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A STUDY OF A FLEXIBLE SUBMERGED
CYLINDRICAL TANK SUBJECT TO LATERAL

GROUND EXCITATION
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ABSTRACT

In a submerged rigid oil storage tank it is possible to evaluate the internal
and external hydrodynamic forces separately. Internally the forces are due to internal
waves generated at the oil-water interface. Externally, they are due to radiated waves.
When such a tank is made of steel, at it is usually the case, the internal and external
forces get coupled through the flexibility of the shell, hence their solutions become
inseparable.

The following is an analytical treatment for the case of a flexible tank it
expands the solution of the rigid tank to include the shell flexibility effect. The
submerged tank is assumed to be subject to a harmonic lateral ground excitation.
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INTRODUCTION

The hydrodynamic forces on the wall of a rigid tank both
internally and externally were studied separately by various authors
like Fisher'''. Valestos and Yang' s', Tune', and Helou12-1131 . That was
possible because the tank's wall was assumed to be infinitely rigid
and the fluid motions inside and outside the tank were independent.
When the tank is flexible the fluid motions inside and outside as well
as their solutions become inseparable. Based on the author's previous
work121131 gravity effects are neglected in the following solution of the
fluid.structure interaction problem. The modes of vibration of
circular cylindrical shell are usually defined by the two integerii and
m ; the integer n refers to the number of circumferential waves while
m refers to number of axial waves. Any combination of ri and to
defines a natural mode and an associated natural frequency. Figure
1 shows some representative modes of vibration of such shells. For
the dynamic analysis of the fluid tanks and tower structures subject
to earthquake excitation the modes associated with n = 0 and I are of
interest. It is generally believed that the mode corresponding to Tit =
0 , known as the breathing mode, is excited during vertical ground
excitation,irrelevant for this study. For tanks with a rigid top the use
of mode corresponding to = 1 is well justified. Oil storage tanks
generally have a height to radius ratio in the neighborhood of 1 which
make their modelling as a cantilever shear beam quite appropriate.
This suggestion is supported by the works of Yang`'', and Wu et.a1. 161 .
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figure 1: Modes of vibration of cantilever shells
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Standard methods of mechanics give the cantilever shear mode as

follows:

(1)

Xn =sinprix

where

; 	(2n-1) 7t
n— 	 2L

and the natural frequency as

P -  (2n-1) 7C k"G
2L 	 \

n=1,213...cc

in whicii k' is a factor that depends on the shape of the cross section.

G is the shear modulus of elasticity, p is the mass per unit length

and L is the height of the tank.

Fundamental to the analysis is the assimption that the cross

section remains circular during deformation, e. n = 1 and that the

deflection configuration is of prescribed form The first mode
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corresponding to m = 1 is important others are not. This will be
substantiated during the course of this presentation.

Statement of the problem and its solution:

Consider the submerged tank shown in figure 2. Its roof has
the-same thickness II, as the wall: p S is its mass density. Following
the assumption that the lank behaves as a beam the total displacement
at any point maybe wriLen as:

(4)

V( z, t) =f1.1 ( t) +41 1 (z) Y1 ( t)

Where i 1 (z) is a shape function and Y 1 is the generalized coordinate
amplitude.

Once the flexibility effect is introduced, the Bernoulli's
equation for determining the internal pressure on the tank's wall is
modified to take the form:

(5)

a o
(t) 	 (z) 	 ( t) ) r cose+gz)at (fir

This shows that di. flexibility effect is reflected only in the
frequency independent component of the pressure. Therefore, the
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Figure 2: Definition stoat for a submerged circular cylindrical trek vibrating with an asaumcd mode
cape.
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internal pressure is conveniently written as:

(6)

