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Appendix A 

Table (A1). Comparative Analysis of Impact Evaluation Methodologies. 

Approach Intervention group Reference group Fundamental hypothesis Constraints 

Difference-in-
difference 

Participants in the 
program (recipients of 

benefits) 

Individuals not participating 
(non-recipients of benefits). 

If the program were not in 
place, the outcomes for 
both the treatment and 

control groups would evolve 
similarly over time. 

Testing this 
assumption 

necessitates several 
rounds of pre-

intervention data 
collection, which may 

not always be feasible. 

Propensity 
score matching 

Participants in the 
program (recipients of 

benefits) 

Non-participating individuals 
(non-beneficiaries); each 

member in the control group 
is matched with a treatment 

group member based on 
observable characteristics 

so that an equal likelihood of 
program participation can be 

predicted. 

Program participation is 
influenced solely by the 
characteristics observed 
and used for matching. 

Presumes that no 
unobserved 

differences exist 
between the treatment 

and control groups. 

Regression 
discontinuity 

Entities surpassing a 
certain threshold when 

ranked according to 
specific criteria, such as a 

poverty index 

Entities near the threshold 
but not qualified to receive 

the intervention. 

Entities both above and 
below the cutoff share 

identical statistical 
characteristics. 

The population near the 
cutoff (both above and 

below it) accurately 
represents the entire 

population. 

Comparability 
"similarity” between 

entities on either side 
of the cutoff. 

Randomized 
control trial 

Random assignment to 
the treatment group 

before the intervention 

Assigned to the control 
group through randomization 

before the intervention. 

Random assignment 
creates two identical 

groups. Both the treatment 
and control groups share 
similar observable and 

unobservable 
characteristics. 

An experiment's 
external validity is 
constrained when 

conducted in a 
particular context. 

Reference: Compiled from multiple sources, primarily [17] and [1] (p. 256). 
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Appendix B 
 

B1. Example of RCTs Using Completely Randomized Design (CRD). 

Description 

This example demonstrates how, in a CRD, treatments—including control treatments—are randomly assigned to experimental units, 

emphasizing that all units have an equal chance of receiving any treatment without blocking. Control of treatments is a fundamental aspect 

of experimental design; it works hand-in-hand with randomization to ensure that the results are due to the treatments applied and not to 

other extraneous factors. By including control treatments and randomizing their assignment, researchers can make meaningful comparisons 

and strengthen the validity of the study's conclusions. 

Table (B1): Random Assignment of Treatments in CRD. 

Experimental Unit Treatment Assigned 

Unit 1 Treatment A 

Unit 2 Control 

Unit 3 Treatment B 

Unit 4 Treatment A 

Unit 5 Treatment B 

Unit 6 Control 

Unit 7 Treatment A 

Unit 8 Treatment B 

Unit 9 Control 

Unit 10 Treatment A 

Explanation 

In a CRD, treatments are assigned completely at random to each experimental unit, making it suitable for situations where the units are 

homogeneous [30]. As noted in the table above, Treatment A was assigned four times, while the Control and Treatment B were each 

assigned three times. This occurred because, in a CRD, treatments are assigned randomly to experimental units, and due to the nature of 

randomization, it's possible—though not ideal—for treatments to have unequal replication. 

The main concern with unequal replication is that it can affect the balance of the experiment and reduce the statistical power of the 

analyses. Unequal sample sizes can lead to less precise estimates of treatment effects and may complicate statistical comparisons between 

treatments. To address this issue, researchers often aim for equal numbers of replicates per treatment to ensure balance and improve the 

reliability and validity of the results. Therefore, while pure randomization can sometimes lead to unequal assignments, it is common practice 

to design experiments with equal replication for each treatment to enhance the robustness of the findings. 

B2. Example of RCTs Using Randomized Complete Block Design (RCBD) 

Description 

This example illustrates how an RCBD is employed to control variability in an RCTs by blocking experimental units based on a known 

source of variation—in this case, soil type. The experimental units (plots) are grouped into blocks where each block represents a different 

soil type (Soil Type A, B, and C). Within each block, treatments are randomly assigned to the experimental units [30]. This design controls 

for variability among blocks by ensuring that each treatment is tested under similar conditions within each block. By accounting for the 

known variability due to soil differences, the RCBD enhances the precision of the experiment and allows for a more accurate assessment 

of treatment effects. 

