. The maximization was however, conducted on the entire 

nuisance parameter space under 00  :H . The result was the 

maximum likelihood estimate 11~  of 11  as )/,( min~
0011 1  . 

Doing this, a 100(1-)% approximate confidence interval based on 

the tests ),j(T j 21    for   is given by  j,Apuj,Apl l,l , where : 

  ;      |       11 


)~,|t|T(|P:infl jjj,Apl  
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             (25) 

The above confidence intervals are claimed to perform well with 

very high coverage probabilities but they include tedious 

computing and severe conservativeness in the sense that they 

produce error rates very much higher than the -level. For n>50 the 

methods require highly sophisticated computer programming. 

Empirical studies on the above procedures for constructing exact 

confidence intervals showed that, in addition to the fact that the 

methods are computationally tedious, the resulting confidence 

intervals are unnecessarily long with confidence intervals that 

guarantee very much greater than 100(1-)% coverage probability. 

This is because of the discrete nature of a and b and hence 

 ̂ particularly when the sample size is too small. But the main 

reason for that phenomenon is the method of elimination of the 

nuisance parameter 11  over its parameter space under the null 

hypothesis 00 :H  as min )/,( 00 1  which showed that it is a 

biased estimate for 11 . 

Once again, we can utilize the maximum likelihood estimate of the 

rate ratio  ̂  and eliminate the nuisance parameter 11  using its 



  

maximum likelihood estimate 11̂  as derived in (11). The resulting 

modified 100(1-)% confidence intervals based on the tests 

),j(T j 21  for   would then be  j,Muj,Ml l,l , where : 
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where the probabilities could be computed using the following 

distribution: 
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  .  n0   and    ;       where; 21for   lk)l,k(,j  

An empirical study carried out by the author and described in the 

next section showed that the modified confidence intervals in (26) 

proved to be shorter than Tang’s exact confidence intervals and 

guarantee at least 100(1-)% coverage probability particularly 

when n is moderate to large. The modified confidence intervals 



  

performed better than those of the exact ones that were based on 

utilizing 11~  instead which are proposed by Tang and Tang (2002).  

The above principles of modifying confidence intervals could be 

applied on the conditional distribution of the observations a and b 

given the marginal probability at   11 ˆ . The result of applying 

this approach produces the following 100(1-)% conditional 

confidence interval estimate  jCujCl ll ,, ,  for the rate ratio  : 
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where 1  and  are estimated using the maximum likelihood 

principles as n/)ba(ˆ  1  and 2)ba/(naˆ   and the 

probabilities in the expression are estimated using the cumulative 

binomial distribution, as derived in (24), and given by: 
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  . and  0   ;       where; 21for bamnmkk,j   

It is clear that the use of the binomial distribution in the present 

method of estimating confidence intervals is much easier than the 

use of the multinomial distribution and requires much less 

computing time. 

6. Assessing the tests and confidence interval construction 

procedures : 

Now, we assess the performance of the various tests and confidence 

intervals discussed in the previous sections, for the rate ratio  in a 

2x2 contingency table with an empty cell, using simulation 

methods. For this purpose, 2000 samples of different values of a, b, 

n and δ0, using the distribution of the numbers of occurrences a and 

b among n cases in (4), had been generated in each run. Various 

tests for the null hypothesis 00 :H  versus different possible 

alternatives, using different values of δ0 , were examined and 

various confidence intervals for the rate ratio   were estimated. 

Results of all the above methods and of the simulation results are 

compared. To assess the performance of various confidence 

intervals for  two assessment measures are considered which are: 

the coverage probability measure: 
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and the expected interval width: 

  ),b,a(f)n,b,a(l)n,b,a(u)n,b,a(   11
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where  )n,b,a(u),n,b,a(l  is the confidence interval based on the 

observed frequencies a, b and n and  )n,b,a(u),n,b,a(lI    is 

an indicator function of the event   )n,b,a(u),n,b,a(l . The 

notations l(a,b,n) and u(a,b,n) are the lower and upper confidence 

limits as estimated using a specific method.  

