Statistical Inference for the Rate Ratio in a Two-way
Contingency Table with an Empty Cell
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Abstract:

In many statistical data analyses, the problem of analyzing contingency tables that
contain empty cells is commonly encountered in all fields of research. The odds ratio
and risk ratio are not applicable in such a case because of an unidentifiablity problem.
In the present paper the rate ratio between the second negative response given an initial
negative response and the initial negative response in a two-way contingency table with
a zero-count in one of the off-diagonal cells is utilized. Hypothesis testing and
confidence interval construction for the rate ratio based on the Wald’s test statistic and
its logarithmic transformation will be reviewed. Inference based on large sample theory
and small-sample on the rate ratio of this case is discussed. The asymptotic performance
of the Wald’s test statistic and its logarithmic transformation is examined. By adopting
these statistics, full unconditional exact small-sample procedures that have been
proposed by Tang and Tang (2002) are discussed. The procedures are modified by
utilizing the maximum likelihood estimator of the rate ratio and the conditional
likelihood functions. The accuracy of all the methods is empirically assessed. We show
that our modified conditional procedures are more reliable than both exact and
asymptotic procedures in terms of coverage probability and expected interval width.
The methodology is applied to data on family planning in the Gaza Strip and other
examples from the literature.

Key Words: rate ratio, two-way contingency tables, empty cells, Wald's test,
logarithmic transformation, coverage probability.
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1. Introduction :

The subject of this paper has been stimulated from the analysis of a
family planning survey where we met many sparse two-way
contingency tables that contain empty cells. In family planning
surveys we have samples of men and women classified by their
knowledge and attitudes towards family planning and their
practicing status of family planning. We expect that all persons who
do not know about or have negative attitudes towards family
planning do not practice it. The problem of interest in this paper is
to make inference on the rate of applying family planning methods
among those who know and have positive attitudes towards family
planning compared to those who know about family planning

methods.



In many cases of 2x2 contingency tables it is expected that one cell
in the table could contain a zero-count. For such an empty cell even
though the cell has a zero-count, its true probability may be greater
than zero. This means that, in such a case, it could be theoretically
possible to have observations in the cell if the sample size was
sufficiently large. However, we are interested in contingency tables
which have empty cells for which observations are theoretically
impossible. Such a cell has a true probability equals to zero and the
cell count is zero regardless of the sample size. Contingency tables
containing empty cells are often called incomplete tables and the
empty cell is called a structural zero if its true probability equals to
zero (Agresti, 1996). In such a case, the zero-count is not an
observation and is not part of the data. On the other hand, empty
cells with true probability greater than zero are common and
intensively discussed in many articles in the literature including
Agresti (1990 and 1996) and Bishop et. al. (1975). However, little
discussion was found in the literature on contingency tables that
contain empty cells with true zero probability (Tang and Tang,
2002). In this paper, we discuss in detail the problems of
estimation, hypotheses testing and confidence interval construction
for the rate ratio between the second negative response given an

initial negative response and the initial negative response in two-



way contingency tables that contain empty cells with true zero

probability.

2. Rate Ratios for 2x2 Contingency Tables with Empty
Cells:

We assume that X and Y are two binary response variables each
having — the generic terms - negative and positive responses and
were cross-classified into a 2x2 contingency table. We introduce an
empty cell in the off-diagonal cell that corresponds with a positive
response to the initial variable X and a negative response to the

second variable Y in the following summary table.

Second Response (Y)
Initial (li(e)sponse Negative Positive Total
(Y=0) Y=1)
Negative (X=0) a(my) b (m1,) a+Db(m.)
Positive (X=1) 0 ¢ (M) C (122)
Total a(m)) b+c (m4) n()

Suppose that we have a sample of n randomly selected observations
from a population of interest, classified on the two response

variables, X and Y. Let 7;; = P(X =1i,Y = ) denote the probability

that (X,Y) falls in the cell in row i and column j. The probabilities
{nij} then form the joint distribution of X and Y. They satisfy the

conditions  0<7<l; (i,)=(1,1,(1,2),(2,2), 7, =0 and



% =1 The marginal distributions are the row and column

totals of the joint probabilities. These are denoted by {;, }for the

row variable and in y } for the column variable. The cell counts are

denoted by {a,b,c} with a+b+c=n denoting the total sample size.

Broadly speaking, in a 2x2 contingency table, the odds ratio is

defined using the joint probabilities as:

_ T [Ty Ty,

0

Tt / Ty  TqpTly

(1)
The risk ratio is however, defined as the ratio of “risks” for the two
groups. In the case of a 2x2 contingency table with an empty cell

where 7,, =0, the odds ratio and the risk ratio are unidentifiable.