Table (B2): Random Assignment of Treatments within Blocks in RCBD 

Block 1: (Soil Type A): 

Plot Treatment Assigned 

Plot 1A Treatment A 

Plot 1B Control 

Plot 1C Treatment B 

Block 2: (Soil Type B): 

Plot Treatment Assigned 

Plot 2A Treatment B 

Plot 2B Treatment A 

Plot 2C Control 

Block 3: (Soil Type C): 

Plot Treatment Assigned 

Plot 3A Control 

Plot 3B Treatment B 

Plot 3C Treatment A 
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Explanation 

The following important aspects are illustrated in this RCBD example: 

Blocking Based on Soil Type: The experimental units are grouped into three blocks according to soil type, which is a significant factor 

that can influence the outcome of the treatments. By doing so, we control for the variability associated with different soil conditions. 

Randomization Within Blocks: Within each block, the treatments (Control, Treatment A, and Treatment B) are randomly assigned to the 

plots. This randomization ensures that the assignment of treatments is unbiased and that each treatment has an equal chance of being 

assigned to any plot within the block. 

Equal Representation of Treatments: Each treatment appears once in every block, providing balanced replication across the entire 

experiment. This means that all treatments are tested under each soil type, allowing for comparisons both within and across blocks. 

Control of Variability: By keeping the soil type constant within blocks and randomizing treatments within those blocks, the RCBD effectively 

controls for the variability due to soil differences. This design isolates the treatment effects from the block effects, making it easier to detect 

true differences caused by the treatments. 

B3. Comparative Table Highlighting Differences Between CRD and RCBD in RCTs: 

In agricultural research, RCTs are fundamental experiments that eliminate bias by randomly assigning treatments to experimental units, 

ensuring that differences in outcomes are due to the treatments themselves. The structure of an RCTs can vary depending on the 

experimental design chosen, such as the CRD or the RCBD. 

To clarify when to employ a CRD or an RCBD in RCTs, the following table presents a detailed comparison of their key features. It 

highlights how each design handles crucial factors like the homogeneity of experimental units, control of variability, methods of 

randomization, complexity, statistical analysis requirements, and suitability for various experimental conditions. Understanding these 

distinctions enables researchers to choose the design that best aligns with their study objectives and conditions, thereby enhancing the 

validity and reliability of their experimental outcomes. 

Table (B3.1): Comparison of CRD and RCBD. 

Criteria CRD RCBD 

Homogeneity of Units 
Requires experimental units to be 

homogeneous. 

Accommodates heterogeneous units by grouping them 

into blocks where units within each block are similar 

[29] (p.29). 

Control of Variability 

Offers limited control over external variability. 

Not ideal for field experiments with significant 

variation among plots [29] (p.8). 

Controls for known sources of variability through 

blocking. Effective in managing variability due to factors 

like soil type or farmer characteristics. 

Randomization 

Treatments assigned completely at random 

to experimental units. Useful when equal 

replication is difficult to achieve [29] (p.17). 

Treatments are randomized within each block. Each 

block contains all treatments, ensuring fair 

comparisons [29] (p.20). 

Complexity Simpler design with straightforward analysis. 
Slightly more complex due to blocking, requiring careful 

planning and statistical consideration. 

Statistical Analysis 
Analyzed using ANOVA without block effects 

included. 

Analyzed using ANOVA with block effects included to 

account for variability among blocks. 

Suitable For 

Small-scale experiments with uniform 

conditions. Appropriate when experimental 

material makes equal replication challenging 

[29] (p.17). 

Experiments where controlling variability is essential. 

Particularly suited for field experiments with a 

predictable productivity gradient and a manageable 

number of treatments [29] (p.20) 

Source: Compiled by the authors based on information from [29]; [80]; [30]. 
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Appendix C 

Example C1. Sample Size Calculation for RCTs 

Initial Calculation using STATA 15 

Command Used: Power two proportions 0.15 0.30, m1(10) m2(10) rho(0.11) 

In calculating the sample size for a RCT, we chose an intra-cluster correlation coefficient (ICC) of 0.11, informed by studies [59] and 

[81], which reported ICCs of 0.11 and 0.14, respectively. We opted for the lower value as it better aligns with the extension research context. 