PDiI = Pi20 *P2i

in which i = 1 denotes upper layer - oil
= 2 denotes lower layer - water

In a similar manner, the solution to the exterior wave radiation
problem is modified to incorporate the extra displacement caused by
the flexibility of the wall. Although the details of the solution are
given by Helou131 it must be noted that the assumptions of inviscid
and incompressible fluid, irrotational motion and small amplitude
waves still hold. The fluid velocity at r = R is of the form atandald
V(Z)cosee' where V(z) is an unknown function of z found to bc:

(7)

V(z) 	 bafx,(z)TriKil_ (KR)	 -H<z<0
n-i

(8)

—7 —7
V( Z) =E BFn (z) knli (k„R) 	 -H<z<0
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and at the tanks wall

V(z) =- 1 (z)(w) (.1(,)),	 17(4 -h<z< - H

(9)

The methodology involved in obtaining the above expression is the

same as that for the rigid tank case, i.e. eigenvalue expansion. The

expression for B. is the same as that obtained for a rigid Lane but

the expression for baf takes the following modified form:

(10)

bar ( t) =b,3 4- 	 aln 	 kl(t)
K11. (7n,R)IT,

where bn is the same value obtained for the perfectly rigid
tanki31 and the second term accounts for the flexibility effects

( I 1 )

a = f (z) f „(z) dz
-h

From the above it appears possible to express the external pressure

as follows

PDS= P SO ." PSI
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where Peo is the hydrodynamic pressure component at the tanks wall
due to the rigid body motion and P EI is the correction induced due to
the flexibility of the tank.

The equation of motion of the structure and its solution:

Following the assumption that the tank behaves as a beam, the
equation of motion for the beam in its fundamental mode of vibration
subjected to a horizontal ground excitation can be written. By
equating the work done at any time t by the external forces during
a virtual displacement 6 Y(G),t) 6) 1 (z)8Y to the work done by the
internal forces, the following equation of motion is obtained

(12)
fla Y+ Y+fa Y+P;45Y+PI8 Y=0

where

fi	 is the generalized inertia force

rp 	 is the generalized damping force

rs 	 is the generalized elastic force

Pe	 is the generalized exterior hydrodynamic force

1): 	 is the generalized interior hydrodynamic force
6Y 	 is a virtual displacement

A generalized quantity is defined as
(13)

r=fF(z, t)4r i (z)dz
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The generalized inertia force is easily observed to be

fr. =Al ( t ) *B1 Y1  t)

where

-H
Ai= f ( z)ip i (z) tiz+mr tfi 1 (D)

- h

in which nir is the mass of the tanks roof and

-H

Bi = f 1.1 ( z) 	 (z) dz+mrlei ( D)
- h

Similarly the generalized exterior hydrodynamic force may be
written as

(17)
P: =A2 f( t) -, 132 4( t)

where 	
(18)

- H

A2 =n f Peo z) 4i ( z) Rdz
- h

and
(19)

-H

B2 =n f PeI ( *( z) Rdz
-h

(14)

(15)

(16)
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FinAlly, the generalized interior hydrodynamic pressure is
written as:

(20)

P1 =A24 ( t)-0-B3 ( t)

where

0

A3 =n fPlo ( z) 4r, ( z) Rdz+7r f P 0 ( z) j1 ( z) Rdz

and

B3 =n f PY1 ( z) Itr 1 ( z) Rdz+.n f Pi1 ( z) tit, ( z) Rdz
0 	 -112

The equation of motion (12) may now be written in the
following form:

(23)

+2 Co) 	 t) +42Y1 ( t) =-- -51 11 (t)

(21)

(22)
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where
(24)

.._ A +A2 +A3C —

Bl +B2 +B3

and
(25)

• 	 .\1 	13, 
01=01 B

1 +B2 +B3

(26)

The quantities co l and 6.)* 1 refer to the natural frequency of
oscillation of the structure in air and in water respectively. E and E*
are the respective modal damping ratio of the structure.