The rate ratio however, is defined as the ratio of the “negative”

responses for the two groups. Let m;; denote the probability of the
negative initial negative second response, m;, denote the
probability of the negative initial positive second response and

denote the probability of negative initial response. The rate ratio
between the initial negative response and the second negative

response is defined as =,/ 7, . For intensive discussion and use of

the rate ratio, odds ratio and risk ratio see Chan et. al. (2003).



However, inference will be made here on the rate ratio between the
second negative response given an initial negative response and the

initial negative response.

Using the above terms, the probability of the second negative
response  given  an  initial = negative  response 1S
P(Y=0|X=0) =P(Y=0,X=0)/P(X=0) =m,/n,, and the
probability of the initial negative response is P(X=0) = m;, .
Therefore the rate ratio & can be expressed as the proportion of the

two probabilities as follows:

P(X =0) n12+

2)

In this paper, our discussion will be limited to the rate ratio & given

in (2). The issues of estimating the rate ratio J, using the observed
cell counts, hypothesis testing and confidence interval construction
procedures will be discussed. Accuracy of the test statistics and the
confidence intervals will be assessed using simulation methods; and

the results will be illustrated using real data sets.



3. Estimation of the Rate Ratio:

In the underlying case and using the notations of the above
summary table, the likelihood function of the numbers of
occurrences a and b among n cases can be written as:

n!
T
alb!(n-a-b)!

3)

Now, from equation (2) we can easily see the equalities

n-a-b

f(a,b|m,mpy)= 1 7‘?2(1_7511_7‘12)

It n
My =.—+-m, and my, =1-,/—1 hence we observe that
d S

0<m; <min(4,1/8). Consequently, the likelihood function of the

numbers of occurrences a and b among n cases can be written as:

| b n-a—b
- - a | [ _ [
L(ﬁ“’g)_a!b!(n—a—b)!ﬂ“(\/ 5 ”“j [l \ 5}

4

The first issue in this paper is the estimation of the rate ratio 9.

Using the maximum likelithood principles we could estimate both
parameters, 0 and m;;, over the entire parameter space, by

maximizing the log likelihood function as follows:



n! i
log L(,,,8) = log( b (n—a—D)! )+a.log(m,, )+b.|og(,/% _TEHJ

[T
+(n a b)Iog(l SJ
(5)

b 1 1 (n—a-h)
olog L(TCH,S)_ a N 2,70 2 0

_ NI
ony, B!

(6)

b —
dlog L(my;,8) (%i _ = 0
00 )

(7)

Assuming that & # m;; and d # 1/ m;; the equations yield:

5 = (n-a)’k,
(n—a-b)x,, +b)

(8)
(n+a+b)\/§?c“-(2aA6+2bA8+a+n)\/ﬁ +(2a+b)\/§ =0
)

and



Formula (9) can be rewritten as:
A= 2bn(n-a-b) ;
B =-2b(n+a)(n-a-b) ;
C = 2ab(n-a-b)
(10)

The solution of the above quadratic equation yields the following

MLE estimator for the probability m;; and the rate ratio o:

an

T, = 2 and § = —
n (a+b)
(11)

The above estimators of m;; and & can also be obtained through

estimating m;; and m;; using equation (2) and the likelihood

function in (3) (Okasha & Al-Krunz , 2000).

4. Testing of Hypothesis Concerning the Rate Ratio :

For testing the null hypothesis H,: 6=0, versus different

alternatives, where 9 is the rate ratio that takes the form defined in
(2) above, relevant tests which had been intensively studied by
many authors including Lui (1998) are the Wald’s test which takes

the form:



na-5,(a+h)?
Jna(n-a)
(12)

and the logarithmic transformation test which takes the form :

Jn(log(na)—2log(a+b)—log(5, ))

J(n-a)la

T, =T (a,b,6y)=

T, =T,(a,b,3y) =

(13)
The above test statistics are the core of the present paper and will
be used in making inference on the rate ratio. For the purpose of

testing the null hypothesis H,: 06=0,, we will define
t~j = t~j(a,b,50) , j=12 as the observed values of each of the

above test statistics T; and T, computed using the observations
(a,b). In the subsequent sections, different possible procedures for
estimating the p-value for testing the null hypothesis H, versus

different possible alternatives and confidence interval estimation

based also on the same test statistics T, and T, will be discussed
and modifications will be proposed.
In the hypothesis testing problem, assuming that the sample size (n)

is sufficiently large, it is well known that under the null hypothesis

H, both Wald’s test statistic T; and the logarithmic transformation



test statistic T, asymptotically follow the standard normal
distribution. The asymptotic p-values which will be referred as

p{*(a,b) can then be given as follows:

2xmin(®(t;),1-0(t;)) if  H,:8#95,
p*(ab)=1 &(t;) if  H,:8<3§,
1-@(t;) if  H,:8>38,

(14)

for j=12 . The term ®(.) refers to the standard normal

distribution function and ;fj = fj(a,b,So) are the estimated test

statistics using the observed frequencies (a,b) and the null value of

the rate ratio 9, .