All the procedures were implemented using the R code (R, 2004) 

using a PC. For a moderate sample size, estimating confidence 

intervals and conducting various tests for a given data set, using the 

asymptotic and simulation methods, with 2000 samples, could be 

conducted within a few seconds and so as the modified and the 

conditional methods. They require reasonably less computing time 

than Tang's exact procedures that could take several minutes. Some 

of the assessment results are reported in table (1) for different 

values of 11 , δ and sample size n.  



  

Table 1 : Coverage probabilities and expected interval widths for 95% 
confidence intervals based on different values of  n, a and b using 
different methods and the statistic (T1).

(1) 

n 11    

Simulation 
Method 

Asymptotic 
method 

Tang’s Exact 
method 

Modified 
method 

Conditional 
Method 

(2) (3) (4) (3) (4) (3) (4) (3) (4) 
10 0.01 0.25 2.5 95.6 1.7 100 39.7 100.0 10.0 98.7 5.0 

 0.04 1.0 10.0 93.4 4.3 99.0 46.9 100.0 10.0 94.6 5.0 
 0.06 1.5 10.0 91.9 5.2 99.5 51.1 100.0 10.0 91.9 5.0 
 0.023 0.25 2.5 95.3 1.2 100 19.8 100.0 10.0 99.0 3.3 
 0.09 1.0 10.0 93.5 3.0 97.7 28.5 100.0 10.0 94.3 3.3 
 0.135 1.5 10.0 89.8 3.9 99.2 53.4 100.0 10.0 89.8 3.3 
 0.063 0.25 2.2 93.0 0.8 99.8 4.2 98.8 2.2 98.2 1.6 
 0.25 1.0 3.3 89.1 1.9 98.6 8.7 98.4 3.3 89.1 1.9 
 0.375 1.5 4.4 90.8 2.4 99.8 11.2 99.3 5 77.7 1.5 
 0.16 0.25 0.8 92.9 0.6 98.3 1.0 98.7 0.8 97.6 0.8 
 0.64 1.0 1.0 93.9 0.9 100 1.9 98.6 1.7 82.8 0.6 

25 0.01 0.25 2.8 92.8 1.1 100 9.9 99.9 6.3 99.1 4.0 
 0.04 1.0 6.3 91.0 2.7 99.3 15.0 99.1 6.3 95.1 3.8 
 0.06 1.5 8.3 90.2 3.5 97.8 18.3 98.3 6.3 91.1 3.7 
 0.023 0.25 1.6 91.4 0.8 100 2.9 99.2 2.1 98.6 1.9 
 0.09 1.0 4.0 92.6 2.1 98.2 5.7 98.1 3.1 92.8 2.2 
 0.135 1.5 5.6 89.4 3.1 98.1 7.5 98.0 4.6 85.0 2.4 
 0.063 0.25 0.9 94.8 0.6 99.3 1.0 99.4 1.0 99.4 1.0 
 0.25 1.0 1.7 92.8 1.3 99.4 2.3 96.4 1.9 93.8 1.5 
 0.375 1.5 1.8 93.0 1.5 99.6 2.9 96.1 2.4 88.1 1.1 
 0.16 0.25 0.5 94.4 0.4 97.2 0.6 99.0 0.6 98.9 0.6 
 0.64 1.0 0.6 94.2 0.6 100 1.0 95.7 1.3 85.6 0.4 

50 0.01 0.25 1.9 91.6 0.9 100 2.6 99.8 3.1 99.6 3.0 
 0.04 1.0 4.2 92.5 2.2 98.1 4.8 99.2 4.1 97.7 3.4 
 0.06 1.5 5.5 94.1 3.0 98.0 6.2 97.9 4.1 94.2 3.3 
 0.023 0.25 1.0 94.3 0.7 99.9 1.3 99.8 1.6 99.7 1.6 
 0.09 1.0 2.2 92.6 1.6 98.4 2.8 98.4 2.4 96.9 2.2 
 0.135 1.5 2.6 93.5 2.0 99.1 3.6 96.2 2.8 91.0 2.0 
 0.063 0.25 0.6 94.9 0.5 97.4 0.7 99.8 0.8 99.7 0.8 
 0.25 1.0 1.1 93.7 0.9 99.6 1.5 96.6 1.5 92.7 0.9 
 0.375 1.5 1.2 94.0 1.0 99.7 1.8 94.6 1.9 81.1 0.6 
 0.16 0.25 0.3 95.0 0.3 98.0 0.4 99.5 0.5 98.7 0.4 
 0.64 1.0 0.5 94.4 0.4 99.9 0.7 93.9 0.5 81.6 0.2 



  

(1) Confidence interval estimation methods using the statistic (T2) produce 
approximately the same results as the statistic (T1). Moreover, other Tang’s exact 
methods produce approximately similar results. Therefore, one table is exhibited 
here in order to simplify comparisons .  