Notably, ICC reporting is often insufficient, as highlighted by [82], who found that only 6 out of 352 trials reported ICCs. We set the average 

cluster sizes, M1 and M2, at 10, reflecting the practicalities of the extension interventions being evaluated. 

Command Output 

Performing iteration 

Estimated numbers of clusters for a two-sample proportions test, cluster randomized design, Pearson's chi-squared test, Ho: p2 = p1 

versus Ha: p2 != p. 

Input Parameters 

Alpha (α): 0.0500 

Power: 0.8000 

Difference (Δ): 0.1500 

Proportion 1 (p1): 0.1500 

Proportion 2 (p2): 0.30 

Cluster Design: 

Average Cluster Size (M1): 10 

Average Cluster Size (M2): 10 

Intra-Cluster Correlation Coefficient (rho): 0.11 

Estimated Numbers: 

Number of Clusters for Group 1 (K1): 24 

Number of Clusters for Group 2 (K2): 24 

Total Sample Size for Group 1 (N1): 240 

Total Sample Size for Group 2 (N2): 240 

Calculation of Design Effect: (Deff)   

After the sample size is calculated, the next step is to determine the design effect due to clustering and then inflate the sample size 

accordingly. The value of the design effect determined by using the formula mentioned below that is derived from the different studies: 

Calculating the Design Effect (abbreviated as Deff) is important when dealing with clustered sample designs. It provides a numerical 

measure of how much the clustering method increases the variance compared to simple random sampling. The formula for computing the 

design effect is as follows: 

Deff = 1 + (m - 1) × ICC                                                           (6) 

where: 

• Deff stands for the design effect, which shows how much the variance increases because of the cluster sampling method. 

• 'm' in the formula represents the average cluster size, an important factor in the calculation that considers the size of each cluster in 

the sampled population. 

• ICC denotes the intra cluster correlation coefficient, that represents the similarity index of clusters. 

To calculate the design effect following equation can be used:  

Deff = 1+ (10 - 1) × 0.11 = 1.1                                                  (7) 

Above calculation, Deff value = 1.1 suggests that there is moderate increase in variance because of clustering. However, it is important 

to understand, that the extent of the design effect can vary significantly across studies. Previous study represented in [45] and [81], has 

identified a Deff value of approximately 2.3, that actually suggest that clustering has a substantial impact on the variability of the resulted 

measure. This study emphasizes the vital role of the design effect in the analysis of clustered data. 

Although Deff values holds much importance there is much gap and very few reports are available. These gaps highlight the challenges 

associated with estimating the design effect without specific experimental data from analogous research studies. Hence, the variance in 

presented Deff values highlights the need for experiential estimations that are specific to the unique characteristics of the design and context 

of study. While Equation 6 provides a basic method for calculating the design effect, researchers are highly recommended to consider the 

specificities of their study designs and the available experiential data to get more accurate and practical estimates. 
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Adjusted sample size calculation 

When working with clustered sampling methods, it's vital to consider the clustering effect in calculating the adjusted sample size. The 

formula mentioned below can be used to evaluate the adjusted sample size: 

nadjusted = (n) × Deff                                                                       (8) 

In this formula, nadjusted gives the value of the sample size adjusted to account for the clustering effect. The term n in the formula 

represents the aggregate sample size derived from random sampling. To sum up the two individual group we use the (n1 + n2). After 

applying this formula, we get the value of nadjusted as mentioned below: 

nadjusted = 480 × 2.3 = 1104                                                           (9) 

The sample size is adjusted to compensate for the clustering effect, which we have denoted as 2.3 in this case. This adjustment 

maintains the sample's strength and representativeness, despite the possible decrease in precision because of clustering. This method and 

the above-mentioned formula for adjusting the sample size have been calculated by [83, 84], and other researchers. It highlights its credibility 

and extensive acceptance in research methodologies that involves clustered sampling designs. 

Factoring in dropout rate 

It is really important to consider the attrition rate when figuring out how many people we need for a study. Prior investigations have 

revealed varying attrition rates, including 4.14% [44], 1.4% [59], 7% [39], 9.24% [61], 6% [65], 22% [13], and 16% [23]. Such practice 

emphasizes the importance of allowing for dropout percentage when considering different sample sizes. 