The asymptotic method is computationally simple and performs

well for large sample size (n) as the distributions of t; and t, are

close to the standard normal for n>50. An empirical study showed
that the asymptotic p-values are very often close to the simulated p-
values given m;; and §, and the normal probability plots of the
simulated cases showed that there is no evidence against the
normality of the above tests. If however, the sample size is too
small or the data have a sparse structure, the asymptotic tests will

not be suitable and the true p-value will always be greater than the



pre-specified nominal level. In the case of too small sample size

and under the null hypothesis H, :6 =90,, following Suissa and

Shuster (1985) Tang and Tang (2002) proposed exact methods

where the nuisance parameter m;; could be eliminated by

maximizing the null likelihood over the complete domain of ;. It
should be noted here that the monotonicity property of the
convexity assumption described in Hsueh et. al. (2001), Okasha &
Al-Krunz ((2000) and Bindslev (1997); is not preserved by either
T, or T,. This could be demonstrated through examples by trying

different values for n, a, b and J,,. For the two one-sided alternative

hypotheses, the maximization is conducted on the entire nuisance

parameter space under the null hypothesis H,. Detailed discussion

on the maximum likelihood estimators for inverse problems with

nuisance parameters can be found in Bindslev (1997).

Thus, Tang and Tang (2002) defined the exact p-value PjEX(a,b)

as follows:



P™(ab)=

sup Py 2 [6[180,m,))  if H, 183,

OSTEI 1<min( 60’1/ 80)

sup{ sup {P(TJ- <t 18,1, )}} if H,:8<3§,

828 | 0<my <min(3,1/3)

supd  sup {P(T, 2T [8,m )t if H, 18>8,
<80 | 0<my <min(8,1/38)
(15)

where:

P(T; Sfj 189,711 ) =

b n-a-b
(ap)ee alb!(n—a-b)! 1 5, 11 5,

such that Tj£t~j
(16)

and Q:{(a,b); 0<a,b<n and OSa+b£n} for j=1,2.

The term exact here refers to the utilization of an exact distribution
in calculating the p-value of an observation. Tang and Tang (2002)
suggested an approximate method to eliminate the nuisance

parameter my; through estimating its value at its corresponding

maximum likelthood estimate wunder the null hypothesis

Hy:0 =0, . Assuming that 7, is the value that maximizes the



log null likelihood function in (5), they concluded that, if

B2 —4AC >0, then T, is the smaller root of Ax?> —Bx+C =0

and if B2-4AC<0, then the log likelihood is an increasing

function of /m;; and hence m;;=min (5,1/8,). The

approximate p-value PjAp (a b )is then defined as:

P(|T1|Zlfj||80’n11:&11) if H, :8#9,
P(Tthj|60’n11:-7E11) if H,:0>9,
(17)

It should be observed here that, while type I error rates of the
asymptotic and exact tests are always less than or equal to the pre-
specified nominal level, approximate methods may sometimes have
error rates greater than the pre-specified nominal level. It is known
that, for any given test statistic, particularly the two test statistics

given in (12) and (13) denoted by T;( j=1,2) and for any method
of estimating the p-value, we reject H, at nominal level « if
Pji (a,b) <a with i = As, EX, Ap; where As, Ex and Ap refer to the

above asymptotic, exact and approximate tests respectively.



Now, for the above hypothesis testing problem, we propose using

the same method of Tang and Tang (2002) with the utilization of
the maximum likelihood estimators 7;, and 5, that we derived and
in result (11) above, in computing the p-values for the Wald’s test
T and  its logarithmic  transformation T5. Let
fj = fj(a,b,SO ); ] =12 be the observed values of the test statistics
T, and T, estimated using the cell frequencies a and b as well as
the null rate ratio 8. The modified p-values PjM (a,b) for the two

tests can then be computed as:
P(|Tj|z|t~j(a,b,50)|\§=%,n“=&11); if H, :5%8,
P (ab)=4 P(T; <t;(ab,8,)8=8,m, =7, ); if H,:8<3,
P(T; >t;(a,b,80)18=8,my; =7y, ); if H, :6>9,
(18)
where the above probabilities can be computed using the exact

distribution of the cell frequencies a and b, given the estimated

N

probability of the first cell m;; and the estimated rate ratio o,

using the form below:



P(T; <T(ab5y)|6=8m=7 )=

I = | — n—k-I
(k,I')eQsuch that klll(n_k_|)| ) o

kl)e
TjStj(a,b,Bo)
(19)
forj=1,2; where Q={k,I); 0<kI<n & 0<k+l<n} .