(2) Expected interval width for 95% confidence interval using 2000 simulated samples. 
(3) Coverage probability as defined in formula (31).  
(4) Expected interval width as defined in formula (32). 
 

The values of 11 , δ and n were selected for illustration of the 

results in all situations in the table that would enable comparison 

between different methods. They are however constrained by the 

above relation between 11 , 1  and δ. Only results of the Wald’s 

test T1 are reported in the above table as the logarithmic 

transformation test produces similar results in most cases. Using a 

similar approach the power functions for nine different test 

statistics are studied by Berger (1994). 

Comparison of the values of the coverage probability  and the 

expected interval width  for different methods shows that the 

exact methods proposed by Tang and Tang (2002) are 

unnecessarily long despite the fact that their coverage probabilities 

are higher than those of the other methods. The coverage 

probabilities of the modified methods can be seen clearly slightly 

below those of the exact methods but their expected interval widths 

are much smaller than those of the exact methods. The conditional 

methods (in the last columns in the table) however, produced much 



  

shorter confidence intervals than all other methods with coverage 

probabilities ranging around 95%. An interesting result which can 

be concluded clearly from the above table is that despite the 

difference in complications and computing time within different 

methods, the asymptotic methods for hypotheses testing and 

confidence intervals construction perform well for moderate and 

large samples. Conditional confidence intervals indicated that they 

are reliable in the sense that they are very short and their coverage 

probabilities are just about the required level. 

Moreover, the distributional properties of the estimated rate ratio 

 ̂ and the test statistics T1 and  T2 are examined for samples of 

small and moderate sizes using simulation methods. The results 

showed that in the majority of cases the distributions of the test 

statistics T1 and  T2 are very close to the standard normal 

distribution. This result supports the above results that the 

asymptotic methods for hypotheses testing and confidence intervals 

construction perform well in moderate to large samples and to some 

extent in small samples. An example showing histograms and the 

normal probability plots of  the estimated rate ratio  ̂ and the test 

statistics T1 and  T2  is exhibited in figure (1) for a moderate sample 

size (n=30).  



  

7. Application of the methods to real data sets : 

To illustrate the above methods, we applied them on some real 

published and unpublished data sets. The first data set is the two-

step tuberculosis testing data reported in Toyota et al (1999) and 

revisited by Tang and Tang (2002). In their study they reported that 

a=22, b=8, c=4. For this data set, we estimated the rate ratio  ̂ at 

0.831. Using the statistic T1 the 95% confidence interval estimates 

based on the simulation, asymptotic, Tang’s small sample exact, the 

modified and the conditional methods are given by [0.62, 1.05], 

[0.62, 1.04], [0.59, 1.18], [0.65, 1.01] and [0.68, 0.98] respectively. 

As expected, the interval width based on Tang’s small sample exact 

method is relatively wider than those of the other methods. 

Moreover, based on the above hypothesis testing procedures and 

using the statistic T1 for testing the null hypothesis 00    :H  the 

p-values are given by 0.066, 0.0543, 0.072, 0.057 and 0.036 

respectively. Based on those results, Tang and Tang (2002) 

concluded that there is no evidence of a booster effect from the data 

because all their resulting confidence intervals contain the value 1.0 

and all their p-values are greater than 0.05. However, using our 

conditional method we may conclude a different result. 



  

Figure (1): An example showing histograms and normal QQ plots of  

the simulated rate ratio  ̂ and the test statistics T1 and  T2  (for 
n=30). 