In this plan, we calculated the total sample size (N) by adding up the sub-samples (N1 + N2). Following, we applied a Deff of 1. 1, which 

finally resulted in the estimated number of 528 participants. In order to take into consideration a 20% attrition rate we added extra 105 

participants, bringing the total sample size to 643 participants. This adjustment was made to preserve the statistical reliability of study in 

spite of the fact that some participants might drop out. 

Alternative calculation method  

Another method that is STATA 15 offers researchers the advanced tools for calculation of power and sample size and such a detailed 

and accurate analysis is provided. The software features a user-friendly interface, letting the researchers key in essential parameters such 

as the research design. These parameters include effect size, alpha (significance level) and power threshold and many others. Those inputs 

are used by the software to identify a minimal sample size that is required for achieving a given level of statistical power. 

The following figures present the outcomes derived from the execution of the aforementioned STATA command are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (C.1): Power Analysis and Sample size calculation. 
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Figure (C.2): Power Analysis and Sample size calculation. 

Box (C1): Example of a Randomization Balance Test 

Imagine you're evaluating the impact of a new farming technique. You randomly assign 200 farmers into two groups: 100 receive the 
new technique (treatment group) and 100 follow traditional methods (control group). 
 
Before implementing the technique, you gather data on farm size, crop yield, and income. A balance test would compare these factors 
between the two groups. Similar average farm sizes, yields, and incomes between groups suggest effective randomization. 
 
However, if you notice a trend (e.g., the treatment group has consistently higher crop yields) before the technique is applied, this could 
indicate a randomization issue. 
 
To investigate the issue further, you would conduct a joint orthogonality test. You would use a regression model with the treatment status 
(new technique vs. traditional) as the dependent variable and farm characteristics as independent variables. If the coefficients for these 
characteristics are not significantly different from zero, it would confirm the groups' balance, indicating that the treatment status is not 
influenced by these characteristics. Thus, the randomization was successful. 

Note: The preceding calculations and discussions are intended to provide a further understanding of the determination of sample size. 
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Appendix D7 

 

D1. Available Software for Sample Size Calculations in RCTs: 

The following table provides a concise overview of software tools available for performing sample size calculations in RCTs. Each 

software is briefly described along with its key features, reference, and download link to aid researchers in selecting the most suitable tool 

for their specific study requirements. 

Table (D1): Available Software for Sample Size Calculations 

Software Description Key features Reference Download Link 

G*Power 

A free, user-friendly tool widely used for basic 

RCTs power and sample size calculations. 

Suitable for simpler RCTs designs. 

Supports t-tests, ANOVA, regression, 

and power analysis for straightforward 

RCTs designs. 

 

[85]. 

 

G*Power 

PASS 

A comprehensive software for advanced RCTs 

power and sample size analysis, particularly 

useful for agricultural trials. 

Handles complex study designs, 

including cluster randomization and 

stratified designs. 

 

[86] 

 

PASS 

STATA 

A versatile statistical software with built-in 

commands for complex RCTs designs, suitable 

for advanced agricultural trials. 

Supports multi-level clustered trials and 

complex RCTs designs like CRD and 

RCBD. 

 

[87] 

 

STATA 

SPSS Sample 

Power 

An SPSS extension focused on sample size 

calculations for a variety of RCTs designs, 

ideal for researchers already using SPSS. 

Integrates seamlessly with SPSS for 

conducting more advanced statistical 

analyses in RCTs. 

 

[88] 

 

SPSS 

SamplePower 

OpenEpi 

A free, open-source tool suited for basic 

sample size calculations in RCTs, with a focus 

on epidemiology and agricultural research. 

Simple interface with tools for 

calculating sample sizes for various 

RCTs designs. 

 

[89] 

 

OPENEPI 

Statulator 

Web-based tool that allows for fast and easy 

sample size calculations for RCTs, suitable for 

quick statistical computations. 

User-friendly tool for quick calculations 

of proportions, means, and survival 

rates in RCTs. 

 

[90] 

 

STATULATOR 

Note: Compiled by the authors from various literature sources and references provided above. 
 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://www.ncss.com/software/pass/
https://www.stata.com/
https://www.ibm.com/products
https://www.ibm.com/products
https://www.openepi.com/Menu/OE_Menu.htm
https://statulator.com/