Empirical results showed that the proposed method works well for
small sample size and produces roughly similar results as well as
being computationally easier than Tang’s exact methods which
require very heavy and sophisticated computing. Moreover, for
large sample size with n>50 the asymptotic method may be applied
using formula (14) instead of formulae (18) and (19) for estimating
the p-values where m;; and o are estimated using the maximum

likelihood principles that as in (11).

The test procedures described above can be modified further by
utilizing the conditional distribution of the observations a and b

given the marginal probability at =z, =7, . In practice this

probability is very often known since we usually know the marginal
totals and percentages. Mehta & Patel (1997) followed a similar

approach in computing exact p-values for some nonparametric tests



in contingency tables. The result of this produces the conditional p-

value PjC (a,b) which can then be defined as:

PCIT; | = [§(ab,8))[8=8,m, =7, );  if H,:8#3,
P(T; 2T;(a,b,5,)18=8,m,, =7, ); if Hy, 8>3,
(20)

where the maximum likelihood principles are used for estimating

7y, and 8 as T, =(a+b)/n and %zna/(a+b)2.Hence it can

: A “n a
be easily observed that ©,,, = dmn,, = ——. Thus the p-values may
a—+

be computed using the following cumulative conditional

distribution:
P(Tj <t;|8=08,m, =7,,)

_ Z P(sztj,5=5|7t1+=’7:t1+)

(kDetsehtar  P(8=8|m, =T, )
kHZm & Tj <t

n' (52 Y 5 a2 VI~ k-l
(k,l)eéuchthat{k!I!(n—k—l)!\ TCH) (TEH n”) ( TCH) /
k+l=m & T <t

0

(k+nuﬁ—k—n!



(K+I)!a. K e I}
(kJ)Eﬂsuchthat{ KT (87[1+) (1 67tl+)

k+l=m & Tj <t;

SN ) I

ke Qsuch that
Tj Stj

(21)
for j=1,2; where Q:{(k,l); 0<k,I<n & O£k+|£n}.
Here T,,, refers to the maximum likelihood estimator of the

conditional probability of the second negative response given the

initial negative response where 7,,, =a/(a+b) as above.

From the above discussion we may conclude that the conditional p-
value ch (a,b) can be estimated using the conditional probability
of the initial negative response given the second negative response,

through the cumulative binomial distribution with the parameters

(m,z,,,) where m is the first marginal total and the maximum

likelihood principles were used to estimate 7, .

5. Confidence Intervals Estimation of the Rate Ratio:
For the problem of confidence intervals estimation, Lui (1998)
proposed several test-based confidence intervals for the rate ratio &

. The most important of them are the Wald’s test based confidence



interval using T; in formula (12) and on its logarithmic
transformation test using T, in formula (13). However, all of the
test-based confidence intervals, discussed in Lui (1998), had been
established using the large sample theory. Furthermore, Tang and
Tang (2002) proposed several other test-based confidence intervals
for the rate ratio 0. Agresti (2001) discussed the appropriateness of
some exact methods, primarily relating to their conservative nature
because of discreteness. In the present section more reliable
procedures for constructing test-based confidence intervals for ¢

based on the estimated probability of the first cell m;, and the
estimated rate ratio & that we derived in (11) are proposed.

To discuss the large-sample asymptotic method, let 7,;, =a/n and

~

n, =(a+b)n, then §=m,, /7 =nal(a+b)?,
o7 =n,(1-7,,)/ 7}, and 63 =(1-7,,)/ 7, where &, and &,
are the standard errors of & and Iog(é) respectively. Lui (1998)
proposed the following two 100(1-a)% test based confidence

intervals for ¢ :

The Wald’s test based confidence interval (based on T,) :



[max(%—za,zfsl/\/ﬁ , 0), %+za,2&1/\/ﬁ] and :

the logarithmic transformation based confidence interval (based on
T,):