 
In other examples we applied the methods on real data sets from a 

family planning survey in the Gaza Strip where we have samples of 

men and women classified by their knowledge and attitudes 

towards family planning and their practicing status of at least one 

family planning method. It is expected that all persons who do not 



  

know about or have negative attitudes towards family planning 

would not practice it. Therefore, we have many two-way 

contingency tables with empty cells. We concentrate on three of 

those tables with different sample sizes. The overall sample size in 

the survey is 348 but we apply the methods on the sub-samples of 

males and females with university level education. The sizes of 

sub-samples are 35 and 61 for females and males respectively. The 

three data sets for women, men and the overall sample are (19, 1 

and 15), (39, 3 and 19) and (143, 46 and 159) respectively for 

(positive attitude and applied, positive attitude and never applied 

and negative attitude and never applied any family planning 

method). We start by estimating the rate ratio for women with a 

university level education with a sample size of 35. For this data 

set, the estimated rate ratio  ̂ is 1.66. Using the statistic T1 the 95% 

confidence interval estimates based on the simulation, asymptotic, 

Tang's small sample exact, the modified and the conditional 

methods are given be [1.28, 2.33], [1.23, 2.25], [1.16, 2.33], [1.39, 

2.33] and [1.49, 1.75] respectively. Based on the above hypothesis 

testing procedures and using the statistic T1 for testing the null 

hypothesis 00    :H  all the p-values in this case are close to 

zero. For the males' data set, the estimated rate ratio  ̂ is 1.35 and 



  

the 95% confidence interval estimates based on the above methods 

are given be [1.14, 1.68], [1.09, 1.60], [0.95, 1.63], [0.95, 1.60] and 

[1.21, 1.45] respectively. All the p-values for tests of the null 

hypothesis 00    :H  using the statistic T1 in this case are well 

below 0.05 despite the fact that the small sample exact and the 

modified confidence intervals do not contain the value 1.0. For the 

third data set, since the sample size is too big, confidence intervals 

estimation based on Tang's small sample exact and the modified 

methods seem to be impossible to compute using a PC. For such a 

large sample the estimation requires a mainframe computer. The 

estimated rate ratio  ̂ for this example is 1.39 and the 95% 

confidence interval estimates, using the statistic T1 and based on the 

simulation, asymptotic and the conditional methods are given be 

[1.24, 1.58], [1.22, 1.57] and [1.32, 1.47] respectively. All the p-

values for tests of the null hypothesis 00    :H  using the 

statistic T1 in this case are close to zero. The conclusion which 

could be drawn from the above results is that the rate ratios 

between people who apply at least one family planning method 

among those who have positive attitudes towards family planning 

methods in the society and people who have positive attitudes 

towards family planning are significantly greater than 1. This could 



  

be interpreted as the probability of applying at least one family 

planning method among people who have positive attitude towards 

family planning is significantly greater than the probability of 

having positive attitude towards family planning in the society. In 

other words, this also means that, people who have positive attitude 

towards family planning are more likely that they will apply family 

planning methods in the Palestinian society in the Gaza Strip. 

8. Conclusions : 

In the present article, we showed that the confidence interval 

estimates based on the asymptotic methods produce the shortest 

expected interval widths particularly when the sample size is small. 

However, this advantage can be penalized by their inability to 

achieve the desired confidence levels. If one needs to guarantee a 

lower coverage probability, confidence intervals based on Tang's 

small-sample exact methods or the modified methods provide more 

reliable performance. The conditional methods however, have been 

shown to approximately achieve the desired confidence levels and 

lower bounds on the coverage probability. Moreover, while Tang's 

small-sample exact methods require so heavy computing that they 

are hard to estimate using a PC the asymptotic methods and the 

conditional methods could be estimated easily. 



  

Empirical study showed that, asymptotic methods of hypothesis 

testing produce actual errors usually greater than the -level but 

Tang's small-sample exact methods and the modified methods 

produce actual errors always less than the -level. However, the 

conditional methods of hypothesis testing produce actual error rates 

very much close to the -level. Thus, based on our empirical study 

we would recommend the conditional methods of hypothesis 

testing for small and moderate samples and the asymptotic methods 

for large samples. 

The Tang's small-sample exact procedures described in this article 

were implemented using a C program written by Tang and Tang 

(2002) with their kind permission. All other procedures were 

implemented using R codes (R Development Core Team; 2004) on 

a Pentium 4 PC, which are available from the author on request. 
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