An-Najah University Journal for Research - A (Natural Sciences)

Quasi Centralizers and Inner Derivations in a Closed Ideal ‎of a Complex Banach Algebra
Authors:

Article info

2003-05-03
2004-08-31
2004-08-31
203 - 214

Keywords

Abstract

In this paper we show that, for an ideal J of a unital complex Banach algebra A, we have (i) under certain conditions the ? -quasi centralizer, the quasi centralizer, and the centralizer of J are all identical, and so they are subsets of the ? -quasi centralizer of J. (ii) If J is closed and a is a quasi-centralizer element of J, then DaJ, a restriction of the inner derivation of a to J is topologically nilpotent. (iii) For each complex number ? and each x in J we have, (? – a) x = 0 if and only if x (? – a) = 0.

Recommended Citation

As’ad, A. Y. (2004). Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra. An-Najah University Journal for Research - A (Natural Sciences), 18(2), 203–214. https://doi.org/10.35552/anujr.a.18.2.618
[1]A. Y. As’ad, “Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra,” An-Najah University Journal for Research - A (Natural Sciences), vol. 18, no. 2, pp. 203–214, Jun. 2004, doi: 10.35552/anujr.a.18.2.618.
As’ad, As’ad Y. “Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra.” An-Najah University Journal for Research - A (Natural Sciences), vol. 18, no. 2, June 2004, pp. 203–14. Crossref, https://doi.org/10.35552/anujr.a.18.2.618.
1.As’ad AY. Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra. An-Najah University Journal for Research - A (Natural Sciences) [Internet]. 2004 Jun;18(2):203–14. Available from: http://dx.doi.org/10.35552/anujr.a.18.2.618
As’ad, As’ad Y. “Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra.” An-Najah University Journal for Research - A (Natural Sciences) 18, no. 2 (June 2004): 203–14. https://doi.org/10.35552/anujr.a.18.2.618.

أشباه الممركز و الاشتقاقات الداخلية في مثالي مغلق في جبر بناخ العقدي
المؤلفون:

معلومات المقال

2003-05-03
2004-08-31
2004-08-31
203 - 214

الكلمات الإفتتاحية

الملخص

في هذا البحث تم إثبات أنه إذا كان J مثالياً في جبربناخ الوحدوي العقدي فإن: (1) في حال تحقق شروط معينة تكون مجموعات شبه الممركز من نوع، وشبه الممركز، والممركز جميعها متساوية وبذلك تصبح هذه المجموعات جزئية من مجموعة شبه الممركز من نوع وذلك للمثالي J. (2) إذا كان J مغلق و a عنصر ممركزي لــ J فإن الاشتقاق الداخلي لــ a

Recommended Citation

As’ad, A. Y. (2004). Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra. An-Najah University Journal for Research - A (Natural Sciences), 18(2), 203–214. https://doi.org/10.35552/anujr.a.18.2.618
[1]A. Y. As’ad, “Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra,” An-Najah University Journal for Research - A (Natural Sciences), vol. 18, no. 2, pp. 203–214, Jun. 2004, doi: 10.35552/anujr.a.18.2.618.
As’ad, As’ad Y. “Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra.” An-Najah University Journal for Research - A (Natural Sciences), vol. 18, no. 2, June 2004, pp. 203–14. Crossref, https://doi.org/10.35552/anujr.a.18.2.618.
1.As’ad AY. Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra. An-Najah University Journal for Research - A (Natural Sciences) [Internet]. 2004 Jun;18(2):203–14. Available from: http://dx.doi.org/10.35552/anujr.a.18.2.618
As’ad, As’ad Y. “Quasi Centralizers and Inner Derivations in a Closed Ideal of a Complex Banach Algebra.” An-Najah University Journal for Research - A (Natural Sciences) 18, no. 2 (June 2004): 203–14. https://doi.org/10.35552/anujr.a.18.2.618.

Why should you
Publish With Us?
An-Najah National University
Nablus, Palestine
P.O. Box
7, 707
Fax
(970)(9)2345982
Tel.
(970)(9)2345560
(970)(9)2345113/5/6/7-Ext. 2628
E-mail
[email protected]
EIC
Prof. Waleed Sweileh

An-Najah University Journal for Research - A (Natural Sciences) by An-Najah University, Nablus, Palestine is licensed under CC BY-NC 4.0