[exp{log(%)— 2,720,/ \/ﬁ} , exp{log(%)+ 2,720,/ \/H}J

(22)

where Zy); is the upper (100*&/2)th percentile of the standard
normal distribution. For the small-sample case, test-based exact
confidence intervals for the rate ratio 0 has been established by
Tang and Tang (2002) following a method proposed by Chan and
Zhang (1999). Following this method, the 100(1-at)% exact

confidence intervals, based on the statistics T; ( j =1,2) for the rate

ratio 0, are given by {IExl,j Jexu }; (J=12), where :

leaj =inf{8:  sup  P(T; 2t 18,m,)> =t ;
’ 5 0<my <min(3.,1/8) 2

lexu j =SUD{5: sup P(T; <t; |5,n11)>%} _
I3

0<m;1<min(8,1/8)

(23)
A slight modification to the above method has been proposed by
Chen (2002) and Agresti and Min (2001) to be used for setting



exact confidence intervals for the difference of two independent
binomial proportions. Tang and Tang (2002) suggested that 100(1-

)% confidence intervals based on the tests T; (j =1,2) for & may

be constructed as {I Eul.j-lEuu. }, where :

1) OSTE“Smin(B,I/S)

IEou :sup{S: sup PdT}|2|th8Jq1)>(x}.
) OSn“smin(B,l/B)

(24)
According to Agresti and Min (2001), Chen (2002), and Tang and

Tang (2002) the nuisance parameter z,, could be again eliminated

by evaluating its value at its corresponding maximum likelihood
estimate. The maximization was however, conducted on the entire

nuisance parameter space under H, : 0 =9J,. The result was the
maximum likelihood estimate 7z,, of z;; as T;; =min (5,,1/5,).
Doing this, a 100(1-01)% approximate confidence interval based on

the tests T; (j=12) for ¢ is given by {IAPLJ' A apu, }, where :

Lot | :ir;f BPAT 2 1t 3.7 )>af



| pu.; =Sl;p{8: PAT; 12 It 1[3,7,) > af -

(25)
The above confidence intervals are claimed to perform well with
very high coverage probabilities but they include tedious
computing and severe conservativeness in the sense that they
produce error rates very much higher than the a-level. For n>50 the

methods require highly sophisticated computer programming.

Empirical studies on the above procedures for constructing exact
confidence intervals showed that, in addition to the fact that the
methods are computationally tedious, the resulting confidence
intervals are unnecessarily long with confidence intervals that
guarantee very much greater than 100(1-a1)% coverage probability.

This is because of the discrete nature of a and b and hence
5 particularly when the sample size is too small. But the main
reason for that phenomenon is the method of elimination of the
nuisance parameter m;; over its parameter space under the null
hypothesis H, : 6 =8, as min(J,.1/d, )which showed that it is a
biased estimate for 7;;.

Once again, we can utilize the maximum likelihood estimate of the

~

rate ratio 0 and eliminate the nuisance parameter 7;, using its



maximum likelihood estimate 7, as derived in (11). The resulting

modified 100(1-a)% confidence intervals based on the tests

T;(j=12) for & would then be {lyy ; Iy f> where :
: S ~ a

IM|,j :lnf{S:P(TJ 2t1| 6:6’n11:n11)>5} ;
)

IMU,j =Sup{8 P(TJ Stj| 8:8,ﬁ11 :%11)>%} .
o

(26)
where the probabilities could be computed using the following

distribution:

P(TJ Stj‘%,?tll)z

I 2 ' k-l
z n! '7*_Ck &_& - 7&11
(khea  KIH(n—k-I)! RIS 11 5

such that T <t;
27)
for j=12; where Q:{(k,l); and OSk+ISn}.

An empirical study carried out by the author and described in the
next section showed that the modified confidence intervals in (26)
proved to be shorter than Tang’s exact confidence intervals and
guarantee at least 100(1-a)% coverage probability particularly

when n is moderate to large. The modified confidence intervals



performed better than those of the exact ones that were based on

utilizing 7, instead which are proposed by Tang and Tang (2002).

The above principles of modifying confidence intervals could be
applied on the conditional distribution of the observations a and b

given the marginal probability at ©;, =7, . The result of applying

this approach produces the following 100(1-a)% conditional

confidence interval estimate {ICL islcu.j } for the rate ratio o'
. . ~ o .
lei | =|r;f 81 P(T; 2t;] és,rcl+)>E ;

lew =sup{5: P(T; <t;| 8,7, ) >%}
5

€2y
where 7, and ¢ are estimated using the maximum likelihood
principles as 7, =(a+b)/n and S=nal/(a+b)? and the
probabilities in the expression are estimated using the cumulative

binomial distribution, as derived in (24), and given by:

X a M)~ kg~ \mk
P(T; Sti‘&’m) = 2 [kJ(nlll) (1-7,,)
k e Qsuch that k<m
&Tj(k|’7:t1+,8)ﬁtj

(32)



for j=12; where Q={k; 0<k<m<n}andm=a-+h.