Upon examination of the previous equations it becomes clear
that the hydrodynamic pressures at the wall inside and outside the
tank ha ie effects equivalent to "added masses" B2 and B3 and "added
excitations" A2 and A3. It is further realized from equation (25) and
(26) that resulting from the fluid-structure interaction of the structure
the :tatural frequency of oscillation of the structure as well as its
modA damping ratio are decreased proportionately to the added
masses B2 and B 3 .
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Since the right-hand side of equation (23) is proportional to
e4ot the response can be assumed to be the form

(27)

Y1 (t) 	 ( w) e -iwt

which gives the solution for Y 1 (t) to be
(28)

Y( t) - 	 c . e-iot

(

f.,*2

1— '22- ) +2 jV 6)1
14

or equivalently
(29)

.2 	 .a
(4 1 	 (.01 	 (4,fr,=-72{ (1- --)coStat-g • —simo t-i2c—coscor-i(3.- 	 )sin tad

(,)2 	 (.4) 	 (.)2

where

B---
•2 	 •

(1) 1.1- (1) 1. +21
C

CO 2

(30)
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From the above equation a value for (t) is readily obtained.
Accordingly, the velocity potentials in the upper and lower layers
inside the tank as well as in region 1 surrounding the tank become
fully determined. Extracting the real part of the solution only the
pressures are written as

(31)
•2 	 •4),

PSI -=— P1RCOS8{C09(3)t — tili ( Z) B [ (1- 	 ) cosw 	 sines) 2

and
(32)

.2 	 •

co,
()1

P.;. .7=-NRcose{cosco 	 ,(z)T3[ (1- 
4)2

 ) cos (,) sinw t) 
}

From which the amplitude of the hydrodynamic pressure taken at 6
= 0 for the upper layer is computed as

(33)

p.	 p

and lk.r the lower layer
(34)

PD2r= -
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where the terms P s and Pc are defined as
(35)

Ps=2RC --=-74r (z)B

and
(36)

(0

2--
•2

Pc=R[1 - 10 1 ( 473- ( 1 --)
4) 2

In a similar manner, the pressure distribution i n region 1
surrounding the tank can be express as

(37)

/  
P1f = P1V PS

/ +
PC

/

where
(38)

p.‘ = E bn, 	a" 	3 (3.-	 fn 	 1(z) k (k , ?) COSe
n-1 	 (k R) 	 4.)
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(39)

2 a 1 n 	y3- • •	4 	 fn(z) Ki (lc,R) cos()
II^1 Kt (KR) 7, 	 (4

in which bar -_-_ b nek"'

RESULTS AND CONCLUSION

Figure 3 shows the interior and exterior hydrodynamic

pressure distributions taken at 0 = 0 for a tank of radius equal to 10

meters and a height equal to 10 meters. The tank has a rigid roof

and wall thickness equal to 2.5 centimeters and submerged in water

20 meters deep. It is made of steel with a relative density equal to

7.85 and assumed to be subject to 5% structural damping. The

results shown in figure 3 are based on the assumption that the 1,:nk

behaves as a shear beam and vibrates in its first mode only As a

result of the added mass, the frequency of oscillation of the tank is

reduced from 340 rad/see to 80 rad/sec. Similarly, the structural

damping is reduced from 5% to 1% in water.

For an empty tank made of steel with a height equal to 20

meters the natural frequency of oscillation in air corresponding to the

first mcde of vibration in shear deformation is 170 radians per second

while that corresponding to the second mode is three times as much.

since the height of submerged tanks would not conceivably be higher

than 20 meters and since structures with natural frequencies greater

than 200 radians per second are, for all practical purposes,

considered rigid, it is therefore concluded that the first mode of
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vibration is predominant and that the response due to higher modes
can safely be neglected. This further justifies and reinforces the
assumptions made of the onset of this study.
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Figure 3 : Interior and exterior hydrodyruunic pressure distribution at the wall
of a circular cylindrical tank taken at 0 0 (— right case, w
dependent)
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