It is clear that the use of the binomial distribution in the present
method of estimating confidence intervals is much easier than the
use of the multinomial distribution and requires much less

computing time.

6. Assessing the tests and confidence interval construction
procedures :
Now, we assess the performance of the various tests and confidence
intervals discussed in the previous sections, for the rate ratio din a
2x2 contingency table with an empty cell, using simulation
methods. For this purpose, 2000 samples of different values of a, b,
n and 0, using the distribution of the numbers of occurrences a and
b among n cases in (4), had been generated in each run. Various
tests for the null hypothesis H, : 6 =06, versus different possible
alternatives, using different values of 6, , were examined and
various confidence intervals for the rate ratio & were estimated.
Results of all the above methods and of the simulation results are
compared. To assess the performance of various confidence
intervals for ¢ two assessment measures are considered which are:

the coverage probability measure:



danm = 2 1 (B li(ab,n)u(ab,n))f(ablr,,s)
(a,b,n)

(33)
and the expected interval width:

Veasny = 3 (U(a,bn)-I(ab,n))f(abr,.s)

(a,b,n)
(34)

where [I(a,b,n),u(a,b,n)] is the confidence interval based on the

observed frequencies a, b and n and 1 (5 <l(a,b,n),u(a,b,n)) is

an indicator function of the event {8 e [I(a,b,n),u(a,b,n)]}. The

notations 1(a,b,n) and u(a,b,n) are the lower and upper confidence

limits as estimated using a specific method.

All the procedures were implemented using the R code (R, 2004)
using a PC. For a moderate sample size, estimating confidence
intervals and conducting various tests for a given data set, using the
asymptotic and simulation methods, with 2000 samples, could be
conducted within a few seconds and so as the modified and the
conditional methods. They require reasonably less computing time
than Tang's exact procedures that could take several minutes. Some
of the assessment results are reported in table (1) for different

values of 7,,, 6 and sample size n.



Table 1 : Coverage probabilities and expected interval widths for 95%
confidence intervals based on different values of n, a and b using
different methods and the statistic (T;)."

Simulation | Asymptotic | Tang’s Exact Modified Conditional
Method method method method Method

n T, S ‘V(Z) (P(3) \|f(4) (P(3) \|f(4) (P(3) \I’(4) (P(3) ‘V(4)
10 0.01  0.25 2.5 95.6 1.7 100 39.7 100.0 10.0 98.7 5.0
0.04 1.0 10.0 93.4 4.3 99.0 46.9 100.0 10.0 94.6 5.0

0.06 1.5 10.0 91.9 5.2 99.5 51.1 100.0 10.0 91.9 5.0
0.023 0.25 2.5 95.3 1.2 100 19.8 100.0 10.0 99.0 33

0.09 1.0 10.0 93.5 3.0 97.7 28.5 100.0 10.0 94.3 33
0.135 1.5 10.0 89.8 3.9 99.2 53.4 100.0 10.0 89.8 33
0.063 0.25 2.2 93.0 0.8 99.8 4.2 98.8 2.2 98.2 1.6

0.25 1.0 33 89.1 1.9 98.6 8.7 98.4 33 89.1 1.9
0.375 1.5 4.4 90.8 2.4 99.8 11.2 99.3 5 77.7 1.5

0.16  0.25 0.8 92.9 0.6 98.3 1.0 98.7 0.8 97.6 0.8

0.64 1.0 1.0 93.9 0.9 100 1.9 98.6 1.7 82.8 0.6

25 0.01  0.25 2.8 92.8 1.1 100 9.9 99.9 6.3 99.1 4.0
0.04 1.0 6.3 91.0 2.7 99.3 15.0 99.1 6.3 95.1 3.8

0.06 1.5 83 90.2 3.5 97.8 18.3 98.3 6.3 91.1 3.7

0.023 0.25 1.6 914 0.8 100 2.9 99.2 2.1 98.6 1.9

0.09 1.0 4.0 92.6 2.1 98.2 5.7 98.1 3.1 92.8 2.2
0.135 1.5 5.6 89.4 3.1 98.1 7.5 98.0 4.6 85.0 2.4
0.063 0.25 0.9 94.8 0.6 99.3 1.0 99.4 1.0 99.4 1.0

0.25 1.0 1.7 92.8 1.3 99.4 2.3 96.4 1.9 93.8 1.5
0.375 1.5 1.8 93.0 1.5 99.6 2.9 96.1 2.4 88.1 1.1

0.16  0.25 0.5 94.4 0.4 97.2 0.6 99.0 0.6 98.9 0.6

0.64 1.0 0.6 94.2 0.6 100 1.0 95.7 1.3 85.6 0.4

50 0.01  0.25 1.9 91.6 0.9 100 2.6 99.8 3.1 99.6 3.0
0.04 1.0 42 92.5 2.2 98.1 4.8 99.2 4.1 97.7 34

0.06 1.5 5.5 94.1 3.0 98.0 6.2 97.9 4.1 94.2 33
0.023 0.25 1.0 94.3 0.7 99.9 1.3 99.8 1.6 99.7 1.6

0.09 1.0 2.2 92.6 1.6 98.4 2.8 98.4 2.4 96.9 2.2
0.135 1.5 2.6 93.5 2.0 99.1 3.6 96.2 2.8 91.0 2.0
0.063 0.25 0.6 94.9 0.5 97.4 0.7 99.8 0.8 99.7 0.8

0.25 1.0 1.1 93.7 0.9 99.6 1.5 96.6 1.5 92.7 0.9
0.375 1.5 1.2 94.0 1.0 99.7 1.8 94.6 1.9 81.1 0.6

0.16  0.25 0.3 95.0 0.3 98.0 0.4 99.5 0.5 98.7 0.4

0.64 1.0 0.5 94.4 0.4 99.9 0.7 93.9 0.5 81.6 0.2




(1) Confidence interval estimation methods wusing the statistic (T,) produce
approximately the same results as the statistic (T,). Moreover, other Tang’s exact
methods produce approximately similar results. Therefore, one table is exhibited
here in order to simplify comparisons .

(2) Expected interval width for 95% confidence interval using 2000 simulated samples.

(3) Coverage probability as defined in formula (31).

(4) Expected interval width as defined in formula (32).

The values of m;;, 6 and n were selected for illustration of the

results in all situations in the table that would enable comparison
between different methods. They are however constrained by the

above relation between m,;, m;, and 3. Only results of the Wald’s

test T, are reported in the above table as the logarithmic
transformation test produces similar results in most cases. Using a
similar approach the power functions for nine different test

statistics are studied by Berger (1994).

Comparison of the values of the coverage probability ¢ and the
expected interval width y for different methods shows that the
exact methods proposed by Tang and Tang (2002) are
unnecessarily long despite the fact that their coverage probabilities
are higher than those of the other methods. The coverage
probabilities of the modified methods can be seen clearly slightly
below those of the exact methods but their expected interval widths
are much smaller than those of the exact methods. The conditional

methods (in the last columns in the table) however, produced much



shorter confidence intervals than all other methods with coverage
probabilities ranging around 95%. An interesting result which can
be concluded clearly from the above table is that despite the
difference in complications and computing time within different
methods, the asymptotic methods for hypotheses testing and
confidence intervals construction perform well for moderate and
large samples. Conditional confidence intervals indicated that they
are reliable in the sense that they are very short and their coverage

probabilities are just about the required level.

Moreover, the distributional properties of the estimated rate ratio

5 and the test statistics T, and T, are examined for samples of
small and moderate sizes using simulation methods. The results
showed that in the majority of cases the distributions of the test
statistics T; and T, are very close to the standard normal
distribution. This result supports the above results that the
asymptotic methods for hypotheses testing and confidence intervals
construction perform well in moderate to large samples and to some

extent in small samples. An example showing histograms and the

normal probability plots of the estimated rate ratio 5 and the test
statistics Ty and T, is exhibited in figure (1) for a moderate sample

size (n=30).



7. Application of the methods to real data sets :

To illustrate the above methods, we applied them on some real
published and unpublished data sets. The first data set is the two-
step tuberculosis testing data reported in Toyota et al (1999) and
revisited by Tang and Tang (2002). In their study they reported that

a=22, b=8, c=4. For this data set, we estimated the rate ratio S5 at
0.831. Using the statistic T; the 95% confidence interval estimates
based on the simulation, asymptotic, Tang’s small sample exact, the
modified and the conditional methods are given by [0.62, 1.05],
[0.62, 1.04], [0.59, 1.18], [0.65, 1.01] and [0.68, 0.98] respectively.
As expected, the interval width based on Tang’s small sample exact
method is relatively wider than those of the other methods.
Moreover, based on the above hypothesis testing procedures and

using the statistic T; for testing the null hypothesis H, : 6 =9, the

p-values are given by 0.066, 0.0543, 0.072, 0.057 and 0.036
respectively. Based on those results, Tang and Tang (2002)
concluded that there is no evidence of a booster effect from the data
because all their resulting confidence intervals contain the value 1.0
and all their p-values are greater than 0.05. However, using our

conditional method we may conclude a different result.



Figure (1): An example showing histograms and normal QQ plots of
the simulated rate ratio o and the test statistics T, and T, (for

n=30).
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In other examples we applied the methods on real data sets from a
family planning survey in the Gaza Strip where we have samples of
men and women classified by their knowledge and attitudes
towards family planning and their practicing status of at least one

family planning method. It is expected that all persons who do not



know about or have negative attitudes towards family planning
would not practice it. Therefore, we have many two-way
contingency tables with empty cells. We concentrate on three of
those tables with different sample sizes. The overall sample size in
the survey is 348 but we apply the methods on the sub-samples of
males and females with university level education. The sizes of
sub-samples are 35 and 61 for females and males respectively. The
three data sets for women, men and the overall sample are (19, 1
and 15), (39, 3 and 19) and (143, 46 and 159) respectively for
(positive attitude and applied, positive attitude and never applied
and negative attitude and never applied any family planning
method). We start by estimating the rate ratio for women with a

university level education with a sample size of 35. For this data

set, the estimated rate ratio 3 is 1.66. Using the statistic T, the 95%
confidence interval estimates based on the simulation, asymptotic,
Tang's small sample exact, the modified and the conditional
methods are given be [1.28, 2.33], [1.23, 2.25], [1.16, 2.33], [1.39,
2.33] and [1.49, 1.75] respectively. Based on the above hypothesis
testing procedures and using the statistic T, for testing the null

hypothesis H, : 8=9, all the p-values in this case are close to

zero. For the males' data set, the estimated rate ratio 3 is 1.35 and



the 95% confidence interval estimates based on the above methods
are given be [1.14, 1.68], [1.09, 1.60], [0.95, 1.63], [0.95, 1.60] and
[1.21, 1.45] respectively. All the p-values for tests of the null

hypothesis H, : 8 =9, using the statistic T; in this case are well

below 0.05 despite the fact that the small sample exact and the
modified confidence intervals do not contain the value 1.0. For the
third data set, since the sample size is too big, confidence intervals
estimation based on Tang's small sample exact and the modified
methods seem to be impossible to compute using a PC. For such a

large sample the estimation requires a mainframe computer. The

estimated rate ratio o for this example is 1.39 and the 95%
confidence interval estimates, using the statistic T; and based on the
simulation, asymptotic and the conditional methods are given be
[1.24, 1.58], [1.22, 1.57] and [1.32, 1.47] respectively. All the p-
values for tests of the null hypothesis H,: 6 =90, using the

statistic T; in this case are close to zero. The conclusion which
could be drawn from the above results is that the rate ratios
between people who apply at least one family planning method
among those who have positive attitudes towards family planning
methods in the society and people who have positive attitudes

towards family planning are significantly greater than 1. This could



be interpreted as the probability of applying at least one family
planning method among people who have positive attitude towards
family planning is significantly greater than the probability of
having positive attitude towards family planning in the society. In
other words, this also means that, people who have positive attitude
towards family planning are more likely that they will apply family

planning methods in the Palestinian society in the Gaza Strip.

8. Conclusions :

In the present article, we showed that the confidence interval
estimates based on the asymptotic methods produce the shortest
expected interval widths particularly when the sample size is small.
However, this advantage can be penalized by their inability to
achieve the desired confidence levels. If one needs to guarantee a
lower coverage probability, confidence intervals based on Tang's
small-sample exact methods or the modified methods provide more
reliable performance. The conditional methods however, have been
shown to approximately achieve the desired confidence levels and
lower bounds on the coverage probability. Moreover, while Tang's
small-sample exact methods require so heavy computing that they
are hard to estimate using a PC the asymptotic methods and the

conditional methods could be estimated easily.



Empirical study showed that, asymptotic methods of hypothesis
testing produce actual errors usually greater than the o-level but
Tang's small-sample exact methods and the modified methods
produce actual errors always less than the a-level. However, the
conditional methods of hypothesis testing produce actual error rates
very much close to the a-level. Thus, based on our empirical study
we would recommend the conditional methods of hypothesis
testing for small and moderate samples and the asymptotic methods
for large samples.

The Tang's small-sample exact procedures described in this article
were implemented using a C program written by Tang and Tang
(2002) with their kind permission. All other procedures were
implemented using R codes (R Development Core Team; 2004) on

a Pentium 4 PC, which are available from the author on request.
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